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Abstract: This paper addresses the issue of controller design for a class of multi-input multi-output (MIMO) uncertain underactuated 
systems with saturating inputs. A systematic controller framework, composed of a hierarchically generated control term, meant to ensure 
the stabilization of a particular portion of system dynamics and some dedicated control terms designed to solve the tracking problem of 
the remaining system dynamics is presented. Wavelet neural networks are used as adaptive tuners to approximate the system 
uncertainties also to reshape the control terms so as to deal with the saturation nonlinearity in an antiwindup paradigm.      Gradient based 
tuning laws are developed for the online tuning of adjustable parameters of the wavelet network. A Lyapunov based stability analysis is 
carried out to ensure the uniformly ultimately bounded (UUB) stability of the closed loop system. Finally, a simulation is carried out 
which supports the theoretical development.   
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1. Introduction 

Depending on the nature of the complexity encountered, there 
exist various classes of nonlinear systems with underactuated 
systems as a typical case amongst them [1]. Underactuated 
systems are characterized by the facts that they posses lesser 
number of actuations than the degrees of freedom to be controlled 
and there exist inherent nonlinear interactions among these 
degrees of freedom. Thus underactuated systems can be modeled 
as the group of active and passive subsystems which are 
nonlinearly coupled [1, 2].  Inadequate actuation simply indicates 
that dedicated control terms cannot be designed to solve the 
control problem of individual degrees of freedom and demands a 
particular actuation to control more than one subsystem output. 
Most of the controller schemes for underactuated systems are 
either based on transformation or hierarchical control approaches. 
First approach deduces a nonlinear coordinate transformation 
which transforms the original system to some cascade like form 
suitable for controller design [2]. This approach utilizes the 
nonlinear subsystem coupling to transfer the control effort to 
respective subsystem and often results in complicated controller 
design [2]. Second technique decomposes the overall control term 
into number of control components which are deduced by 
applying some hierarchical methodology to the underactuated 
system under consideration [4-11]. Underactuation has been 
adopted by several systems like mobile robots, twin rotor system, 
underwater vehicles, ball-beam etc. Due to the existence of real 
life systems displaying underactuation, several research findings 
on controller design for underactuated systems have been cited in 
the literature [2-12].  Feedback linearization based controller 
designs have been proved highly effective for the control of 
nonlinear systems. However, these techniques are model based 

and so require completely and accurately modeled system 
dynamics [13, 14]. This requirement of fully known system 
dynamics restricts these techniques to a narrow class of nonlinear 
systems, as in most of the cases complex phenomenon are either 
inaccurately modeled or left unmodeled. Control laws resulting 
from such ill-defined system models are rather conservative and 
can perform well in some local sense only [15,16]. Application of 
nonparametric function approximation techniques in controller 
design often relaxes the aforementioned constraint and thereby 
enhances the application areas of feedback linearization 
techniques [16]. 
Due to its ability to approximate any nonlinear function with 
arbitrary accuracy, wavelet network has emerged as a powerful 
nonparametric system identification tool. A wavelet network can 
be considered as the nonlinear regression structure that performs 
the input- output mapping by using scaled and shifted versions of 
some mother wavelet function as the regression functions [17-
19]. Regression functions used in wavelet network satisfy the 
norms of multiresolution analysis, posses the property of 
orthonormality and are localized in space and frequency [18, 19]. 
Multiresolution analysis provides a systematic framework for the 
construction of wavelet network. Classical technique is to start 
with coarser resolution and including the finer resolution 
according to the tradeoff between accuracy and computational 
complexity. Orthonormality assures the unique function 
representation with no redundancy. Othonormality along with 
multiresolution allows the explicit representation of the function 
different resolutions. Localization properties of wavelets allow 
efficient learning and rapid convergence of training algorithms 
[19]. Several research findings on the application of wavelet 
network for system identification and control are cited in the 
literature [20-24].  
One major limitation associated with real time systems is that the 
actuators cannot reproduce the control effort beyond certain 
limits and when the control effort tries to exceed these limits 
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actuators get saturated. This limited application of control effort 
deteriorates the system performance, if ignored during the 
controller design. Research findings on actuator saturation mainly 
emphasize on dynamic augmentation of baseline controller with 
additional dynamics to deal with actuator saturation [25-27]. 
This paper presents a wavelet based control scheme for a class of 
multi-input multi- output (MIMO) uncertain underactuated 
systems [12] with actuator saturation. Proposed controller 
framework is composed of one hierarchically generated control 
term and some dedicated control terms. Dedicated control terms 
are designed to solve the tracking control problem of individual 
subsystems whereas hierarchically generated control term is 
meant to ensure the stabilization and control of remaining 
subsystems. To deal with actuator saturation, the original system 
with saturation dynamics is first transformed to a saturation free 
system augmented with additional nonlinear dynamics which 
accounts for actuator saturation.  Wavelet networks are not only 
used as identification tool to mimic the unmodeled dynamics but 
also to approximate the nonlinear dynamics inserted by actuator 
saturation thus the wavelet network acts as saturation 
compensator also. Controller scheme ensures the convergence of 
system error dynamics and uniform ultimate boundedness of 
closed loop signals in presence of uncertain dynamics and 
actuator saturation.  
This paper is organized as follows: Preliminaries and system 
model are given in section 2, whereas section3 describes the 
designing of wavelet based adaptive controller scheme for 
underactuated systems with partially known system dynamics and 
subjected to actuator saturation. Results of the simulation 
performed for a multi- input multi-output underactuated system 
are illustrated in Section 4, whereas Section 5 concludes the 
paper. 

2. PROBLEM FORMULATION AND PRELIMINERIES 

2.1. Actuator Saturation 

Actuators cannot replicate the input applied beyond certain limits 
and saturates when the input reaches these limits. The input 
output relation of an actuator can be defined as 

max

max max

;

sgn( );

v v u
u

u v v u

  
                                                       (1) 

where maxu   represents the saturation bound. Whenever the 
actuator undergoes saturation, a part of control effort u u v     
is suppressed by the actuator. This suppression often degrades the 
system performance and its effect can be viewed as an undesired 
dynamics invoked by actuator saturation [25]. In this work, this 
additional dynamic is effectively approximated and mitigated by 
using a wavelet compensator. 

2.2. System Formulation 

Consider the following uncertain MIMO underactuated system 
consisting of   interconnected subsystems in Brunovsky canonical 
form [12] 
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where   2
1 2 2, , , ( )

T n
nX x x x t    are state variables of the 

system, 1 2, ,
T p

pU u u u      is the control vector 

produced by the  actuators of the system with n p , ( )iy t   
is the output of thi  subsystem, 2( ) : n

if X     and 
2( ) : n

iqg X    are system nonlinearities  abbreviated as  

if   and iqg  respectively. Nonlinearities if  are considered as 
smooth uncertainties while the nonlinear function iqg  is bounded 
away from zero, which means it is either strictly positive or 
negative and  ,  , 0iq xg L x S t      here 2n

xS    is 
some compact set of allowable state trajectories. 
The control objective is to track the given desired trajectory in 
presence of system uncertainties and input nonlinearity. For some 
desired trajectory vector n

dy   selected such that, 
, ,id id idy y y L   , 1,2, ,i n   adaptive controller must 

ensure the convergence of tracking error  ( )i idy y   to a small 
neighborhood of origin and uniform ultimate boundedness of all 
the closed loop signals. To streamline the controller design, 
following assumption has been taken regarding the nature of 
input nonlinearity.   
Assumption1: The control input ( 1, 2, , )iu i p  satisfies the 
saturation nonlinearity described in subsection A. Thus, the input-
output relation of actuator i  is given as 

i i iu v u 
              (3) 

where iu  and iv  are output and input of the actuator respectively 
whereas iu  represents the portion of input concealed by the 
actuator saturation.       

2.3. Wavelet Network Approximation 

In system identification, wavelet neural network has been 
successfully employed as nonparametric regression tool due to 
their inherent approximation capabilities. Wavelet networks are 
similar to neural networks but they utilize compactly supported 
orthonormal wavelet basis functions as activation functions and 
have a systematic architecture governed by the properties of 
multiresolution analysis [19]. Wavelet network representation of 
any square integrable nonlinear function 2( ) ( )f x L    can be 
expressed as [19, 20] 
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Where xx    is the input argument, 2
0 ,J J     

represents the coarsest and finest  resolution levels respectively,  

0 0 ( , 1, , )jd

jK j J J J    represents translates for a 
particular resolution level, jd    represents the number of 
translates used at a particular resolution j  .   
While 
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of scaling function at resolution 0J and ,
j

T
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 


     

is the 
vector of translated wavelet functions at resolution j . Any 
orthogonal wavelet and associated scaling function which satisfy 
multiresolution analysis can be used for the construction of 
wavelet network.  
It has been proved that, there exist a finite but unknown integer

NJ and finite number of translates for each resolution level i.e.

jK  such that the unknown nonlinear function 2( ) ( )f x L  , 
over a compact set

 xx  , can be approximated as [19]       
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where 
0

*
J   and *

j  represents the optimal weight vectors and  

 ( )x  is the approximation error and for optimal weight vectors it 
is assumed to be bounded by *( )x  .

 
 

Optimal weight vectors required for the function approximation 
are unknown and needs to be estimated. Let 

0
ˆ

J and ˆ
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estimates of 
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Defining an estimation error 
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where
0J and

 
j  are weight estimation errors, defined as 
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* ˆ
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With appropriate numbers of resolutions and translates at each 
resolution level, the estimation error ( )f x  can be made 
arbitrarily small on the compact set such that the bound 

( ) mf x f   holds for all xx  .  
For multidimensional functions of the form ( ) : nf x   , 
wavelet network model can be extended to multidimensional 
wavelet network by tensor product of single dimensional wavelet 
bases. According to multidimensional multiresolution analysis, 
for n dimensional case, there exist one scaling function 

0 ,J K  
which is obtained by the tensor product of single dimensional 
scaling functions

0 , ( );( 1, 2, , )
iJ k ix i n   and 2 1n  wavelet 

functions , ( 1,2, , 2 1)q n
j K q   which are obtained by mixing 

the single dimensional wavelet and scaling functions in different 
dimensions [19]. 
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where nK  and , ( )
ij k ix

is either , ( )
ij k ix

or , ( )
ij k ix

. 

3. CONTROLLER DESIGN  

This section describes the development of adaptive control 
scheme for system (2) to achieve desired performance. Control 
scheme developed in this work can be segregated in two parts, 
first part details the development of control input 1u using

 
hierarchical scheme to ensure the stabilization of first 1n p 
subsystems.

 
 Second part describes the formulation of remaining 

1p  control efforts which acts as the dedicated controllers for 
remaining 1p  subsystems. To facilitate the controller design, 
original system model is first transformed to a saturation free 
model which is used for the subsequent analysis.    

 
        

Step 1: Considering the first 1n p  subsystems of system (2) 
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     Substitution of the saturation model governed by (3) into (9) 
leads to following transformation     
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System 3 (10) can be viewed as a saturation free system with 
nonlinearity

1

( ( ) ( ) )
p

i iq q
q

f X g X u


  .The term ( )iq qg X u  
accounts for the nonlinear dynamics due to actuator saturation 
and is invoked whenever the actuator undergoes saturation. In 
this work, controller designing is carried out using the 
transformed system model 3 (10). Following mathematical 
development leads to the formulation of control component 1av  
of control term 1v . 

 
Defining tracking error for thi subsystem

 
as  
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Its differentiation leads to 
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                                                                        (12) 

Defining a pseudo term as 

2 2 1id i i idx k e y                                                                    (13) 

where ik is a positive constant. 
Substitution of (13) in (12) results in  
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Defining filtered tracking error for thi  subsystem as  

1 2 1 2i i i is a e e                                                                        (15) 

where ia is a positive constant. 
Differentiation of filtered tracking error (15) leads to 
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Defining an integral error term of the form 

1 1 11 2 21 ( 1) ( 1)1n p n pS s s s         
                             (17) 

where , 1,2, , 1i i n p    are coupling parameters. 
According to hierarchical methodology for controller design, 
error term 1S (17)can be viewed as second level error surface 
which is obtained by suitably aggregating the subsystem filtered 
tracking errors 1( 1,2, , 1)is i n p   (15) which can be 
considered as the first level error terms[3, 4]. Convergence of the 
integral error term 1S (17) ensures the boundedness of first level 
error terms and hence stabilization of individual subsystems. 
Differentiation of error dynamics (17) results in 
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From (16) we have 
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Above equation, allows the following formulation of 1av  

1

1 1 1
1

n p

a i i c
i

v v v
 



 
                                                                (20) 

Control term 1av (19) is assumed to be composed of 1n p   
control terms 1 ( 1,2, , 1)iv i n p    which are defined to 
stabilize the subsystem error dynamics in (19) while 
compensating control term 1cv is defined to attenuate the 
approximation error of wavelet network and to improve the 
convergence of error surface 1S (17)

 
under the constraints of 

uncertainties and saturation. 
Defining the subsystem control term as 
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   and c is a positive constant. 

As the nonlinearity iQ is uncertain, it is approximated by 
using a wavelet network and so control term (21) becomes  
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 where ˆ
iQ is the wavelet approximation of the nonlinear term.  

Control term (22), so derived is a partial model free version of 
(21) and also relaxes the requirement of measuring 1u [25]. 
Compensating control term defined as [21] 
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S
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  
  is the robust term included in order to attenuate 

the approximation error of wavelet network with 0 1  . 

Subsequent portion of this step, details the development of tuning 
laws for update of wavelet parameters and convergence of the 
closed loop system. For the development wavelet adaptation 
laws, consider a cost function of the form [15] 
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where iQ is the wavelet approximation error defined as 
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 Adjustable parameters of the wavelet network are needed to be 

tuned so as to minimize the cost function iJ . According to 

the MIT rule for weight adjustment [15], weight updates are  
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. 

Effectiveness of the tuning laws so developed is reflected by the 
convergence of wavelet network estimation error to some small 
residual set. In order to prove the convergence of estimation error 
and boundedness of weight estimation errors, consider a 
Lyapunov function of the form [28] 
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Assumption2: To facilitate the subsequent mathematical 
development it is assumed that over a compact set n

xx 
scaling, wavelet functions and approximation error terms are 
bounded i.e.

 0, , ( )
iJ k x L  ,

 
,

( )
j ki

q x L  and ( )i x L  . 
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 

0, 0,

0

0,

0
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2
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     = ( )

    

    
2 2 2
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n

i i
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T qT q
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j J qi i

J
T qT q
J i j i

j J q

i i i

i i i

i ii i
i

i i

V

X Q X Q

Q Q
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QQ
Q

Q

   
 
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









 



 

 

  

 

  


    

  





    

  

 

 






                         (28)                   

Under the condition of bounded approximation error, we have 

maxmax i i                                                                         (29)     

On substituting (29) in (28), we obtain   

  

2 2
max

2 2
i i

wi

Q
V


  




                                                                (30)  

It implies that 0wiV    as long as maxi iQ   and therefore 
indicates the boundedness of weight estimate errors 

0 iJ k L 
and

ij k L  .   
From (7) we have the following inequality 

0 0

0

2 1

1

( ) ( ) ( ) ( )
n

i i j ji i

J
q q

i J J i
j J q

Q x x x x    


 

   

    (31) 

Therefore, we conclude that approximation error iQ is bounded 
and when converges to the residual set 
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 maxiQ i i iQ Q                                                               (32)    

0
0

iJ  and 0
ji

q  . 

Next part of the section illustrates the development of remaining 
control terms and details the associated issues of stability. 
 
Step 2:  This step describes the reason and associated 
mathematical developments for designing of remaining 1p   
control terms. These control terms are assigned as dedicated 
control terms to each of the remaining 1p  subsystems and are 
designed to solve the control problem of respective subsystems.    
Consider the remaining portion of system (2) 

2( ) 1 2( )

4 2( ) ( ) ( )
1

2( ) 1

( ) ( ) ( )

; 2,3, ,

n p i n p i

p

n p i n p i n p i i i n p i q q
q
q i

n p i n p i

x x

x f X g X u g X u

y x i p

    

       



    

 
    



 








    (33) 

Under the restrictions of actuator saturation, using the saturation 
dynamics (3), system dynamics (33) is transformed into the 
following form    

2( ) 1 2( )

5 2( ) ( ) ( )
1

2( ) 1

( ) ( )

; 2,3, ,

n p i n p i

p

n p i n p i n p i i i n p i q q
q
q i

n p i n p i

x x

x Q g X v g X v

y x i p

    

       



    

 
    



 








    (34) 

where 
( )

1

( ) ( )
p

n p i n p i n p i q q
q

Q f X g X u     


  
 

Defining error variable for   , ( 2,3, , )
th

n p i i p   
subsystem as  

2( ) 1 2( ) 1 ( )n p i n p i n p i de x y                                (35)  

Differentiating 2( ) 1n p ie     (35) along the system trajectories 

yields    

2( ) 1 2( ) ( )n p i n p i n p i de x y        
                          (36)  

Virtual control term 2( )n p i dx    is designed as 

2( ) ( ) 2( ) 1 ( )n p i d n p i n p i n p i dx k e y                                        (37) 

where 0n p ik    . 
Defining filtered tracking error n p is    for ( )thn p i   
subsystem as  

( ) 2( ) 1 2( )n p i n p i n p i n p is a e e                                                (38) 

where 2( ) 2( ) 2( )n p i n p i n p i de x x      
 and 0n p ia    . 

Differentiating filtered tracking error (38) 

( ) 2( ) 1 2( )

( ) 2( ) 1 2( ) 2( )

( ) 2( ) ( ) 2( ) 1

( ) ( ) 2( )
1

        

( )

        ( ) ( )

n p i n p i n p i n p i

n p i n p i n p i n p i d

n p i n p i n p i n p i n p i

p

n p i i i n p i q q n p i d
q
q i

s a e e

a e x x

a e k e Q

g X v g X v x

        

        

          

     



 

  

 


   




  

  







  
        (39) 

Defining an error vector as 

1 2, , ,
T

n p nS S s s    
                                                         (40) 

With the consideration of dynamics (40), defining the control 

vector 1 2, , ,
T

pv v v v   
 as 

1
1 2, , ,

T

a a apv G v v v    
                                                     (41) 

where the control term 1av
 

is already defined (20) while  
 
 

( 2,3, )aiv i p 
 

is meant to solve the control problem of 
 th
n p i  subsystem and is defined 

 
as  

ai ip icv v v 
                                                                            (42) 

where ipv is the principle control term and is defined as 

( ) 2( ) ( ) 2( ) 1

2( )

ˆ( )n p i n p i n p i n p i n p i
ip

n p i d n p i

a e k e Q
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x cs

          

   

    
 
  

      (43) 

while the compensating control term icv
 
is

 
defined as 

22
n p i

ic

s
v


                                                                    (44) 

here 
ˆ

n p iQ    is the wavelet approximation of n p iQ   and 

pxpG is defined as 

1 1 1
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1 1 1
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 
 
 
  

  



   



 

Adaptation laws to update the adjustable wavelet parameters are 
selected as 

0, 0, 0,
ˆ ( )

ˆ ( )

n P i n p i n p i

j j jn p i n p i n p i

J J n p i J n p i

q q q
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X Q
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   

   
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     

   

   

   

   

 

 
 
      

            (45)   

where 2,3, ,i p  , 1,2, , 2 1nq   and n p iQ  
  is the 

wavelet estimation error (25). Issues related to the boundedness 
of estimation error have already been discussed in step1 of 
control design (28, 29 and 30). In order to perform the 
convergence analysis of the system under consideration, consider 
a Lyapunov function [13] 
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1

2
TV S S

                                                                              (46) 

Differentiating V (46)  
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                                                      (47) 

where  
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Substitution of control term (41) in (47) results in 
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Under the condition of boundedness of estimation error n p iQ  
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Equation (49) indicates that the elements of error vector S are
 

bounded and converges to a compact sets defined as 

1

1
1 1

2
S S S

c

 
   

   

; 2,3, ,
2n p i

n p i
s n p i n p is s i p

c


 

 
   

      
  


           

(50)
     

Above equation indicates the uniform ultimate boundedness of 
error terms and associated closed loop signals. 
From (50), we have

   

1S L
 
                                                                                   (51) 

Hence 

1 , 1,2, , 1is L i n p                                                    (52) 

Boundedness of 1S  (17) implies the boundedness of associated 
subsystem error dynamics 1is (15).           

 
Succeeding section illustrates the results of simulation carried out 
with the adaptive controller strategy developed in this section.  
Remark: Update laws (26 and 43) developed for the tuning of 
wavelet parameters could not be implemented as approximation 
error iQ (25)

 
is not available for measurement. To make the 

implementation feasible, following analysis is carried out. 
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Consider the following error dynamics from (38)  

 1 2, , ,
T

n p n dS S s s E Q X Gv       
   

                    (53)  

Substitution of control law (41) results in 

22

S
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                                                              (54)  

From (52) we have 

22

S
Q S cS


     

                                                                (55) 

Above equation results in 
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
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                                         (56) 

As the elements of S  cannot be calculated as it contains 
uncertainties and so is approximated as 

1 1
1

( ) ( )i i
i

s t s t t
s

t
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




                                                          (57)  

where t is a small positive constant [28]. 

4. Sımulation Results 

To demonstrate the effectiveness of the adaptive controller 
scheme (39), a simulation study is carried out considering a 
multi- input multi- output underactuated system with uncertain 
dynamics and the output of the actuators are assumed to be 
restricted by saturation nonlinearity. Consider the following 
multi- input multi -output underactuated system with three 
interconnected subsystems and two actuations subjected to 
actuator saturation  

.
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                                              (58) 

where   1 2 3, ,
T

y y y y  is the output vector and  1 2,
T

u u u
 
is 

the vector of plant inputs and output of actuators subjected to 
saturation (3) with input vector  1 2,

T
v v v . As per the controller 

scheme presented, control term 1v is meant for effective 
stabilization of system states 1x and 3x whereas 2v is assigned to 
solve the control problem of 5x .Simulation is carried out with 
following nonlinear dynamics  
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Elements of nonlinear vector field f are considered as uncertain 
system dynamics. According to the actuator saturation dynamics 
(3), system (58) can be transformed to the following form  

 

 

Figure 1.  Trajectories of state variables with unconstrained actuators  
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Figure 2.  Control efforts with unconstrained actuators 

 
Figure 3.  Error signals with unconstrained actuator 
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Where 
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Here the elements of the vector field Q , represents the system 
nonlinearity as well as nonlinearity inserted by the saturation 
dynamics. These elements are approximated by using wavelet 
neural network. 

 

 
Figure 4.  Trajectories of State variables under actuator saturation 
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Figure 5.  Control efforts under actuator saturation 

 

Figure 6.  Error signals under actuator saturation 
Wavelet approximation of the nonlinear saturation dynamics also 
relaxes the requirement of measuring the saturation error (3). 
Wavelet networks are constructed using Daubechies wavelet 
(db3) with 4n  , coarsest and finest resolution levels are 
selected as 0 1J  and 3J  respectively.  Number of translates 
of single dimensional wavelet basis at coarsest resolution level 
are taken as 1 3K  and are made double when resolution is 

increased by1 . Online adaptation laws (26 and 43) are used for 
adjustment of weight parameters with initial conditions for all the 
wavelet parameters set to zero. To get an insight of the controller 
performance under the condition of saturation, the simulation is 
carried out in two phases. During the first phase, it is assumed 
that the actuator is saturation free, the simulation is carried out 
with following initial conditions and controller settings: 
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while learning rates for the wavelet networks are taken as 
0.5  and 0.5  . Simulation results are shown below in 

figure (1, 2 and 3). Convergence of system states and filtered 
tracking error to the close neighborhood of origin within a short 
span of time can be observed. During the second phase of 
simulation, actuator saturation is considered and the simulation is 
carried out for same initial conditions and controller parameter 
settings. Results obtained are shown in figure (4, 5, and6). As 
clearly reflected by the figures, system performance is almost 
similar to that obtained during the first phase. Initially the control 
efforts undergo saturation thereby causing a slight deterioration 
of the system performance and introducing rapidly rising 
nonlinearities. However, due to the promising capability of the 
wavelet network to approximate such nonlinearities accurately 
and rapidly, the control efforts reshape themselves and come out 
of the saturation within a short span of time and thereafter retune 
the system response rapidly to its original unconstrained form. As 
the controller scheme tackles the actuator saturation in 
antiwindup paradigm, the performance deterioration does not 
disturb the system stability and thus the system stability is 
preserved. 

5. Conclusion 

This paper presents an adaptive control scheme to solve the 
control problem of a class of uncertain multi- input multi- output 
underactuated systems with actuator saturation. Controller 
scheme presented is composed of some hierarchically derived 
control terms which are meant to ensure the stabilization of 
certain subsystems whereas few controllers are assigned as 
dedicated controllers to some of the subsystems.  Control terms 
so derived guarantee the uniform ultimate boundedness of all the 
closed loop signals. Wavelet neural networks are used to 
approximate the unknown nonlinear system dynamics as well as 
the nonlinear dynamics invoked by the actuator saturation. 
Convergence analysis of the error dynamics is carried out in the 
Lyapunov sense. Effectiveness of the controller scheme is 
illustrated through the simulation. 

References 
[1] M. W. Spong, “Underactuated mechanical systems,”  Control 

Problems in Robotics and Automation, Springer-Verlag, London, 
UK, 1997. 

[2] R. Olfati-Saber, “Normal Forms for Underactuated Mechanical 
Systems with Symmetry,” IEEE Trans on Automatic Control, 
vol.47, pp.305-308, 2002. 

[3] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a Stable Sliding-
Mode Controller for a Class of Second-Order Underactuated 

0 5 10 15 20
-10

-5

0

5

10

time(sec)

v1

0 5 10 15 20
-10

-5

0

5

10

time(sec)

v2

0 5 10 15 20
-5

0

5

time(sec)

s1

0 5 10 15 20
-5

0

5

s2

time(sec)

0 5 10 15 20
-5

0

5

time(sec)

S
1

0 5 10 15 20
-20

0

20

time(sec)

s3



 

144  |  IJISAE, 2016, 4(4), 135-144 This journal is © Advanced Technology & Science 2013 

Systems,” IEE Proc.-Control Theory Appl., vol. 151, No. 6,pp.683-
690, November 2004. 

[4] D.W.Qian, X.J.Liu and J.Q.Yi, “Robust Sliding Mode Control for a 
Class of Underactuated Systems with Mismatched Uncertainties,” 
JSCE, vol.223, pp.785-795, 2009. 

[5] D.Qian and J.Yi, “Fuzzy Aggregated Hierarchical Sliding Mode 
Control for Underactuated Systems”, IEEE Conference on 
Mechatronics and Automation, Xi'an, China, pp. 196-201, 2010. 

[6] H.Chyau and C.Y.Feng, “Adaptive Control for a Class of 
Underactuated Systems with Mismatched Uncertainties”, 
Proceedings of the 29th Chinese Control Conference, Beijing, 
China, pp. 2053-2059, 2010. 

[7] D.Qian, J.Yi and D.Zhao, “Control of Overhead Crane Systems by 
Combining Sliding Mode with Fuzzy regulator,” 18th IFAC World 
Congress, Milano, pp. 9320—9325, 2011. 

[8] D.Qian, X.Liu and J.Yi, “Adaptive Control Based on Hierarchical 
Sliding Mode for Under-Actuated Systems”, IEEE Conference on 
Mechatronics and Automation, Chengdu, China, pp. 1050-1055, 
2012. 

[9] D.Qian, S.Tong and J.Yi, “Adaptive Control Based on Incremental 
Hierarchical Sliding Mode for Overhead Crane Systems,” 
Appl.Math.Inf.Sci. , vol.7, no. 4, pp.1359-1364, 2013. 

[10] C.C. Chiang and Y.W.Yah, “Hierarchical Fuzzy Sliding Mode 
Control for Uncertain Nonlinear Underactuated  Systems”, IEEE 
Conference on Fuzzy Systems, Beijing, China, pp. 662-669, 2014. 

[11] C.L.Hwang,C.C.Chiang and Y.W.Yah, “Adaptive Fuzzy 
Hierarchical Sliding Mode Control for the Trajectory Tracking of 
Uncertain Underactuated Nonlinear Dynamic Systems”, IEEE Trans 
on Fuzzy Systems, vol.22, pp.286-299, 2014. 

[12] S.Aloui, O.Pages, A.Elhajjaji, A.Chaari and Y.Koubaa, “Robust 
adaptive fuzzy sliding mode control design for a class of MIMO 
underactuated system,” IFAC World Congress, Milano, Italy, 
pp.11127-11132, September 2011. 

[13] H.K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice 
Hall, 2002.   

[14] J.E. Slotin, W. Li, Applied Nonlinear Control, Prentice-Hall 
International, Englewood Cliffs, NJ, 1991. 

[15] K.J.Astrom and B.Wittenmark, Adaptive Control, New York: 
Addison Wesley, 1995. 

[16] K.S.Narendra and K.Parthasarathy, “Identification and Control of 
Dynamical Systems Using Neural Networks,” IEEE Transactions 
on Neural Networks, vol. 1, no. 1, pp.4-27, 1990. 

[17] Q. Zhang, A. Benveniste, “Wavelet networks”, IEEE Transactions 
on Neural Networks, vol. 3 ,pp.889—898, 1992.  

[18] J. Zhang, G. G. Walter, Y. Miao, and W. N. W. Lee, “Wavelet 
Neural Networks for Function Learning,” IEEE Transactions on 
Signal Processing, vol. 43, no. 6, pp.1485-1497, June 1995. 

[19] J.X.Xu and Y.Tan, “Nonlinear Adaptive Wavelet Control Using 
Constructive Wavelet Networks” IEEE Transactions on Neural 
Networks,        vol. 18, no. 1, pp.115-127, January 2007. 

[20] S.A.Billings and H.L.Wei, “A New Class of Wavelet Networks for 
Nonlinear System Identification,” IEEE Transactions on Neural 
Networks, vol. 16, pp.862—874, 2005.  

[21] C.F. Hsu, C.M. Lin, T.-T. Lee, “Wavelet Adaptive Backstepping 
Control for a Class of Nonlinear Systems” IEEE Transactions on 
Neural Networks,      vol. 17, no. 5,pp.1175-1183, September 2006. 

[22] M.Zekri, S.Sadri, F.Sheikholeslam, “Adaptive Wavelet Controller 
Design for Non Linear Systems”, Fuzzy Sets and Systems, vol. 159, 
pp.2668-2695, 2008.  

[23] L.W.Lee and I.H.LI, “Wavelet Based Adaptive Sliding Mode 
Control with H∞ Tracking Performance for Pneumatic Servo 
System Position Tracking Control”, IET Control Theory 
Applications, vol. 6, no. 11, pp.1699-1714, 2012.  

[24] Y.Xue, J.Wen and Y.Du, “Robust Adaptive Control for Near Space 
Vehicles Based on Wavelet Neural Network”, Proceedings of 
IECON, Vienna, pp .3735-3739, November 2013. 

[25] W.Gao and R.R. Selmic, “Neural Network Control for a Class of 
Nonlinear Systems with Actuator Saturation”, Proceedings of 
American Control Conference, Massachusetts, Boston, pp .2569-
2574, 2004.    

[26] J.Zhou, M.Joo and Y.Zhou, “Adaptive Neural Network Control of 
Uncertain Npnlinear Systems in Presence of Input Constraints,” 
Proceedings of the ICARCV, pp. 895-899, 2006. 

[27] P.He and S.Jagannathan, “Reinforcement Learning Neural Network 
Based Controller for Nonlinear Systems with Input Constraints”, 
IEEE Transactions on Systems, Man and Cybernetics-Part B: 
Cybernetics, vol. 37, no. 2, pp.425-436, 2007.  

[28] S.Laboid and T.M.Guerra, “Adaptive fuzzy control of a class of 
SISO nonaffine nonlinear systems,” Fuzzy Sets and Systems, vol. 
158, pp.1126-1137, 2007. 

 


