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Antidiabetics have Beneficial Effects on 
Epileptic Seizures in Diabetic Patients: A 
Narrative Review

Review Article

ABSTRACT
Several studies have reported the association of diabetes mellitus with epilep-
sy. With respect to the management of diabetes–epilepsy patients, these studies 
pointed out the beneficial effects of the ketogenic diet. Ketogenic diets may have 
antiepileptic properties as the utilization of ketone bodies in the brain instead 
of glucose delays or inhibits the degradation of γ-aminobutyric acid (GABA) 
transaminase, and thereby enhances the concentration of GABA. By restoring 
normal intracerebral GABA levels and reducing the cerebral inflammation linked 
to epilepsy, metformin is useful in preventing seizures. Sitagliptin has a positive 
impact on epilepsy by acting as an antioxidant and restoring normal GABA lev-
els. Weight gain is a well-known side effect of anti-seizure medications. Sodium 
valproate can cause dyslipidemia and inhibits glucose transporter-1 in the brain, 
putting patients with epilepsy and diabetes at risk of developing atherosclerosis. 
Cellular stress in diabetes and epilepsy induces autophagy and activates lipid 
peroxidation, which leads to ferroptosis. It’s worth looking at how ferroptosis and 
autophagy contribute to the etiology of diabetes and epilepsy, as well as how an-
tiepileptics and antidiabetics alter these pathological processes. Therefore, it was 
worth performing a narrative-review on the effects of antiepileptics on diabetes, 
the effect of antidiabetics on epilepsy, as well the net results of antiepileptic–an-
tidiabetic interactions in those patients.
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1. Introduction

Chronic epilepsy is associated with a number of 
systemic autoimmune diseases, including diabetes 
mellitus [1]. It has been reported that the odds ra-
tio of the association of epilepsy with autoimmune 
disease is 3.8 [2]. Type 1 Diabetes (T1D) is an au-
toimmune disease, and patients are at risk of having 
seizures three times greater than healthy subjects [2]. 
Refractory epilepsy and epilepsy of unknown origin 
are more common clinical findings in T1D [3]. Both 
T1D and epilepsy showed genetic predisposition, a 
positive test of anti-glutamic decarboxylase antibod-
ies, derangement of glucose metabolism, and cer-
ebral ischemia [4].

Type 2 diabetes (T2D) patients are at risk of devel-
oping epilepsy, as a population-based study dem-
onstrated a hazard ratio of 1.44 [5]. Both T2D and 
epilepsy are running in a vicious cycle mediated by 
obesity as a comorbid factor (Figure 1) [6]. Moreo-
ver, mitochondrial dysfunction is a pathological 
landmark of obesity, epilepsy and T2D, and it ex-
plains the association between these diseases [6]. In 
the management of epilepsy, different modalities 
are used including pharmacological intervention, 
ketogenic diet, vagal stimulation, surgical interven-
tion, etc. Each of these modalities may be affected 
by the metabolic derangement of diabetes and/or 

interactions with the antiepileptics or sometimes 
named antiseizure medications (ASM). Furthermore, 
autophagy and ferroptosis pathways were altered in 
both epilepsy and diabetes mellitus. Some ASM and 
antidiabetic drugs (ADDs) have been shown to have 
considerable impacts on autophagy and ferroptosis, 
which may be beneficial or detrimental in patients 
with coexisting conditions.   

2. The Effects of Ketogenic Diet

The ketogenic diet is considered in the management 
of epilepsy to control the occurrence of seizures and 
improve the efficacy of ASM. The constituents of the 
diet are high fat, sufficient protein, and low carbohy-
drate contents, which should be no more than 10% 
[7]. The principle of this diet is to shift the energy 
sources from glucose metabolism towards ketones 
production, e.g., acetoacetate and β-hydroxybutyrate 
from fat metabolism, and this energy biodirection 
is simulating the fasting state. Ketogenic diets are 
not free from adverse reactions, including metabolic 
acidosis, dehydration, lethargy, behavioral distur-
bances, and systemic infections [8, 9]. Ketogenic 
diets may have antiepileptic properties as the utiliza-
tion of ketone bodies in the brain instead of glucose 
delays or inhibits the degradation of γ-aminobutyric 
acid (GABA) transaminase and thereby enhances the 
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Figure 1. Inter-relationship between type 2 diabetes and epilepsy 
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concentration of GABA [10]. In addition, it attenu-
ates the levels of monoamines that enhance neuronal 
excitability, which explains the usefulness of the ke-
togenic diet in the management of resistant epilepsy 
[11]. The ketogenic diet can reduce or control sei-
zures because it contains a high fat/low carbohydrate 
ratio, which causes overproduction of ketones in the 
liver and used by brain which is then metabolised in 
mitochondria to generate energy. However, the unfa-
vorable effects of the ketogenic diet might carry risk 
to diabetic epilepsy patients.

The interactions between ketogenic diets and ASM 
favor synergism through their effects on the GABA 
receptor, transporter, and transaminase [12]. The 
inter-relationship between epilepsy, ketogenic-diet-
induced acidosis, and ADDs is complex. Lactic aci-
dosis is a rare adverse reaction to metformin, which 
has not interfered with the acidosis induced by the 
ketogenic diet [13]. Metformin is of value in con-
trolling seizures by upregulating the activity of the 
AMP-activated protein kinase (AMPK) pathway 
and inhibiting the mammalian target of rapamycin 
(mTOR) [14]. In addition, metformin normalizes in-
tracerebral GABA levels by modulating cerebral in-
flammation that is associated with epilepsy [15]. On 
the other hand, the use of some antiepileptic drugs is 
associated with the development of metabolic acido-
sis. One study reported that 71% of 80 patients who 
used topiramate had metabolic acidosis, which does 
not interact with using a ketogenic diet in the man-
agement of epilepsy [16, 17]. A ketogenic diet is a 
risk factor for the development of renal stones as a 
consequence of metabolic acidosis that is induced by 
topiramate or zonisamide [18]. The interaction be-
tween topiramate and ADDs is related to the pharma-
cokinetics of these drugs and not to the induction of 
acidosis. Topiramate reduces the systemic clearance 
of metformin and thereby elevates the serum level 
of metformin, which may cause unfavorable adverse 
reactions [19].

3. The Effects of Vagal Stimulation

Vagal nerve stimulation is an interventional approach 
used in the management of refractory epilepsy by 
implanting a device below the superior branch of the 
vagus nerve. Dysautonomia may develop when the 
device is implanted on the right side, as the branches 
of the right vagal nerve supply the atrial and ven-
tricular sinusoids. Moreover, implantation of the de-

vice on the left side might also be associated with 
dysautonomia due to the overlapping of the branches 
of the vagus nerves on both sides. A noninvasive 
transcutaneous stimulator placed over the left vagal 
nerve produced electroencephalographic changes 
as a result of modulating the central neurotransmit-
ters, including acetylcholine, GABA, serotonin, and 
noradrenaline [20]. A recent study reported no clini-
cal or electrical evidence of cardiac arrhythmias in 
patients with refractory epilepsy treated with vagal 
nerve stimulation, and the patients responded nor-
mally to the sympathetic and parasympathetic acti-
vation tests [21].

It is important to mention that epilepsy patients are 
at risk of developing cardiac arrhythmias and im-
pulse conduction defects due to seizures and ASM 
[22]. Cardiac arrhythmias are a result of intravenous 
administration of lacosamide in the treatment of sta-
tus epilepticus, which can occur even at therapeutic 
doses [23]. Lacosamide-induced arrhythmias in-
clude prolongation of the PR period, atrioventricular 
defects, sinus node dysfunction, atrial tachycardia, 
and fatal arrhythmias [24-26]. Aging is an impor-
tant risk factor for lacosamide-induced arrhythmias, 
as Runge et al demonstrated that patients who de-
veloped cardiac arrhythmias were aged > 65 years 
[27]. A significantly high plasma concentration of 
lamotrigine (> 14 mg/L) was associated with cardio-
toxicity in two of 293 patients, while levetiracetam 
(> 80 mg/L) did not produce a cardiac effect in 106 
patients [28]. Lamotrigine is a potential cardiotoxic 
drug; particularly in epilepsy patients who have car-
diovascular diseases or who are treated with drugs 
acting on the cardiovascular system [29]. Phenytoin 
has dual effects on the heart, as it can cause brady-
cardia and hypotension as adverse reactions, and it 
can protect the heart from cardiac arrhythmias in 
heart failure [30, 31]. ASM have asymptomatic ef-
fects on the ventricular repolarization, as shown by 
the prolonged electrocardiographic parameters, in-
cluding QTc, Tp-e, Tp-e/QTc after treatment with 
carbamazepine, sodium valproate, or levetiracetam 
[32]. Therefore, therapeutic drug monitoring for 
ASMs is recommended in epilepsy patients managed 
with vagal nerve stimulation to anticipate and/or 
avoid cardiac arrhythmias. Oral ADDs negatively af-
fect the heart of epilepsy patients with T2D who are 
managed with vagal stimulation. Rosiglitazone and 
pioglitazone are cardiotoxic drugs that induce sud-
den death and ventricular arrhythmias by inhibiting 
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ether-a-go-go-related potassium channels that are in-
volved in the delay of ventricular repolarization [33]. 
Sulfonylureas have dual effects on the heart. They 
are proarrhythmogenic drugs due to their blocking 
effects on the extrapancreatic ATP-potassium chan-
nels [34, 35], and as a protective mechanism, these 
channels are opened in response to ischemia [36]. 
Subtle myocardial ischemia is reported in epilepsy; 
therefore, sulfonylureas may provide protective ef-
fects in epilepsy patients with T2D [37]. However, 
ASMs are of value in preventing seizure-induced 
cardiac arrhythmias, and they negatively affect the 
risk factors for cardiac arrhythmias including, T2D, 
dysautonomia, and obesity [38]. Experimental ani-
mal studies have shown that vagal nerve stimulation 
is of value in reducing the serum glucose level by en-
hancing the release of glucagon-like peptide (GLP)-1 
[39]. Theoretically, vagal nerve stimulation as a part 
of the management of refractory epilepsy can also 
play a role in controlling the blood glucose level if 
the patients have concomitant T2D. Therefore, vagal 
stimulation is of value for both epilepsy and T2D, 
but it negatively impacts the patients treated with 
ASMs and/or ADDs, which participated in the car-
diac arrhythmias or conduction defects.

4. Effects of Antiepileptic on Diabetes 
Mellitus

ASMs impact diabetes adversely through different 
mechanisms. Weight gain is a known adverse reac-
tion to ASMs, which may be related to genetic pre-
disposition factors [40]. Sodium valproate induces 
weight gain after 3 months that peaks after 6 months 
of treatment [41], and it is influenced by many fac-
tors, such as gender, age, body mass index before 
initiation of treatment, and type of epilepsy [42]. 
Sodium valproate produces hyperinsulinemia [43, 
44], and hyperleptinemia, which may be the cause 
of weight gain [44, 45]. This effect may adversely 
affect patients with epilepsy and diabetes, as it may 
cause insulin resistance rather than reduce serum 
glucose levels [46]. In addition, sodium valproate 
inhibits glucose transporter (GLUT1) activity in the 
brain [47]. Moreover, sodium valproate therapy is 
associated with dyslipidemia in terms of high serum 
levels of total cholesterol and low-density lipopro-
tein, which adversely affect epilepsy–diabetes pa-
tients at risk of developing atherosclerosis [48]. It 
has been reported that sodium valproate reduced the 

mean levels of C-reactive protein and the estimated 
glomerular filtration rate by 55% in 50 patients with 
refractory epilepsy without producing a remarkable 
effect on glycosylated hemoglobin [49].

5. Effects of ADDs on Epilepsy

ADDs interact with epilepsy itself or with ASMs. 
Metformin is related to the biguanides and acts by 
sensitizing the tissue to insulin and providing a neu-
roprotective effect. Metformin plays a role in the 
regulation of glucose levels in the brain. It has been 
found that metformin prevents the synthesis of poly-
glucosan in experimental animal models of Lafora 
disease (a recessive progressive myoclonic epilep-
sy) [50]. It exerts an important effect on the func-
tion of glial cells as it reduces the proinflammatory 
markers by activation of the AMPK pathway, and 
thereby eliminates the neuroinflammation, which is 
a risk factor for provoking seizures [51-54]. In ex-
perimental animal models, the overactivation of the 
mTOR pathway is linked with seizures [14, 55], and 
it has been found that metformin inhibits upregula-
tion of the mTOR pathway, which eventually results 
in reducing proinflammatory markers, and seizure 
control [56, 57]. In addition, metformin’s positive 
effects on epileptic-diabetic animal models went be-
yond lowering blood sugar and reducing seizures to 
improve histopathology and restore normal GABA 
neurotransmitter levels [58, 59]. The antiapoptotic 
and antioxidant effects of metformin are also in-
volved in the neuroprotective effect of metformin in 
epileptic–diabetic animal models [60-62]. Patients 
with GLUT1 deficiency syndrome are vulnerable 
to seizures; therefore, metformin plays a role in the 
upregulation of GLUT1 in astrocytes, leading to the 
prevention of seizures and/or reducing the number 
of seizures [63-67]. The mechanisms of action of 
metformin on seizures are shown in Figure 2. Met-
formin therapy interacts adversely with topiramate 
at a pharmacokinetic level. In a clinical trial carried 
out on healthy subjects, topiramate reduced the sys-
temic clearance of metformin, and this effect seems 
to be gender-based because it is more pronounced 
in women than men [19]. Sitagliptin is one of the 
dipeptidyl dipeptidase-4 inhibitors, which have a 
positive impact on epilepsy in experimental animal 
models with pentylenetetrazole-induced seizures, by 
reducing reactive oxygen species (antioxidant ef-
fect), normalizing of GABA level, suppressing of 
neuroinflammation (autophagy), and reducing neu-
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ronal damage (antiapoptotic effect) [68]. The other 
beneficial effect of sitagliptin is preventing the con-
version of epilepsy to disease-associated microglia 
by suppressing neuroinflammation [69]. 

Pioglitazone is related to the thiazolidinediones, 
which act by activating the peroxisome proliferator-
activated receptors in the nucleus. Experimentally, 
pioglitazone has an antiepileptic effect, which is 
related to activation of the nitric oxide generation 
pathway [70], and it interacts synergistically with 
the ketogenic diet in prolonging the latency period 
of seizure induction by inhalation of flurothyl gas 
[71]. GLP-1 receptor agonists, e.g., exenatide and 
liraglutide, do not produce serious adverse reactions. 
Liraglutide is well tolerated and reduces body weight 
when combined with metformin in T2D patients. 
Therefore, it can counteract the weight gain induced 
by sodium valproate in epilepsy patients with T2D. 
Experimental animal studies demonstrated that lira-
glutide was effective in reducing spontaneous sei-
zures and preventing cognitive impairment in an ani-
mal model of epilepsy [72]. Wen et al demonstrated 
that patients with temporal lobe epilepsy showed a 
decrease in GLP-1 receptor expression and levels 
in the cerebral cortex slices, suggesting that liraglu-
tide has an antiepileptic effect [73]. Sodium-glucose 
cotransporter inhibitors, e.g., canagliflozin, dapagli-
flozin, and empagliflozin, are also of benefit in the 
management of T2D with epilepsy as they reduce 
body weight, and there is no evidence of adverse ef-
fects on the central nervous system. Experimentally, 
dapagliflozin stabilizes neurons by reducing sodium 
transport across the membrane, as it significantly re-
duced the spike-wave percentage assessed by elec-
troencephalogram and improved the behavior in rats 
with pentylenetetrazole-induced seizures [74]. 

6. The Pharmacological Actions of ADDs 
and ASM at the Cellular Levels

The generation of free radicals contributes to the 
development of T2D and epilepsy. Because several 
ASMs and ADDs have been demonstrated to have 
varied effects on autophagy or ferroptosis, we an-
ticipate synergistic, additive, or antagonistic effects. 
The influence of ASM and ADDs on autophagy and 
ferroptosis in epilepsy and T2D is summarized in 
Figure 3. 

6.1. Effects of ADDs and ASMs on autophagy

There is a close link between epilepsy and autophagy 
because the characteristic pathological changes in 
epilepsy, including changes in the structures and 
functions of the synapse, structural changes in the 
glia, abnormalities in the neural circuits, and an 
imbalance in the neuronal excitatory and inhibitory 
amino acids, are under the regulation of autophagy 
[75-78]. Autophagy in epilepsy induces changes in 
the ion channels, e.g., the GABAA receptor or glu-
tamate receptor, leading to interferance in neuronal 
excitability [76]. There is evidence that the severity 
of epilepsy is linked to the hyperactivation of mTOR, 
which results from the loss of activity of mTOR in-
hibitor proteins [79-81].Therefore, drugs that target 
neural autophagy are of benefit in the management 
of epilepsy as they restore neural structures and 
functions. 

Because autophagy is altered in epilepsy, drugs that 
stimulate autophagy by activating AMPK or blocking 
the mTOR signaling pathway may benefit a variety 
of epilepsy patients [82]. ADDs with an autophagy 
inducer and/or mTOR property can be beneficial for 
people with epilepsy and T2D. According to various 
studies, metformin’s pharmacological actions are 
explained by the fact that it is a potent autophagy 
inducer. Metformin promotes autophagy by modu-
lating signaling pathways such as AMPK, STAT, and 
SIRT [83]. Furthermore, metformin can also induce 
autophagy by regulating the sodium-hydrogen ex-
changer, which is implicated in the etiology of slow 
wave epilepsy [84]. These pharmacological actions 
of metformin are inadequate to demonstrate that the 
medicine has ASM capabilities because it also af-
fects other signaling pathways that induce autophagy 
(Table 1) [85, 86]. 

Sulfonylureas also increase autophagy via a mech-
anism related to mTOR inhibition [85, 87]. Sulfo-
nylureas are ineffective against epilepsy since their 
potential to promote autophagy has not been dem-
onstrated in animal models of the illness. In reality, 
sulfonylureas can produce convulsions by disrupting 
the ATP-sensitive potassium channel or by lowering 
the efficacy of anticonvulsant medications that im-
pact the inwardly rectifying potassium channels. (Kir 
4.1) [88, 89]. Glitazones stimulate the peroxisome 
proliferator-activated receptor (PPAR), enhancing 
cellular sensitivity to insulin. This family of medi-
cines induces autophagy by scavenging free radicals 
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and activating antioxidant enzymes [90, 91]. Rosigl-
itazone inhibited the BDNF/TrkB pathway, which 
governs neural plasticity and produces seizures, in 
experimental studies, and had a favorable influence 
on people with T2D and epilepsy [92].  Rosiglitazone 
suppressed epileptiform discharges of hippocampal 
neurons in in vitro experimental models of epilepsy 

by limiting the release of presynaptic neurotransmit-
ters and decreasing neuronal excitotoxicity caused 
by NMDA [93]. Dipeptidyl peptidase-4 (DPP-4) in-
hibitors lowered weight gain, metabolic dysregula-
tion, and insulin resistance in obese mice by increas-
ing autophagy activity and decreasing inflammation 
[94]. DPP-4 inhibitors enhance autophagosomes 
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Figure 2. Mechanisms by which antidiabetic drugs improve the outcome of epilepsy 
Hsp70:heat shock protein 70, IL: interleukin, TNF: tumor necrosis factor, NFkB: Nuclear factor kappa B, CCL2: C-C motif 
ligand-2, iNOS: inducible nitric oxide synthetase, COX: cyclooxygenase, BDNF: brain derived neurotrophic factor, NRTK: 
non-receptor kinase,  GABA: gamma-aminobutyric acid. 
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by a mechanism unrelated to the AMPK or mTOR 
signaling pathways [95]. DPP-4 inhibitors may thus 
be useful in the treatment of epilepsy. Sitagliptin de-
creases the severity of kainic acid-induced seizures 
in animals, and promotes the formation of disease-
associated microglia (a kind of neuroprotective mi-
croglia) [69]. The drop in IL-1β, IL-6, and the en-
zyme-induced nitric oxide synthetase levels shows 
that sitagliptin’s antiepileptic effects are caused by 
the blockage of the NF-kB signaling pathway and 
the control of inflammation [69]. Furthermore, sitag-
liptin improves the efficacy of pregabalin in prevent-
ing seizures caused by pentylenetetrazole via a vari-
ety of mechanisms, including lower glutamate levels, 
increased GABA levels, and autophagy-mediated 
neuroinflammation [68]. Dapagliflozin and canagli-
flozin are examples of sodium glucose cotransporter 
(SGLT2) inhibitors that induce autophagy via acti-
vating the AMPK/mTOR signaling pathways, as 
evidenced by a rise in the p-AMPK/AMPK ratio 
and a reduction in the p-mTOR/mTOR ratio [96, 
97]. Dapagliflozin reduces the availability of glu-
cose and the transfer of sodium across the neuronal 
membrane in animal models of pentylenetetrazole-
induced seizures, decreasing the spike wave percent-
age observed on electroencephalograms [98]. The 
expression of the glucagon-like peptide-1 (GLP-1) 
receptor is linked to autophagy induction, implying 
that GLP-1 receptor agonists used to treat diabetes 
also activate autophagy [99]. Liraglutide has the po-
tential to treat neurodegenerative diseases because it 
restores autophagy, which is impaired by endoplas-
mic reticulum stress (a neuronal damage mecha-
nism) [100]. In lithium-pilocarpine animal models of 
status epilepticus, liraglutide reduces neuroinflam-
mation (reducing IL-1β and TNF-α) and mitochon-
drial stress without lowering blood sugar [101]. In a 
nutshell, anti-diabetics benefit people with T2D and 
epilepsy by restoring autophagy, which is impaired 
by epilepsy and diabetes.

Autophagy dysregulation contributes to the patho-
genesis of diabetes mellitus [102]. Mitophagy aids 
in the removal of toxic metabolites that cause mi-
tochondrial damage and protects pancreatic β-cells 
from oxidative stress in T2D [103]. Some ASM im-
pede autophagy function, which indicates that they 
are dangerous in diabetics. Sodium valproate has 
been shown in studies to have dual effects on au-
tophagy. In a rat model of spinal cord injury, sodium 
valproate inhibited autophagy, providing neuropro-
tection by lowering neuronal death [104]. 

The mechanism by which sodium valproate causes 
autophagy is the inhibition of the mTOR signaling 
pathway [105]. In contrast, another study found that 
sodium valproate enhanced autophagy and cleared 
toxic compounds that caused neuronal damage [106]. 
Valproate may have some beneficial effects on diabe-
tes because it protects the pancreatic β-cell by sup-
pressing cellular apoptosis [107]. A separate study 
discovered that valproate lowers the effect of hyper-
glycemia on the activation of the coagulation and 
complement genes [105]. Valproate medication has 
been associated with large increases in body mass 
index and hyperinsulinemia in children with epilepsy 
[44], and another study found that valproate promotes 
dyslipidemia by dramatically boosting blood triglyc-
erides and reducing high-density lipoprotein [108]. 
As a result, sodium valproate should not be used as 
an antiepileptic medication to treat people who have 
diabetes as well as epilepsy. Carbamazepine, an an-
tiepileptic medication, is classified as an autophagy 
promoter. It stimulates autophagosomes by boosting 
the activity of AMPK-ULK1 [109]. It’s fascinating 
to observe how carbamazepine protects against dia-
betes in mice by lowering the inflammatory response 
that causes insulitis and decreasing beta-cell activ-
ity [110]. There is little doubt that carbamazepine 
aids in the treatment of diabetic neuropathy because 
it stabilizes the neuronal cell membrane rather than 
inducing autophagy [111]. Unlike valproate, carba-

Table 1. Signaling pathways that modulated autophagy by metformin. 

Pathways Action

ignaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, 
AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/

AKT/ GSK3β, and TRIB3. 
Activation

AMPK/NF-κB, Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p Inhibition

PI3K/AKT/mTOR and endoplasmic reticulum stress bidirectional
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mazepine does not cause dyslipidemia or weight gain 
[112]. Given that carbamazepine can cause polyuria 
and diabetic insipidus, it should be avoided in epi-
leptic patients with diabetes. Pregabalin offeres neu-
roprotection by boosting autophagy and apoptosis 
and lowering the inflammatory response, according 
to literature studies [68]. Pregabalin, like carbamaz-
epine, aids in the management of diabetic neuropa-
thy by stabilizing the neuronal cell membrane [112]. 
Phenytoin restores autophagy activity by increas-
ing the levels of autophagy-related proteins such as 
LC3II, p62, and Becline [113]. Gabapentin inhibited 
autophagy activity in experimental mice used to ex-
amine stroke caused by middle cerebral artery oc-
clusion via increasing the phosphoinositide-3-kinase 
(PI3K)/protein kinase B (Akt)/mammalian target of 
rapamycin (mTOR) signaling pathway [114]. The 
β-secretase enzyme, which degrades the amyloid 
plaques, is likely to be the mechanism that stimu-
lates autophagy in experimental mice with cognitive 
impairments [115]. Despite the lack of scientific or 
clinical proof that lamotrigine causes autophagy, it 
is used by diabetics in conjunction with anti-obesity 
medications to reduce body weight [116]. As a result, 
while establishing the therapeutic uses of antiepilep-
tic drugs in patients with epilepsy and T2D, caution 
should be exercised.

6.2. Effects of ADDs and ASMs on ferroptosis

Dioxin et al. (2012) defined ferroptosis as a kind of 
controlled cell death characterized by the buildup 
of iron and reactive oxygen species [117].  Epilepsy, 
which is followed by ischemic stroke and trauma, has 
been connected to aberrant iron metabolism, which 
leads to the production of lipid peroxides and iron 
overload [118, 119]. Ferroptosis leads to pancreatic 
β-cell destruction, reduced glucose-induced insulin 
release, and impaired insulin synthesis in persons 
with type 2 diabetes due to an accumulation of iron 
and lipid peroxidation products in the mitochondria 
[120]. Metformin causes ferroptosis in malignant 
cells, which results in intracellular iron overload 
and lipid peroxidation products independent of the 
AMPK signaling pathway [121].

Metformin proved antiferroptosis in an experimen-
tal animal model of spinal cord injury by reducing 
malondialdehyde (MDA) levels and enhancing long-
term results by blocking the inflammatory signaling 
pathway and activating the nuclear factor E2 sign-
aling pathway [122]. The stimulation of the AMPK 

signaling pathway is likely to be the origin of this 
antiferroptotic activity, which was also seen in vit-
ro [123]. As a result, metformin either increased or 
inhibited ferroptosis depending on the pathogenic 
circumstances. The ferroptosis process is initiated 
in epileptic adolescents treated with valproate or le-
vetiracetam, as demonstrated by significantly higher 
blood levels of MDA and 8-OH-2-deoxyguanosine 
(a DNA damage marker) [124].

While phenytoin and carbamazepine have no ef-
fect on MDA levels [125-127], topiramate has been 
shown to up-regulate the lipid peroxidation process 
[125]. As a result, the involvement of ferroptosis in 
the pathophysiology of epilepsy-diabetes mellitus 
co-morbidities is currently being studied.

7. Conclusions

ADDs that reduce body weight are safe to prescribe 
for epilepsy patients with diabetes, and they show 
antiseizure effects by acting via different mecha-
nisms and pathways. Drugs that activate autophagy 
or prevent ferroptosis are relatively safe for patients 
with epilepsy and diabetes.  Further clinical studies 
are recommended to confirm the experimental evi-
dence that showed that some ADDs delay the onset, 
prevent the generation of seizures, and improve cog-
nitive function.
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