ESKİŞEHİR TEKNİK ÜNIVERSITESİ BİLİM VE TEKNOLOJİ DERGİSİ B- TEORİK BİLIMLER

Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences
2023, $11(2)$, pp. 104-108, DOI: 10.20290/estubtdb. 1200175

RESEARCH ARTICLE

THE NOWICKI CONJECTURE FOR BICOMMUTATIVE ALGEBRAS
 Şehmus FINDIK * (iD
 Department of Mathematics, Faculty of Science and Letters, Çukurova University, Adana, Türkiye

Abstract

Let K be a field of characteristic zero, and $K\left[X_{n}, Y_{n}\right]$ be the commutative associative unitary polynomial algebra of rank $2 n$ generated by the set $X_{n} \cup Y_{n}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$. It is well known that the algebra $K\left[X_{n}, Y_{n}\right]^{\delta}$ of constants of the locally nilpotent linear derivation δ of $K\left[X_{n}, Y_{n}\right]$ sending y_{i} to x_{i}, and x_{i} to 0 , is generated by x_{1}, \ldots, x_{n} and the determinants of the form $x_{i} y_{j}-x_{j} y_{i}$; that was first conjectured by Nowicki in 1994, and later proved by several authors. Bicommutative algebras are nonassociative noncommutative algebras satisfying the identities $(x y) z=(x z) y$ and $x(y z)=y(x z)$. In this study, we work in the $2 n$ generated free bicommutative algebra as a noncommutative nonassociative analogue of the Nowicki conjecture, and find the generators of the algebra of constants in this algebra.

Keywords: Algebra of constants, Bicommutative algebra, The Nowicki conjecture

1. INTRODUCTION

Roots of the Nowicki conjecture dates back to 1900, when the famous German mathematician David Hilbert posed 23 unsolved major questions at the Paris International Congress of Mathematicians [1]. In the fourteenth problem, he asked the finite generation of the algebra $K\left[X_{n}\right]^{G}$ of invariants of any subgroup G of the general linear group consisting of $n \times n$ invertible matrices with entries from a field K of characteristic zero, where $K\left[X_{n}\right]$ is the commutative associative unitary polynomial algebra of rank n.

The negative answer to the fourteenth problem was given by Nagata [2] in 1959, while many partially affirmative cases were considered by several authors. One may count the work by Noether [3] who showed that $K\left[X_{n}\right]^{G}$ finitely generated for every finite group G. Another remarkable approach was given by Weitzenböck [4] who considered algebras constants of linear nilpotent derivations δ of $K\left[X_{n}\right]$. He showed that the algebra $K\left[X_{n}\right]^{\delta}$ is finitely generated that is equal to the algebra $K\left[X_{n}\right]^{\langle\exp \delta\rangle}$ of invariants. However, no information about the explicit forms of generators were provided. Many years later in 1994, Nowicki [5] conjectured an explicit generating set for the algebra $K\left[X_{n}, Y_{n}\right]^{\delta}$ of constants of the Weitzenböck derivation δ sending y_{i} to x_{i}, and x_{i} to 0 , where $K\left[X_{n}, Y_{n}\right]$ is the polynomial algebra of rank $2 n$ generated by the set $X_{n} \cup Y_{n}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$. He proposed that $K\left[X_{n}, Y_{n}\right]^{\delta}$ is generated by x_{1}, \ldots, x_{n} and the elements of the form $x_{i} y_{j}-x_{j} y_{i}$, where $1 \leq i<j \leq n$. Then, the conjecture was verified by many mathematicians $[6,7,8,9]$.

Noncommutative nonassociative analogues of the Nowicki conjecture have been studied, recently. See e.g. [10], in which the authors consider the free metabelian Lie algebra $F_{2 n}$ of rank $2 n$ generated by $X_{n} \cup Y_{n}$. They gave a finite generating set for the algebra $\left(F_{2 n}^{\prime}\right)^{\delta}$ included in the commutator ideal $F_{2 n}^{\prime}$ of $F_{2 n}$ as a $K\left[X_{n}, Y_{n}\right]^{\delta}$-module. As a continuation of this work a finite generation set for the algebra of constants in the commutator ideal of the free metabelian associative algebra generated by $X_{n} \cup Y_{n}$ as a $K\left[X_{n}, Y_{n}\right]^{\delta}$-bimodule was given in [11]. In the same work, a set of finite generators was obtained for

[^0]the free algebra in the variety of infinite dimensional Grassmann algebras. There is also the free metabelian Possion algebra analogue of the Nowicki conjecture [12].

In the current study, we consider the free algebra of rank $2 n$ in the variety of bicommutative algebras and determine the generators of the algebra of constants of Weitzenböck derivation that was stated in the Nowicki conjecture.

2. PRELIMINARIES

We assume that \boldsymbol{K} is a field of characteristic zero throughout the paper. Let $\boldsymbol{K}\left[\boldsymbol{X}_{\boldsymbol{n}}\right], \boldsymbol{K}\left[\boldsymbol{Y}_{\boldsymbol{n}}\right]$, and $\boldsymbol{K}\left[\boldsymbol{X}_{n}, \boldsymbol{Y}_{\boldsymbol{n}}\right]$ be the polynomial algebras generated by sets $\boldsymbol{X}_{\boldsymbol{n}}=\left\{\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\}, \boldsymbol{Y}_{\boldsymbol{n}}=\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}\right\}$, and $\boldsymbol{X}_{\boldsymbol{n}} \cup \boldsymbol{Y}_{\boldsymbol{n}}$, respectively. We also fix notations $\boldsymbol{\omega}\left(\boldsymbol{K}\left[\boldsymbol{X}_{\boldsymbol{n}}\right]\right)$ and $\boldsymbol{\omega}\left(\boldsymbol{K}\left[\boldsymbol{X}_{n}\right]\right)$ for augmentation ideals of $\boldsymbol{K}\left[\boldsymbol{X}_{\boldsymbol{n}}\right]$ and $\boldsymbol{K}\left[\boldsymbol{Y}_{n}\right]$, respectively, consisting of the polynomials without constant terms.

We call a noncommutative nonassociative algebra over \boldsymbol{K} right symmetric and left symmetric if it satisfies the identity $(\boldsymbol{x} \boldsymbol{y}) \mathbf{z}=(\boldsymbol{x} \boldsymbol{z}) \boldsymbol{y}$ and $\boldsymbol{x}(\boldsymbol{y z})=\boldsymbol{y}(\boldsymbol{x} \boldsymbol{z})$, respectively. An algebra over \boldsymbol{K} is called bicommutative if it is left and right symmetric.

Let $\boldsymbol{F}_{2 \boldsymbol{n}}$ be the free algebra of rank $\mathbf{2 n}$ generated by $\boldsymbol{X}_{\boldsymbol{n}} \cup \boldsymbol{Y}_{\boldsymbol{n}}$ in the variety of bicommutative algebras over the field \boldsymbol{K}, and let $\boldsymbol{a}=\boldsymbol{a}_{1} \boldsymbol{a}_{2}, \boldsymbol{b}=\boldsymbol{b}_{1} \boldsymbol{b}_{2}, \boldsymbol{c} \in \boldsymbol{F}_{2 n}^{2}$ for some $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{b}_{1}, \boldsymbol{b}_{2} \in \boldsymbol{F}_{2 n}$. Then the following straightforward computations show that the ideal $\boldsymbol{F}_{2 \boldsymbol{n}}^{2}=\boldsymbol{F}_{2 n} \boldsymbol{F}_{2 \boldsymbol{n}}$ of $\boldsymbol{F}_{2 \boldsymbol{n}}$ is commutative and associative.

$$
\begin{gathered}
a b=\left(a_{1} a_{2}\right)\left(b_{1} b_{2}\right)=\left(a_{1}\left(b_{1} b_{2}\right)\right) a_{2}=\left(b_{1}\left(a_{1} b_{2}\right)\right) a_{2}=\left(b_{1} a_{2}\right)\left(a_{1} b_{2}\right)=a_{1}\left(\left(b_{1} a_{2}\right) b_{2}\right) \\
=a_{1}\left(\left(b_{1} b_{2}\right) a_{2}\right)=\left(b_{1} b_{2}\right)\left(a_{1} a_{2}\right)=b a,
\end{gathered}
$$

and

$$
(a b) c=c(a b)=a(c b)=a(b c) .
$$

Therefore, $\boldsymbol{F}_{2 \boldsymbol{n}}$ can be considered as a direct sum of the vector space $\boldsymbol{K}\left(\boldsymbol{X}_{\boldsymbol{n}} \cup \boldsymbol{Y}_{\boldsymbol{n}}\right)=\boldsymbol{\operatorname { S p a n }}\left\{\boldsymbol{X}_{\boldsymbol{n}} \cup \boldsymbol{Y}_{\boldsymbol{n}}\right\}$ and $\boldsymbol{\omega}\left(\boldsymbol{K}\left[\boldsymbol{A}_{\boldsymbol{n}}, \boldsymbol{B}_{\boldsymbol{n}}\right]\right) \boldsymbol{\omega}\left(\boldsymbol{K}\left[\boldsymbol{C}_{\boldsymbol{n}}, \boldsymbol{D}_{\boldsymbol{n}}\right]\right)$, where

$$
A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}, B_{n}=\left\{b_{1}, \ldots, b_{n}\right\}, C_{n}=\left\{c_{1}, \ldots, c_{n}\right\}, D_{n}=\left\{d_{1}, \ldots, d_{n}\right\}
$$

such that

$$
\begin{aligned}
x_{i} x_{j} & =a_{i} c_{j}, \\
y_{i} y_{j} & =b_{i} d_{j}, \\
x_{i} y_{j} & =a_{i} d_{j}, \\
y_{i} x_{j} & =b_{i} c_{j} .
\end{aligned}
$$

Note that $\boldsymbol{F}_{2 \boldsymbol{n}}^{\mathbf{2}} \cong \boldsymbol{\omega}\left(\boldsymbol{K}\left[\boldsymbol{A}_{\boldsymbol{n}}, \boldsymbol{B}_{\boldsymbol{n}}\right]\right) \boldsymbol{\omega}\left(\boldsymbol{K}\left[\boldsymbol{C}_{\boldsymbol{n}}, \boldsymbol{D}_{\boldsymbol{n}}\right]\right)$ contains elements as linear combinations of the form

$$
a_{1}^{\alpha_{1}} \cdots a_{n}^{\alpha_{n}} b_{1}^{\beta_{1}} \cdots b_{n}^{\beta_{n}} c_{1}^{\gamma_{1}} \cdots c_{n}^{\gamma_{n}} d_{1}^{\varepsilon_{1}} \cdots d_{n}^{\varepsilon_{n}}
$$

where $\alpha_{1}+\cdots+\alpha_{n}+\beta_{1}+\cdots+\beta_{n}>0, \gamma_{1}+\cdots+\gamma_{n}+\varepsilon_{1}+\cdots+\varepsilon_{n}>0$. We refer to the paper [13] for more details.

Now let $\delta: F_{2 n} \rightarrow F_{2 n}$ be the locally nilpotent derivation of $F_{2 n}$ acting linearly on the vector space spanned on $X_{n} \cup Y_{n}$ such that $\delta\left(y_{i}\right)=x_{i}, \delta\left(x_{i}\right)=0$ for each $i=1, \ldots, n$. Our main result concerns with the generators of the subalgebra

$$
F_{2 n}^{\delta}=\left\{f \in F_{2 n}: \delta(f)=0\right\}
$$

of constants of the derivation δ in the free bicommmutative algebra $F_{2 n}$. For this purpose, we will work in the algebra

$$
F_{2 n}=K\left(X_{n} \cup Y_{n}\right) \oplus F_{2 n}^{2} \cong K\left(X_{n} \cup Y_{n}\right) \oplus \omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right)
$$

An easy observation gives that

$$
\begin{aligned}
F_{2 n}^{\delta} & \cong K\left(X_{n} \cup Y_{n}\right)^{\delta} \oplus\left(\omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right)\right)^{\delta} \\
& =K X_{n} \oplus\left(\omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right)\right)^{\delta} .
\end{aligned}
$$

Here, we assume that δ acts on $K\left(A_{n} \cup B_{n}\right)$ and $K\left(C_{n} \cup D_{n}\right)$ same as on $K\left(X_{n} \cup Y_{n}\right)$; i.e.,

$$
\begin{aligned}
& \delta\left(b_{i}\right)=a_{i}, \delta\left(a_{i}\right)=0 \\
& \delta\left(d_{i}\right)=c_{i}, \delta\left(c_{i}\right)=0
\end{aligned}
$$

for each $i=1, \ldots, n$. Hence, it is sufficient to determine constants of δ in the algebra

$$
\left(F_{2 n}^{2}\right)^{\delta}=\left(\omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right)\right)^{\delta} .
$$

In the next section, we determine the elements of $\left(F_{2 n}^{2}\right)^{\delta}$, and consequently describe the algebra $F_{2 n}^{\delta}$.

3. MAIN RESULTS

The following theorem and corrollary are our main results.
Theorem 1. The algebra $\left(\omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right)\right)^{\delta}$ is generated by determinants

$$
\left|\begin{array}{ll}
a_{i} & c_{j} \\
b_{i} & d_{j}
\end{array}\right|=a_{i} d_{j}-b_{i} c_{j}, \quad 1 \leq i, j \leq n
$$

and it is a $K\left[A_{n}, C_{n}, a_{i} b_{j}-b_{i} a_{j}, c_{i} d_{j}-d_{i} c_{j}, a_{k} d_{l}-b_{k} c_{l}: 1 \leq i<j \leq n, 1 \leq k, l \leq n\right]^{\delta}$-module.
Proof. Clearly, $\omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right) \subset K\left[A_{n}, B_{n}, C_{n}, D_{n}\right]$ is a $K\left[A_{n}, B_{n}, C_{n}, D_{n}\right]$-module, and $\left(\omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right)\right)^{\delta}$ is a $K\left[A_{n}, B_{n}, C_{n}, D_{n}\right]^{\delta}$-module. It is well known, see e.g. [7], that $K\left[A_{n}, B_{n}, C_{n}, D_{n}\right]^{\delta}$ is generated by $a_{1}, \ldots, a_{n}, c_{1}, \ldots, c_{n}$ together with

$$
\begin{gathered}
\left|\begin{array}{cc}
a_{i} & a_{j} \\
b_{i} & b_{j}
\end{array}\right|=a_{i} b_{j}-b_{i} a_{j}, \quad\left|\begin{array}{cc}
c_{i} & c_{j} \\
d_{i} & d_{j}
\end{array}\right|=c_{i} d_{j}-d_{i} c_{j}, \quad 1 \leq i<j \leq n, \\
\left|\begin{array}{cc}
a_{i} & c_{j} \\
b_{i} & d_{j}
\end{array}\right|=a_{i} d_{j}-b_{i} c_{j}, \quad 1 \leq i, j \leq n .
\end{gathered}
$$

It is straightforward to see that a polynomial $p\left(A_{n}, B_{n}, C_{n}, D_{n}\right) \in K\left[A_{n}, B_{n}, C_{n}, D_{n}\right]$ belongs to $\omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right)$ if and only if

$$
p\left(A_{n}, B_{n}, C_{n}, D_{n}\right) \not \equiv 0\left(\bmod K\left[A_{n}, B_{n}\right] \oplus K\left[C_{n}, D_{n}\right]\right)
$$

Since,

$$
\begin{gathered}
a_{1}, \ldots, a_{n} \equiv 0\left(\bmod K\left[A_{n}, B_{n}\right] \oplus K\left[C_{n}, D_{n}\right]\right) \\
c_{1}, \ldots, c_{n} \equiv 0\left(\bmod K\left[A_{n}, B_{n}\right] \oplus K\left[C_{n}, D_{n}\right]\right) \\
a_{i} b_{j}-b_{i} a_{j} \equiv 0\left(\bmod K\left[A_{n}, B_{n}\right] \oplus K\left[C_{n}, D_{n}\right]\right) \\
c_{i} d_{j}-d_{i} c_{j} \equiv 0\left(\bmod K\left[A_{n}, B_{n}\right] \oplus K\left[C_{n}, D_{n}\right]\right) \\
a_{i} d_{j}-b_{i} c_{j} \not \equiv 0\left(\bmod K\left[A_{n}, B_{n}\right] \oplus K\left[C_{n}, D_{n}\right]\right)
\end{gathered}
$$

we obtain that $\left(\omega\left(K\left[A_{n}, B_{n}\right]\right) \omega\left(K\left[C_{n}, D_{n}\right]\right)\right)^{\delta}$ is generated by the elements of the form $a_{i} d_{j}-b_{i} c_{j}$, $1 \leq i, j \leq n$, and it is a

$$
K\left[A_{n}, B_{n}, C_{n}, D_{n}\right]^{\delta}=K\left[A_{n}, C_{n}, a_{i} b_{j}-b_{i} a_{j}, c_{i} d_{j}-d_{i} c_{j}, a_{k} d_{l}-b_{k} c_{l}: 1 \leq i<j \leq n, 1 \leq k, l \leq n\right]^{\delta}
$$

-module.
Corollary 2. $F_{2 n}^{\delta}$ is generated by x_{1}, \ldots, x_{n} together with elements of the form

$$
x_{i} y_{j}-y_{i} x_{j}, 1 \leq i, j \leq n .
$$

Example 3. (i) Let $n=1$, and the free bicommutative algebra F_{2} be generated by $x_{1}=x$ and $y_{1}=y$. Then the algebra F_{2}^{δ} is generated by $\{x, x y-y x\}$.
(ii) Let $n=2$, and the free bicommutative algebra F_{4} be generated by $x_{1}=x, y_{1}=y, x_{2}=z, y_{2}=t$. Then the algebra F_{4}^{δ} is generated by $\{x, z, x y-y x, z t-t z, x t-y z\}$.

Remark 4. Note that in the case of commutativity the above example is compatible with the following well known results:
(i) Let $n=1$. Then $K[x, y]^{\delta}$ is generated the set $\{x\}$ in the commutative polynomial algebra generated by $x_{1}=x$ and $y_{1}=y$.
(ii) Let $n=2$. Then $K[x, y, z, t]^{\delta}$ is generated the set $\{x, z, x t-y z\}$ in the commutative polynomial algebra generated by $x_{1}=x, y_{1}=y, x_{2}=z, y_{2}=t$.

CONFLICT OF INTEREST

The author stated that there are no conflicts of interest regarding the publication of this article.

REFERENCES

[1] Hilbert D. Mathematische probleme. Göttinger Nachrichten 1900; 253-297, Arch. Math. u. Phys. 1901; 3(1): 44-63, Bull. Amer. Math. Soc. 1902; 8(10): 437-479.
[2] Nagata M. On the 14-th problem of Hilbert. Amer J Math 1959; 81: 766-772.
[3] Noether E. Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math Ann 1916; 77: 89-92.
[4] Weitzenböck R. Über die Invarianten von linearen Gruppen. Acta Mathematica 1932; 58: 231293.
[5] Nowicki A. Polynomial derivations and their rings of constants. Toruń: Uniwersytet Mikolaja Kopernika, 1994.
[6] Khoury J. A Groebner basis approach to solve a conjecture of Nowicki. Journal of Symbolic Computation 2008; 43(12): 908-922.
[7] Drensky V, Makar-Limanov L. The conjecture of Nowicki on Weitzenböck derivations of polynomial algebras. J Algebra Appl 2009; 8(01): 41-51. doi: 10.1142/S0219498809003217
[8] Kuroda S. A Simple Proof of Nowicki's Conjecture on the Kernel of an Elementary Derivation. Tokyo Journal of Mathematics 2009; 32(1): 247-251.
[9] Drensky V. Another proof of the Nowicki conjecture. Tokyo Journal of Mathematics 2020; 43 (2): 537-542. doi: $10.3836 / \mathrm{tjm} / 1502179320$
[10] Drensky V, Fındık Ş. The Nowicki conjecture for free metabelian Lie algebras. International Journal of Algebra and Computation 2020; 19 (5): 2050095. doi: 10.1142/S0219498820500954
[11] Centrone L, Findık Ş. The Nowicki conjecture for relatively free algebras. Journal of Algebra 2020; 552: 68-85.
[12] Centrone L, Dushimirimana A, Fındık Ş. On Nowicki's conjecture: a survey and a new result. Turkish Journal of Mathematics 2022; 46(5): 1709-1734. doi: 10.55730/1300-0098.3228
[13] Drensky V. Invariant theory of free bicommutative algebras. arXiv 2022, 2210.08317.

[^0]: *Corresponding Author: sfindik@cu.edu.tr
 Received: 07.11.2022 Published: 28.08.2023

