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Abstract

Fixed point theory is very useful in nonlinear analysis, diferential equations, di�erential and random di�eren-
tial inclusions. It is well known that di�erent types of �xed points implies the existence of speci�c solutions
of the respective problem concerning di�erential equations or inclusions. There are several classi�cations of
�xed points for single valued mappings. Recall that in 1949 M.K. Fort [19] introduced the notion of essential
�xed points. In 1965 F.E. Browder [12], [13] introduced the notions of ejective and repulsive �xed points. In
1965 A.N. Sharkovsky [31] provided another classi�cation of �xed points but only for continous mappings
of subsets of the Euclidean space Rn. For more information see also: [15], [18]�[22], [3], [25], [27], [31].
Note that for multivalued mappings these problems were considered only in a few papers (see: [2]�[8], [14],
[23], [24], [32]) � always for admissible multivalued mappings of absolute neighbourhood retracts (ANR-s).
In this paper ejective, repulsive and essential �xed points for admissible multivalued mappings of absolute
neighbourhood multi retracts (ANMR-s) are studied. Let as remark that the class of MANR-s is much larger
as the class of ANR-s (see: [32]). In order to study the above notions we generalize the �xed point index
from the case of ANR-s onto the case of ANMR-s. Next using the above �xed point index we are able to
prove several new results concerning repulsive ejective and essential �xed points of admissible multivalued
mappings. Moreover, the random case is mentioned. For possible applications to di�erential and random
di�erential inclusions see: [1], [2], [8]�[11], [16], [25], [26].
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1. Introduction

The aim of this paper is to develop of topological techniques for the solvalibity of di�erential inclusions and
implicit di�erential inclusions. We mean also initial value problems and boundary problems both for ordinary
and patrial di�erential inclusions. The main tool for the above investigsation is the appropriate topological
�xed point theory for multivalued mappings, i.e. the �xed point index, the Lefschetz �xed point theorem
in particular the Schauder �xed point theorem for a large class of multivalued mappings so called compact
absorbing contractions mapped ANR-s or ANMR-s into itself (see: [23], [5], [16], [25], [32]). Important new
result is also look into essential, repulsive and ejective �xed points of such mappings.

Our paper is organized as follows. After recalling some auxiliary de�tions, the class of admissible multi
valued mappings is presened. Next we consider the main class of mappings so called compact absorbing
contractions (CAC-mappings) and its properties (for more details see also [4], [5], [23]). Most important part
of this paper stand Section 4, where the �xed point index theory for CAC-mappings of ANRS is generalized
to the case of CAC-maps of ANMR-s i (comp. also [4], [23], [32]). Then in Sections 5 and 6 are considered
repulsive, ejective and essential �xed points of CAC-mappings. Using �xed point index de�ned in Section 4
some new existence theorems are proved (comp. [2]�[4], [6], [8], [11], [21]). In last section random CAC-
mappings are considered. For such mappings the Lefschetz- type �xed point theorem is proved. Moreover,
some open problems are formulated.

2. Some Auxiliary De�nitions

In the entire text, all topological spaces are metric and all single-valued mappings are continuous. Let X
be a metric space and let x be a point of X. By U(x) we shall denote the family of all open neighbourhoods
of x in X.

Let Top2 be the category of pairs of topological spaces and continuous mappings of such pairs. By a pair
(X,A) in Top2, we understand a space X and its subset A; a pair (X,Ø) will be denoted for short by X. By
a map f : (X,A)→ (Y,B), we shall understand a continuous map from X to Y such that f(A) ⊂ B.

We shall use the following notations: if f : (X,A) → (Y,B) is a map of pairs, then by fX : X → Y
and fA : A → B, we shall understand the respective induced mappings. Let us also denote by VectG the
category of graded vector spaces over the �eld of rational numbers Q and linear maps of degree zero between
such spaces. By H : Top2 → VectG, we shall denote the �ech homology functor with compact carriers and
coe�cients in Q.

Thus, for any pair (X,A), we have H(X,A) = {Hq(X,A)}q≥0, a graded vector space in VectG and, for
any map f : (X,A) → (Y,B), we have the induced linear map f∗ = {f∗q} : H(X,A) → H(Y,B), where
f∗q : Hq(X,A) → Hq(Y,B) is a linear map from the q-dimensional homology Hq(X,A) of the pair (X,A)
into the q-dimensional homology Hq(Y,B) of the pair (Y,B).

For the properties of H, we recommend [13].
A non-empty space X is called acyclic provided:

(i) Hq(X) = 0, for every q ≥ 1, and
(ii) H0(X) = Q.

De�nition 2.1. A map p : Γ→ X is called a Vietoris map if the following conditions are sa�s�ed:

(i) p is onto and proper, i.e. p−1(K) is compact for every compact K ⊂ X,

(ii) for every x ∈ X, the set p−1(x) is acyclic.

Theorem 2.2 (Vietoris, see e.g. [23]). If p : Γ → X is a Vietoris map, then the induced linear map

p∗ : H(Γ)
∼→ H(X) is an isomorphism, i.e. for every q ≥ 0 the linear map p∗q : Hq(Γ)

∼→ Hq(X) is a

linear isomorphism.
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For further properties of Vietoris mappings, see e.g. [23].
The following notions will play a crucial role. At �rst, by φ : X ⊸ Y , we shall denote a multivalued map,

i.e. a map which assigns to every point x ∈ X a compact nonempty set φ(x) ⊂ Y .
A multivalued map φ : X ⊸ Y is called admissible (see [23]) provided there exists a diagram

X
p←− Γ

q−→ Y

in which p is a Vietoris map, such that φ(x) = q(p−1(x)). The pair (p, q) is called a selected pair of φ (write
(p, q) ⊂ φ). In what follows, we shall use the following notation:

Γ
p

=⇒ X

for Vietoris mappings.
Note that the superposition ψ ◦ φ : X ⊸ Z of two admissible maps φ : X ⊸ Y and ψ : Y ⊸ Z is again

an admissible map. It is easy to see that any admissible map is usc (upper semi continuous).
For a map φ : X ⊸ X, we shall consider the set Fix(φ) of �xed points φ, i.e.,

Fix(φ) := {x ∈ X | x ∈ φ(x)}.

More information about admissible mappings will be presented in the next section.
Recall that the space X is an absolute neighbourhood retract (X ∈ ANR), provided there exists an open

set U in a normed space E and two maps:

r : U → X and s : X → U

such that r ◦ s = idX .
We shall also use the notion of a multiretraction.

De�nition 2.3 ([32], [5]). A map r : Y → X is said to be a multiretraction if there exists an admissible map

φ : X ⊸ Y such that r ◦ φ = idX .

De�nition 2.4 ([32]). A space X is called an absolute neighbourhood multiretract (X ∈ ANMR) if there

exists an open set U of a normed space E and a multiretraction r : U → X; if U is an arbitrary convex set

then X is an absolute multi retract (X ∈ AMR).

Evidently, we have:
ANR ⊂ ANMR,

i.e. that the class of ANMR-spaces is obviously larger than the one of ANR- spaces (see [5] and [23]).
For some nontrivial examples and more details concerning ANMR-spaces, we recommend [32]. Note that

any open subset of ANMR (ANR) is ANMR (ANR) too.

3. Compact Absorbing Contraction Mappings

Let φ : X ⊸ Y be an admissible mapping and (p, q) ⊂ φ be a selected pair of φ.
Using the Vietoris Theorem 2.2, we are able to de�ne the induced by (p, q) linear map by putting:

q∗ ◦ p−1
∗ : H∗(X)→ H∗(Y ).

We let: φ∗ = {q∗ ◦ p−1
∗ | (p, q) ⊂ φ}.

Now, let us consider two admissible mappings φ,ψ : X ⊸ Y . We shall say that φ is homotopic to ψ
(written: φ ∼ ψ), provided there exists an admissible mapping χ : X × [0, 1] ⊸ Y such that χ(x, 0) = φ(x)
and χ(x, 1) = ψ(x), for every x ∈ X.

We have the following proposition (for its proof, see [23]):
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Proposition 3.1. If φ ∼ ψ, then φ∗ ∩ ψ∗ ̸= Ø.

Let (p1, q1) ⊂ φ and (p2, q2) ⊂ ψ. We shall say that the above selected pairs are homotopic (written
(p1, q1) ∼ (p2, q2)), provided there exists the following commutative diagram:

X

i0
��

Γ1
q1
//

f

��

p1ks Y

X × [0, 1] Γ

q
??��������pks

X

i1

OO

Γ2

g

OO q2

GG���������������

p2
ks

where i0(x) = (x, 0), i1(x) = (x, 1), Γ is a given space and f , g are also given.
Evidently, we have:

Proposition 3.2. If (p1, q1) ∼ (p2, q2), then q1∗ ◦ p−1
1∗ = q2∗p

−1
2∗ .

We say that an admissible map φ : X ⊸ X is a Lefschetz map provided, for every selected pair (p, q) ⊂ φ,
the generalized Lefschetz number Λ(p, q) = Λ(q∗ ◦ p−1

∗ ) is well de�ned (for details, see [23]).
For a Lefschetz map φ : X ⊸ X, we de�ne the Lefschetz set Λ(φ) of φ by putting:

Λ(φ) = {Λ(p, q) | (p, q) ⊂ φ}.

We have (see [23]):

(a) If φ ∼ ψ, then Λ(φ) ∩ Λ(ψ) ̸= Ø.
(b) If (p1, q1) ∼ (p2, q2), then Λ((p1, q1)) = Λ((p2, q2)).

De�nition 3.3 ([5], [23]). An admissible map φ : X ⊸ X is called a compact absorbing contraction (φ ∈
CAC(X)) if there exists an open set U ⊂ X such that:

(i) φ(U) ⊂ U ,

(ii) the closure φ(U) of φ(U) is contained in a compact subset of U ,

(iii) for every x ∈ X, there exists a natural number nx such that φnx(x) ⊂ U .

We say that φ : X ⊸ X is a locally compact map provided, for every x ∈ X, there exists V ∈ U(x) such
that φ|V : V ⊸ X is a compact map, i.e. φ|V (V ) is compact.

We let:
K(X) = {φ : X ⊸ X | φ is admissible and compact}.
EC(X) = {φ : X ⊸ X | φ is admissible locally compact and there exists a natural number n such that

the n-th iteration φn : X ⊸ X of φ is a compact map}.
ASC(X) =

{
φ : X ⊸ X

∣∣∣ φ is admissible locally compact, the orbit O(x) =
∞⋃
n=1

φn(x) is, for every

x ∈ X, relatively compact and the core C(φ) =
∞⋂
n=1

φn(x) is nonempty and relatively compact
}
.

CA(X) = {φ : X ⊸ X | φ is admissible locally compact and has a compact attractor, i.e., then exists a
compact set A ⊂ X such that, for every open set W ⊂ X containing A and for every point x ∈ X, there is
nx such that φnx(x) ⊂W}.

The following hierarchy holds ([23]):

K(X) ⊂ EC(X) ⊂ ASC(X) ⊂ CA(X) ⊂ CAC(X). (1)
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Moreover, each of the above inclusions is proper.
Let φ ∈ CAC(X) and let U be chosen according to De�nition 3.3. Then

φU : U ⊸ U , de�ned by the formula φU (x) = φ(x),

for every x ∈ U , is a compact admissible map.
(2)

Recall that if ψ : Y ⊸ Y is a compact admissible map and Y ∈ ANMR, then ψ is a Lefschetz map and
Λ(ψ) ̸= {Ø} implies that ψ has a �xed point (see [23]).

We prove the following theorem.

Theorem 3.4. Let φ ∈ CAC(X), where X ∈ ANMR. Assume further that U is chosen according to

De�nition 3.3 and φU : U ⊸ U be a map de�ned in (2). Then φ is a Lefschetz map and

Λ(φ) ⊂ Λ(φU ).

Proof. Let (p, q) be a selected pair of φ, i.e., we have a diagram:

X
p⇐= Γ

q−→ Y

such that φ(x) = q(p−1(x)), for every x ∈ X. Consider still the following diagram:

U
p1⇐= p−1(U)

q1−→ U

in which p1 and q1 are respective contractions of p and q.
We have also the following diagram:

(X,U)
p⇐= (Γ, p−1(U))

q−→ (X,U)

in which p(y) = p(y) and q(y) = q(y), for every y ∈ Γ.
Now, we shall use the following formula proved in [23]. If two Lefschetz numbers from the following three

numbers Λ(p, q), Λ(p, q) and Λ(p1, q1) are well de�ned, then the third one is well de�ned too, and we have:

Λ(p, q) = Λ(p, q) + Λ(p1, q1).

Since an open subset of an ANMR-space is an ANMR-space, too, we infer from above that Λ(p1, q1) is well
de�ned.

Now, since we consider the homology with compact carriers from (b), it follows that Λ(p, q) = 0. Conse-
quently, we get that Λ(p, q) is well de�ned, and

Λ(p, q) = Λ(p1, q1).

The proof is completed.

Corollary 3.5. If φ ∈ CAC(X) and X ∈ ANMR, then φ is a Lefschetz map and Λ(φ) ̸= {Ø} implies that

φ has a �xed point.

4. The Fixed Point Index

Firstly, let us assume that φ : X ⊸ X is a compact admissible map, where X ∈ ANR.
Let (p, q) ⊂ φ and V ⊂ X be an open set such that {x ∈ V | x ∈ φ(x)} is compact. Then the �xed

point index ind((p, q), V ) of the pair (p, q) with respect to V is well de�ned (see [23] and also [32]). Note
that ind((p, q), V ) is an integer.

We de�ne the �xed point index of φ as the following set:

Ind(φ, V ) = {ind((p, q), V ) | (p, q) ⊂ φ}. (3)

Below, we shall list the important properties of the �xed index which we shall need in the next section.
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(a) (Existence). If ind((p, q), V ) ̸= 0 (Ind((φ, V ) ̸= {0}), then

Fix(p, q) ∩ V ̸= Ø.

(b) (Excision). If Fix(φ) ∩W ⊂ V ⊂W is compact, then

ind((p, q), V ) = ind((p, q),W ) (Ind(φ, V ) = Ind(φ,W )).

(c) (Additivity). If V1, V2 are open subsets of X such that V1 ∩ V2 = Ø and Fix(φ) ∩ V1, Fix(φ) ∩ V2 are
compact sets, then

ind((p, q), V1 ∪ V2) = ind((p, q), V1) + ind((p, q), V2).

(d) If (p1, q1) ∼ (p2, q2) (φ ∼ ψ), then

ind((p1, q1), V ) = ind((p2, q2), V ) (Ind(φ, V ) ∩ Ind(ψ, V ) ̸= Ø),

where (p1, q1) ⊂ φ and (p2, q2) ⊂ ψ.

(e) (Normalization). If V = X, then

ind((p, q), V ) = Λ((p, q)) and Λ(φ) = Ind(φ, V ).

Now, we shall consider the noncompact case. Assume that φ : X ⊸ X is an admissible compact absorbing
contraction and X ∈ ANR. Assume, furthermore, that V is an open set such that {x ∈ V | x ∈ φ(x)}
is compact. According to the De�nition 3.3, we select an open set U satisfying all assumptions of (i)�
(iii). Evidently, Fix(φ) ⊂ U . Moreover, we have that φU : U ⊸ U is a compact admissible map, where
φU (x) = φ(x), for every x ∈ U . Let (p, q) ⊂ φ. Then (pU , qU ) ⊂ φU , where pU : p−1(U) ⇒ U and
qU : p−1(U)→ U are de�ned as follows: pU (y) = p(y) and qU (y) = q(y), for every y ∈ p−1(U).

We let:
ind((p, q), V ) = ind((pU , qU ), V ∩ U) (4)

and
Ind(φ, V ) = {ind((p, q), V ) | (p, q) ⊂ φ}. (5)

By means of (c), we deduce that the de�nitions (4) and (5) do not depend on the choice of U . Thus, all
properties (a)�(e) are satis�ed.

For more details, we recommend [5], [7], [14], [23].
Now we shall generalize the above presented �xed point index to the case of CAC-mappings of ANMR-

space X into itself.
Let X ∈ ANMR. In what follows we �x an open subset of a normed space X and multiretractions

r : U → X and ρ : X ⊸ U

given according to the De�nition 2.4. Then we have ρ ◦ r = idX .
Now assume that φ : X ⊸ X is compact admissible map. Then we associate with φ the map φ̃ : U ⊸ U

de�ned by the following formula
φ̃ = ρ ◦ φ ◦ r. (6)

Since φ is compact admissible map hence φ̃ is also compact and admissible map. Consequently Fix(φ) and
Fix(φ̃) are compact (possible empty) sets. We will proof the following:

Lemma 4.1. Fix(φ̃) = r−1(Fix(φ)).
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Proof. For the proof we shall show that u ∈ Fix(φ̃)) if and only if r(u) ∈ Fix(φ). If u ∈ Fix(φ̃), then we
obtain u ∈ ρ(φ(r(u))) and hence we have

r(u) ∈ r(ρ(φ(r(u)))) = φ(r(u)).

If r(u) ∈ Fix(φ) then we have r(u) ∈ φ(r(u)) and hence we obtain φ(r(u)) ∈ ρ(φ(r(u))). It means that
u ∈ ρ(φ(r(u))) and the proof is completed.

Observe that if A is a compact subset of Fix(φ), then r−1(A) is a compact subset of Fix(φ̃) .
We have the following diagram of admissible mappings in which the vertical mappings are compact:

X
ρ

◦
◦

φ◦r @@
@@

@@
@@◦

φ

U◦
ρ◦φ◦r=φ̃

X ρ
◦U

It is well known that φ and φ̃ are Lefschetz maps and Λ(φ) = Λ(φ̃) (see [4], [23], [32]).
We need the following lemma:

Lemma 4.2 ([23], see also [32]). Let us consider the following diagram of admissible mappings:

X
φ1 ◦X1

φ2 ◦X2
φ2 ◦X3

If (p1, q1) ⊂ φ1, (p, q) ⊂ φ and (p1, q2) ⊂ φ2 and Ψ = φ2 ◦ φ ◦ φ1 the there exists a selected pair (p̃, q̃) ⊂ Ψ
such that

q̃∗ ◦ l̃−1
∗ = q2∗ ◦ p−1

2∗ ◦ q∗ ◦ p
−1
∗ ◦ q1∗ ◦ q−1

1∗ .

Moreover, if for example φ1 = r is a continuous single valued map then q1∗ ◦ p−1
1∗ = r∗.

Now we return to the notations used in the above diagram. Let (p, q) ⊂ φ, (p1, q1) ⊂ r and (p1, q2) ⊂ ρ.
Using the above lemma we get the selection pair (p̃, q̃) ⊂ φ̃ such that:

q̃∗ ◦ p̃−1
∗ = q−1

2∗ ◦ p
−1
2∗ ◦ q∗ ◦ p

−1
∗ ◦ r∗. (7)

In what follows (p̃, q̃) we shall call the associated the pair with (p, q).
Observe that (p̃, q̃) depends also on the choice of (p2, q2) ⊂ ρ. In what follows for the simplicity we shall

�x a selected pair (p2, q2) of ρ.

Remark 4.3. The commutativity of the above diagram and (7) implies that the Lefschetz number Λ(p, q)
and Λ(p̃, q̃) are equal. We deduce it by applying homology function (comp. [23], [4] and [24]).

Now assume that X ∈ ANMR and φ : X ⊸ X is a compact admissible map. Assume that V is an
open subset of X such that Fix(φ) ∩ V is compact. Then, for every (p, q) we de�ne the �xed point index
ind((p, q), V ) by putting

ind((p, q), V ) = ind((p̃, q̃), r−1(V )) (8)

and
Ind(φ, V ) = {ind((p, q), V ), (p, q) ⊂ φ}. (9)

It is evident that properties (a)�(e) can be formulated in the case of ANMR-retracts.
Finally, let us assume that φ : X ⊸ X is a CAC-map. Assume further that Fix(φ)∩V is compact set and

V ⊂ X is open. According to the De�nition 2.4 there exists an open set W ⊂ X satisfying all assumptions
of De�nition 2.4. Ewidently Fix(φ) ⊂ W . Moreover, we have compact admissible map φW : ⊸ W . Then,
for every (p, q) ⊂ φ, we de�ne (pW , qW ) ⊂ φW by the formula:

pW : p−1(W )→W and qW : p−1(W )→W,

pW (y) = p(y) and qW (y) = q(y),
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for every y ∈ p−1(W ).
We let

Ind((p, q),W ) = ind((pW , qW ), U ∩W ) (10)

and
ind(φ,K) = ind(φU , U ∩W ). (11)

Not that all properties (a)�(e) can be formulated for compact absorbing contraction mappings of ANMR-s
spaces. We left it to the reader.

We recomend to compare the following: [4], [5], [1], [23], [21], [25], [32].

5. Ejective Fixed Points

In this section we shall assume that X ∈ ANMR and φ : X ⊸ X is a CAC-map.

De�nition 5.1 ([8], [1]). Let φ : X ⊸ X be a given map and let x0 ∈ Fix(φ).

(i) We shall say that x0 is an ejective �xed point provided then exists an open neighbourhood V of x0 in

X such that, for any x ∈ V K {x0}, there is an integer n ≥ 1 such that φn(x) ⊂ X K V .

(ii) A �xed point x0 ∈ Fix(φ) is called a repulsive �xed point provided there exists am open neighbourhood

V of x0 in X such that for any open neighbourhood W of x0 in X there is an integer n(W ) ≥ 1 such

that φn(X KW ) ⊂ X K V for all n ≥ n(W ).

We let

Fixe(φ) = {x ∈ Fix(φ); x is ejective}, Fixr(φ) = {x ∈ Fix(φ); x is repulsive}.

As an immediate consequence of the above de�nitions we have:

Fixr(φ) ⊂ Fixe(φ).

Remark 5.2. (i) The following example shows that Fixr(φ) ̸= Fixe(φ). Let f : [0, 1] → [0, 1] be de�ned as

f(x) = 2(−x2 + x). Then x0 = 0 is an ejective �xed point but not repulsive.

(ii) Observe that any ejective �xed point is isolated in Fix(φ). Therefore, if #Fix(φ) < ∞ then Fixe(φ)
is open and compact in Fix(φ).

Since φ : X ⊸ X is a CAC-mapping, according to the De�nition 3.3, we have an open subset U ⊂ X and
a compact admissible map φU : U ⊸ U de�ned by the formula: φU (x) = φ(x), for every x ∈ U such that:

Fix(φ) = Fix(φU ),

Fixe(φ) = Fixe(φU ),

Fixr(φ) = Fixr(φU ).

(12)

Consequently, from properties of the �xed point index we can deduce the same results for compact admissible
mappings on ANMR-s and for CAC-mappings.

Now let shall formulate existence results concerning ejective and repulsive �xed points of CAC-mappings.

Theorem 5.3. Let X ∈ ANMR and φ : X ⊸ X be a CAC-map. Assume further that x0 ∈ X is a repulsive

�xed point of φ with respect to V . If there exists an open neighbourhood W of x0 such that:

(i) V ⊂W ,

(ii) the inclusion map i : X KW → X induces the isomorphism i∗ : H∗(X KW )
∼−→ H∗(X),

then ind(φ, V ) = {0}.
Corollary 5.4. If we assume additionaly that Fix(φ) is a �nite set and λ(φ) ̸= {0}, the there exists a

non-repulsive �xed point of φ.

For some possible applications of ejective �xed points see [4], [3], [5] and references there in. Topological
study of ejective �xed points is presented in [13], [14], [17], [18], [21], [22], [20], [30], [31].
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6. Essential Fixed Points of CAC-Maps

Unttil end of this section we shall assume that X ∈ ANMR and φ : X ⊸ X is a CAC-mapping.

De�nition 6.1. Let x0 ∈ Fix(φ). We shall say that is an essential �xed point of φ if, for every open U ⊂ X,

there exists an open subset V ⊂ U such that:

(i) x0 ∈ V ,

(ii) ∂V ∩ Fix(φ) = Ø,

(iii) Ind(φ, V ) ̸= {0}.

We let Ess(φ) = {x ∈ Fix(φ); x is essential}.

Theorem 6.2. Let φ : X ⊸ X be a CAC-map. Assume further that Fix(φ) ̸= Ø and the topological

dimension dimFix(φ) is equal 0. Then Ess(φ) ̸= Ø.

Proof. In the case when φ is compact and X ∈ ANR the above theorem was proved in [8] (see also [11]).
Using exactly the same arguments we obtain this theorem for component φ on X ∈ ANMR. Assume that
φ ∈ CAC. According to the De�nition 3.3 there exists an open set V ⊂ X such that the map φ̃ : V ⊸ V ,
φ̃(x) = φ(x) for every x is a compact admissible map and Fix(φ) = Fix(φ̃). Since Ess(φ̃) ̸= Ø the proof is
completed.

Now we are going to present two theorems which are very important in the theory of implicit di�erential
inclusions and equations (comp. [8], [11]).

In what follows we shall assume that φ : A×X ⊸ X is an usc map such that, for every a ∈ A, the map
φ(a, · ) : X ⊸ X, φ(a, · )(x) = φ(a, x) is a CAC-map and A is a metric locally arc connected space. Assume
further that Λ(φ(a, · )) ̸= {0} for every a ∈ A. So we can de�ne the following map

φ̃ : A⊸ X, φ̃(a) = Fix(φ(a, · ))

and, if we assume that dimFix(φ, a)) ̸= Ø for every a ∈ A, then in view of Theorem 6.2 we can de�ne the
map

φ̂ : A⊸ X, φ̂(a) = Ess(φ(a, · ))

for every a ∈ A.

Theorem 6.3. We have:

(i) φ̃ : A⊸ X is usc with compact values,

(ii) φ̂ : A⊸ X is a lsc map.

Evidently Theorems 6.2 and 6.3 are automatically true for X ∈ AMR.
For more applications of essential �xed points see [5]�[11], [24]�[26], [29].

7. Random Case

A systematic study of random operators was iniciated in 1950 by Czech mathematicians. We can do it
for random CAC-mappings (RCAC-mappings). Random admissible operators were studied in [5], [2], [23],
[24].

By a measure space we shall mean the pair (Ω,Σ) where wthe set Ω is equipped in σ-algebra Σ of subsets.
We shall use B(X) to denote the Borel σ-algebra on X. The symbol Σ⊗B(X) denotes the smallest σ-algebra
on Ω×X which contains the sets A×B where A ∈ Σ and B ∈ B(X).
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De�nition 7.1. Let (Ω,Σ) be a measurable space and X a metric space. A map φ : Ω ⊸ Y is called

measurable if

φ−1(B) = {ω ∈ Ω; φ(ω) ⊂ B} ∈ Σ

for each open B ⊂ X.

De�nition 7.2. A map φ : Ω×X ⊸ X is called a random operator provided:

(i) φ is measurable (on whole space),

(ii) the map φ(ω, · ) : X ⊸ X is usc with closed values for every ω ∈ Ω.

De�nition 7.3. Let φ : Ω×X ⊸ X be a random map. A measurable mapping ξ : Ω→ X is called a random
�xed point of φ provided:

ξ(ω) ∈ φ(Ω, ξ(ω)), for each ω ∈ Ω.

The following proposition is crucial in what follows.

Proposition 7.4. Let φ : Ω×X ⊸ X be a random map and X be a separable space. If

Fix(φ(ω, · )) ̸= Ø for every ω ∈ Ω,

then φ has a random �xed point.

For the proof see [5], [2], [23], [24].
As an immediate consequence of Proposition 7.4 and the Lefschetz �xed point theorem for CAC-mappings

we obtain (see also [32]):

Corollary 7.5. Let φ : Ω × X ⊸ X be a random operator where X ∈ ANR is a separable space. Assume

further that φ(ω, · ) : X ⊸ X is a CAC-map such that Λ(φ(ω, · )) ̸= {0} for every ω ∈ Ω. Then φ has a

random �xed point.

Evidently Corollary 7.5 is true for separable X ∈ ANR or AMR or AR.
A random map φ : Ω×X ⊸ X such that, for every ω ∈ Ω the map φ(ω, · ) is a CAC-mapping, we shall

call random CAC-mapping.

Open problems

How to de�ne the notion of repulsive, ejective and essential random �xed points of random CAC-maps
of ANMR (ANR) into itself or in particular, for random compact admissible operators of ANMR or ANR
into itself.
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