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Abstract 

Medical Waste (MW) amount that has a significant impact on health and environment is increasing as a result of 

industrialization as well as population density. There is a need an accurate estimation waste generation amount 

that will be useful information to select the appropriate disposal methods and to organize the recycling and storage. 

Some researchers have applied conventional statistical algorithms and many kinds of Machine Learning (ML) 

algorithms to predict MW amount. However, to the best of our knowledge, penalized regression methods such as 

Ridge, Lasso, and Elastic Net regressions have not been used to predict the MW amount. 18-years real data were 

obtained from İstanbul Metropolitan Municipality Department Open Data Portal with the input variables namely 

number of hospitals, number of health personal, number of bed available at the hospital, crude birth rate and gross 

domestic product per capita. 80% of the total database being used for developing the models, whereas the rest 

20% were used to validate the models. In order to compare their performances, 5-fold cross-validation was applied 

and performance measures (MAE, RMSE and R-squared) were calculated in this study. Of the penalized regression 

methods, the Lasso regression provided better performance than those of other models with RMSE, MAE, and R-

squared of 349.56, 596.52, 0.96, respectively, whereas the second-best Ridge regression poorer accuracy with 

RMSE, MAE, and R-squared 1039.091, 878.25,0.88, respectively. Thus, in our case, Lasso regression can be 

considered better than the Ridge regression and Elastic Net regression due to the lowest RMSE and MAE values 

and highest R-squared. The results reveal that the proposed Lasso regression is better than the other penalized 

regression models to predict the MW amount. 
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1. Introduction 

Medical Waste (MW) amount is increasing as a result of industrialization as well as population density 

[1,2]. All the medical institutions from the hospitals to veterinary centers cause the MW. The 

management of the MW is a critical problem that it may yield public health risks and environmental 

pollution risks since it is accepted as a hazardous waste type [2,3,4]. Selecting appropriate disposal 

methods and organizing recycling and storage is a prominent issue especially in developing countries 

so there is a need an accurate estimation of this type of waste generation that will be useful information 

for these processes [1,5-8]. 

 

There have been several studies to estimate the MW generation such as Multiple Linear Regression [1,9-

13], time series methods [1,14] and machine learning algorithms [2,3,15,16]. Multiple Linear 

Regression (MLR) is the most commonly methods by the researchers to estimate the MW generation. 

Their models reached higher model performance (R-squared>0.80) using the critical key factors number 

of hospitals, number of total patients, occupancy rate but MLR has assumptions that are not easy to meet 

in real life. The previous studies that utilized machine learning algorithms gave better results than MLR 

because of managing the non-linearity between input and output variables [8,15]. On the other hand, 

because of the lack of historical MW database, most of the studies for estimating MW generation based 

on surveys and questionnaires but this may yield misleading results [3,8,9,15,17,18]. Some researchers 

used machine learning algorithms such as Support Vector Machine (SVM) and Artificial Neural 

Networks (ANN) and compared the traditional statistical techniques such as MLR [2,315,16]. Machine 
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learning algorithms outperformed statistical techniques because of its ability to better model non-linear 

relationships but they have disadvantages related to poor performance on small data [15].  Since some 

MW data is time-based, different ARIMA models as time series models have been used to predict the 

MW amount [1,14,19,20]. Requiring long time data to detect seasonality and not robust for outlier and 

missing value are the weaknesses of time series analysis methods [20,21].  

 

İstanbul has strong influence on the environment and the health since it has Over the 15 million 

population, but MW generation database is still lacking the other factors that may affect the MW 

generation like medical waste type, social economic and health institutions type [1,22]. Penalized 

regression methods that extensions of linear regression models can be an effective tool for estimating 

the MW generation to discover the relations between the input and output parameters where there is 

limited data also not having assumptions like MLR. Besides these methods can deal with the 

multicollinearity as a general problem in MLR. These methods have been used many areas successfully 

[23-27]. To the best of our knowledge, penalized regression methods as Ridge Regression, Lasso 

Regression and Elastic Net Regression have not been employed for estimating the MW generation. The 

aim of this study is to employ and compare these penalized regression methods estimating the MW 
generation for Istanbul. First, 18 years for actual data for MW amount with input parameters namely 

crude birth rate, number of hospitals, number of bed available at the hospital, and Gross Domestic 

Product (GDP).  Next, to predict MW generation these penalized regression methods namely Ridge 

Regression, Lasso and Elastic Net have been employed and their performances compared with R-

squared, RMSE and MSE as a performance measures. 

 

The paper structured as follows: Materials and methods were explained in Section 2. Section 3 discussed 

the results of the models. Finally, conclusions, limitations of the study and future directions were 

presented in Section 4. 

 

2. Materials and Methods 

 

2.1 Data collection 

The dataset used in this study combined the two tables [28] and [29] the years between 2004-2021 in 

MS Excel worksheet. The input parameters as number of hospital (NH), number of bed (NB), crude 

birth rate (CBR), number of health personal (NHP) and gross domestic product (GDP) were selected 

based on the previous studies and data availability. While MW is a dependent variable, remaining 

variables are the independent variables. Table 1 provides variables and their types. 

 

Table 1. The variables and their types 

 

 

 

 

 

 

 

 

 

 

 

Variables Type of Variables 

Number of hospitals Numeric 

Number of beds Numeric 

Crude birth rate Numeric 

Number of health personnel Numeric 

GDP Numeric 

Medical Waste Numeric 
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2.2 Data processing  

Data pre-processing is the most key step the modelling process because the real data may contain errors 

or outliers and missing values [30,31]. The missing values have been filled for NH, NB, GDP, NHP and 

CBR because they have missing values in this study. The training set is used for training model allocated 

as 80 % of the samples and the testing set allocated to 20 % of the samples have been used for evaluating 

samples.  

 

2.3 Penalized Regression Methods 

 

Multiple Linear Regression 

 

Ordinal Least Squares (OLS) aims to estimate 𝛽1,𝛽2, … , 𝛽𝑝 by minimizing the residual sum of squares 

(RSS). 

 

RSS= ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )2𝑛

𝑖=1      (1) 

 

 

Ridge Regression 

Ridge Regression with penalty called L2-norm is a linear regression model was proposed by Hoerl and 

Kennard proposed in 1970 and designed to handle the multicollinearity. The aim of the ridge regression 

is to determine the coefficients to minimize the sum of squares by employing the penalty to these 

coefficients in Eqn. 6.5 where λ ≥0 denotes a tuning parameter and 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1
 denotes a shrinkage 

penalty. 

 

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )2𝑛

𝑖=1 + 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1 =RSS+𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1    (2) 

 

The selecting the ideal value of 𝜆  is important since least squares produce only one set of coefficients 

while ridge regression generate a different set of coefficient estimates for different values of 𝜆 [32]. 

 

Lasso Regression 

Lasso regression use a penalty term called L1-norm that denotes the sum of absolute coefficients lead 

coefficient estimates of insignificant parameters equal to zero that means more simpler and more 

accurate models. The aim of the lasso regression is to find the lasso coefficients by the minimizing the 

quantity  

 

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )2𝑛

𝑖=1 + 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1 =RSS+𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1    (3) 

 

The term replaced by the has been changed by in the lasso penalty [32]. 

 

Elastic Net Regression 

Elastic net combines the ridge regression and lasso regression that to shrink coefficients as ridge 

regression and to set some coefficients to zero like lasso regression. Also, it has computational advantage 

over ridge and lasso regression. The aim of the Elastic Net regression is to find the elastic net coefficients 

by the minimizing the quantity [33]. 
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∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )2𝑛

𝑖=1 + 𝜆1 ∑ |𝛽𝑗| +𝑝
𝑗=1  𝜆2 ∑ 𝛽𝑗

2𝑝
𝑗=1 =RSS+𝜆1 ∑ |𝛽𝑗| +𝑝

𝑗=1  𝜆2 ∑ 𝛽𝑗
2𝑝

𝑗=1    (4) 

 

 

2.4 Performance Measures 

Three performance metrics have been used such as MAE, RMSE, and R2 as shown in Equation (5-7) to 

compare the penalized regression models [8,15]: 

𝑴𝑨𝑬 =
∑ |𝒚𝒊−𝒙𝒊|𝒏

𝒊=𝟏

𝒏
     (5) 

𝑹𝑴𝑺𝑬 = √∑
(𝒚𝒊−𝒙𝒊)𝟐

𝒏
𝒏
𝒊=𝟏      (6) 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊−𝒙𝒊)𝟐𝒏

𝒊=𝟏

∑ (𝒚𝒊−�̅�𝒊)𝟐𝒏
𝒊=𝟏

      (7) 

2.5 Cross-validation 

 

A resampling procedure is used called Cross-validation (CV) is to produce equal random subsets of 

samples for training data and testing data when a small data [7]. In this study, the data is divided into 

five equal size subsamples and one part is denoted as the validation set, the resting four subsamples 

denoted as the training data as called five-fold CV. Till each sub-sample is used as validation set, the 

procedure is repeated for instance five times for five-fold CV in this study. Finally, to allege the optimal 

hyperparameter values, the average accuracy of five validation set is used.          

3.Results and Discussion 

This section provides the experimental results and discusses the performance of three regression 

methods such as Ridge, Lasso and Elastic Net Regression considering MAE, RMSE, R-squared as an 

evaluation metrics. 

      

Table 2. Results of penalized regression models 

Penalized Regression Models MAE RMSE R2 

    

Ridge Regression 427.67 650.37 0.95 

 

Lasso Regression 

 

349.56 

 

596.52 0.96 

 

Elastic Net Regression 2109.32 2310.40 0.42 
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With regards to the MAE, Lasso Regression achieves the best performance with 349.56, Ridge 

Regression and Elastic Net Regression second and third with the 427.67 and 2109.32 respectively. The 

same order of performance is achieved with respect to R2 and RMSE with values 0.96, 596.52 and 0.42, 

2310.40 respectively. The results showed that Ridge Regression and Lasso Regression had good 

performances that both can be used predicting MW amount. Lasso Regression outperformed other 

penalized regression models with the minimum RMSE, MAE, also the higher R -squared performance 

measures with this small dataset. Lasso regression is successful by reaching the good ML performances 

[2] as well successful than some studies [3,34].   

Conclusion 

Prediction of MW amount is a vital information for medical waste management systems in the future 

especially megacities as İstanbul that have profound impact on the environment. Ridge Regression, 

Lasso and Elastic Net have been employed to predict MW generation for Istanbul. The methods have 

been compared with the performance measures MAE, RMSE and R-squared. Among the penalized 

regression models, Lasso Regression outperforms the other algorithms while Ridge Regression and 

Elastic Net Regression are ranked second and third. 

The limitation of this study is small data so SMOTE technique will be used to create artificial data in 

the future study and the results will be compared. 
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