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Abstract

In this work four uncertain delay differential equations of Volterra-Levin type will be considered. Applying
suitable contraction mapping and fixed point method, the stability of the equations will be studied. It will
be shown that the solutions are bounded and, with additional condition, the solutions tend to zero. Also,
a necessary and sufficient condition for the asymptotic stability of the solutions of an uncertain differential
equation will be presented.
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1. Introduction

Introducing uncertain measure, uncertain theory was founded by Liu in 2007 (|8]). Since then, the theory
has been spread in various fields such as optimal control ([16]), game theory ([13]), finance ([5]), heat con-
duction ([I4]), uncertain risk analysis ([7]), uncertain logic ([6]) and uncertain programming (|4]). Uncertain
differential equations were introduced by Liu in [3]. In this work we are interested to study the stability of
uncertain (delay) differential equations (UDDEs). First, uncertain differential equations (UDEs) and some
of the previous results in this area will be presented.
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An uncertain process Ct is said to be a Liu process if
(i) Cop = 0 and almost all sample paths are Lipschitz continuous,
(ii) Cy has stationary and independent increments,
(iii) every increment Csy; — Cy is a normal uncertain variable with expected value 0 and variance * ([3]).
An uncertain differential equation (UDE) is a type of differential equation which is driven by Liu process
as
dXt = f(t,Xt)dt+g(t,Xt)dCt, (].1)

where C is a Liu process. The existence and uniqueness of solutions of is proved by Chen and Liu ([I]).
Recently, the existence and uniqueness of solutions of uncertain linear system has been presented by the
authors in [10]. Also, the Liouville formula and explicit solutions of uncertain homogeneous linear systems
is proved by the authors in [II]. Moreover, the continuity and differentiability of solutions with respect to
initial conditions and Peano theorem for uncertain differential equations have recently been presented in [9].

Definition 1.1. An uncertain delay differential equation (UDDE) is an uncertain differential equation in
which the increment of the uncertain process depends on the values of the process in the past.

Stability is one of the most important problems in the study of UDEs. First, the concept of the stability
will be reviewed. Let Xy = (241,242, ...,2) € R™, P = (p1,p2,...,0n) € R", f = (f1, f2,..., fn) and g =
(91,92, ...,9n) in which f; and g; are continuous and partially differentiable functions on {t € [tg, 00),xy €
R}. Suppose X;(P) be the solution of system

dXy = f(t, X¢)dt + g(t, X¢)dCy,
Xt() = XU = P7

for all t > 0 and P € R™. Now, this is a question that, how small changes in the initial conditions affect
the long-term behavior of the solutions? If the system varies little under small perturbations of the initial
position, then we say that motion of the system is stable. In this manuscript, applying the fixed point
method, the concept of stability for UDDEs will be investigated.

The stability in measure, which is founded by Liu ([3]) in 2009, is defined as follows.

Definition 1.2. An UDEF is said to be stable if for any € > 0 and ¢ > 0, there exists § > 0 such that for
any solutions X; and Y; we have
M{|X;—Y]| >¢€}<e, Vt>D0,

where | X — Yo| < 6 and M is an uncertain measure ([3]).

Some stability results for Volterra-Hadamard random partial fractional integral equations have been given
by the authors in [12]. Also, a sufficient condition about the stability of solutions of an UDE is given by Yao
et al. in 2013 as follows ([15]).

Theorem 1.3. ([15l]) The uncertain differential equation
dX; = f(t, Xy)dt + g(t, Xy)dCy,
is stable if f(t, Xy) and g(t, Xy) satisfy the linear growth condition
(X0 + gt X0l < K(1+ (X)), ¥X € Rt >0,
for some constant K and strong Lipschitz condition
[f(E, Xe) = (& YD)+ [g(t, Xe) —g(8, Vo) < L@)|Xe = Yif, VX, Vi e Rt >0,

for some bounded and integrable function L(t) on [0,00).
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2. Preliminaries

In this section, to prove our main results, some needed preliminaries will be presented. First, consider
the following theorem which is proven by Ji and Zhau in [2].

Theorem 2.1. (f2/) Let C; be an n-dimensional Liu process and Y; be an m x n Liu integrable uncertain
matriz process. Then,

‘/Yt )Gy (y '\ /Yt( Jdt,  WyeT,

where K., is the Lipschitz constant of the sample path Cy(7).

We will study some UDEs in which the difference of two pairs of terms, say A — C and B — D, seem to
have little or no effect on the behavior of the solutions of the equations. For example consider the UDE

dX; = [f(t, Xy) + Aldt + [g(t, X¢) + B]dCy,
which is most intractable but
dXy = [f(t, Xt) + Cldt + [g(¢, X¢) + D]dCy, (2.1)

would be easy to analyze. The real advantage of identification of such two pairs is the idea of using the
technique of adding and subtracting the same thing with the hope that

dX, =[f(t,Xy) + (A= C)+ C|dt + [g(t, Xy) + (B — D) + D]|dC4,

will have the same behavior of .

For example, let uncertain process X; denotes the number of individuals in a population at time t.
Assume also that, A(t) = h(X;) and B(t) = k(X;) be the number of insure and uncertain births. If every
individual has lifespan L and dies at age L, then the population growth is governed by equation

dXy = [A(Xy) = h(Xy—p)]dt + k(X)dCy — k(X—£)dCy L. (22)

Note that h and k can be any Lipschitz functions and h(X;) — h(X;—r) and k(X;) — k(X;—1) are the net
change in the population and the fluctuation per unite of time, respectively. In real-word problems, because
of uncertainties, the freedom of taking h and k as two arbitrary Lipschitz functions is critical. Equation
has the property that every constant process is a solution and every solution (under certain regularity
conditions) approaches to a constant. If the regularity conditions fail, then a solution may tend to +oc.
If
dX; = f(t, X¢)dt + g(t, X¢)dCy,

enjoys the stability properties, then those properties should be shared with
dX, = [f(t, X¢) + h(Xe) — M(Xp—p)]dt + [g(t, X¢) + k(X)]dC, — k(Xy—1)dCy—r,

under mild conditions on h, k and L and h(Xy)—h(X;—1) and k(X;)dC,—k(X;—1)dC;— should be considered
as harmless perturbations. Our goal is to construct a set of harmless perturbations.

To specify a solution of , an initial function on an initial interval is needed. Typically, we need a
continuous function ¢ : [-L,0] — R and obtain a continuous function X¢(0,1) with X;(0,¢) = 1 (t) on
[—L,0], while X; satisfies for ¢ > 0. For convenience, consider the solution starting at ¢y = 0.

Considering the initial condition, equation (2.2)) can be written as

0 t 0 t
X, = $(0) — / h(sb(s))ds + /tL h(Xy)ds — / k(w(5))dCs + /tL k(X,)dCs. (2.3)

—L —L



V.Roomi, H.R.Ahmadi, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 215231 218

To solve our problem, let L > 0 be constant and h and k satisfy

[h(X¢) — h(Yy)| < K1| Xy — Y, (2.4)
k(Xe) — k(Yy)| < Ka| Xy — Vi, '
Suppose also that there is a positive constant o < 1 such that
L(K1 -+ KQK/Y) < o, (25)

where K is the Lipschitz constant of sample pass C(7).
Theorem 2.2. Let (2.4) and (2.5) hold and ¢ : [-L,0] — R be a continuous function. Then, there is a

unique constant \ satisfying

0

0
A = $(0) + h(VL — / h((s))ds + k(V LK, — /_ h(s)C. (2.6)

-L
such that the unique solution of (2.2)) with initial function 1 satisfies X4(0,%) — X\ as t — oc.

Proof. Define mapping P: R — R as

0

0
P =(0) + h(\)L — / h(1b(s))ds + k(ALK — /L k(1(s))dCs.

—L

We show that P is a contraction mapping. Let m,n € R. Then,

|Pm — Pn| < LIh(m) — h(n)| + LK |k(m) — k(n)| < L(K + K2 Ky )|m — n|

< alm —nl.

Therefore, P is a contraction mapping on the complete metric space (R, |.|) where |.| denotes the absolute
value. Thus, P has a unique fixed point A.
Now, define

M ={¢:[-L,00) = R | ¢(t) =(t) on [-L,0], ¢(t) > Xast — oo, ¢

is bounded continuous function}.

Then, (M, ||.]|) is a complete normed space with the supremum norm. Applying (2.3)), define Q@ : M — M
on [—L,0] as

(@)(t) = ¥(1),
and for ¢ > 0 let

0 0

mo)ds+ [ ho)ds— [ k@)t + [ keeac. @D

—L

@)t =00~ [
It is clear that a fixed point of @ will solve (2.2) and (2.3). Notice that since ¢(t) — A, we have
ftt_L h(¢(s))ds — h(\)L and ftt_L k(¢(s))dCs — k(N\)(Cy — Cy_p) as t — oo. Using this, (2.7) and then
(2.6), we see that (Q¢)(t) — A as t — oco. Thus, Q : M — M.

It will be shown that @ is a contraction mapping. Let ¢, € M. Then,

(@) = @0 < [ o) = hn(sDlds + [ [h((s) = K(a()lac,

L
< KiL||¢p — || + LK K, ||¢ — 0|l < al¢ —n]|.

Therefore, @ is a contraction mapping with unique fixed point ¢ € M and the proof is complete. O
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3. Stability of uncertain delay differential equations

The study of UDDEs is a new field of the theory of uncertain differential equations. In this section the
fixed point method will be used to study the stability of four different types of UDDEs of Volterra-Levin
type. As we see, each of these equations will be approached via the harmless perturbation idea.

The problems we consider here are:

¢ ¢
dX, = —/ p(s —t)f(X,)dtds — / q(s —t)g(X5)dCsdCs_y
t—L t—L

t t
dX, = —/ e~ =) gin(t — s)dtf(X,)ds — / e =) sin(t — 5)dCy—_sg(X,)dCs,
0 0
t

X, — — / " (s — DdEF(X.)ds + / o(s — 1)dCs_1g(X)ACs,

—00 —00

dXy = [—a(t) f(Xq@)ldt + [=b(t)g(Xg(r))]dCy.
Each of these equations can be displayed as
dX; = —f(X;)dt + a harmless perturbation — g(X;)dC} + an uncertain harmless perturbation.

Then, the stability of these equations will be studied by applying suitable contraction mappings. In this
way, we show that the fixed point technique can be applied on a distributed bounded delay, a distributed
unbounded delay, a distributed infinite delay and a pointwise variable delay.

In all of the equations, let f,g: R — R be functions satisfying

|f(Xy) — (V)| < Kq| Xy — Y, (3.1)
19(X1) — g(V2)| < Ka| Xy — Y4,
for some positive K7 and K5 and for all Xy, Y; € R. Also, assume that
f(X3) >0 and 9(Xe) >0,
Xt Xe (3.2)
J(Xe) o9(Xy)
m and lim exist,
X¢—0 Xt X¢—0 t
and sometimes X x)
t g\t
> d = b, .
> Fouel (3.3)

for some 8 > 0.

Briefly, for the type of initial function, owing to the continuity and the Lipschitz condition, there will be
a unique solution. Because of the Lipschitz growth condition, that solution can be continued for all future
time. In the following four theorems, we will show that the solutions of the mentioned equations are bounded
and, with an additional condition, their solutions tend to zero.

Consider the first equation which is an scalar uncertain equation of Volterra-Levin type as

t t

dX; = —/ p(s — 1) f(Xs)dtds — / q(s —t)g(X5)dCsdCs_y, (3.4)
t—L t—L

where L > 0 and p and ¢ are continuous functions satisfying

/ " (s)ds = / Y ()1 = 1. (3.5)

—L —L
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For K1 and Ky of (3.1)) let
0 0
2K1/ Ip(v)v|dv 4+ 2K2K»y/ lg(v)v|dv = o < 1, (3.6)
L —L

where K is the Lipschitz constant for sample path C(v).

Theorem 3.1. Let (3.1), (3.2), (3.5) and (3.6) hold. Then, every solution of (3.4) is bounded. Moreover,
every solution of (3.4) tends to zero if (3.3) holds.

Proof. Let ¢ : [—=L,0] — R be a continuous initial function and Xy, := X;(0,%) be the unique solution.
Then, (3.4) can be written as

0 t 0 t
dX; = —f(Xy)dt + d/_L p(s) " f(Xy)duds — g(X)dC, + d/_L q(s) /H_ 9(X,)dC,dCs.

Define non-negative continuous functions a, b : [0,00) — [0,00) as

alt) == f(;it), b(t) == g(XX;l:).

Therefore, for the fixed solution, the equation can be written as

0

t 0 t
dX; = —a(t) Xy dt + d/ p(s) f(Xy)duds — b(t) X, dCy + d/ q(s)/ 9(X,)dC,dCs.
L t+s —L t+s

Now, by the variation of parameters and integration by parts, we have

. t 0 v
X; = p(0)e Jo a(£)ds= [ b()ACs / e~ v ale)ds= ], b<s>d0sdi / p(s) / F(X,)dudsdy
0 vJ-L v+s

t 0 v
+/ e_f;a(s)ds—fjb(s)dcsj/ q(s)/ 9(Xy)dC,dCdC,
0 vJ-L v+s
0

v t
) / J(u)duds

= 1p(0)e Jo A= [T H()AC: 4 o= [ a(s)ds— [ b(s)dC: /

t t ¢ 0 v
. / e [, a(s)ds— [} b(s)dCs [a(v) + b(U)] / p(s) / f(Xu)dudev
0 —L v+s

0
o= L ale)ds— [ bs)ydc, / o(s) / 9(X,)AC,dC, |
—L v+s

t t t 0 v
_/ e~ Joals)ds—J; b(S)dCs[a(v)+b(v)]/ q(s)/ 9(X,)dC,dCdC,

0 —L +s

. . 0 t
_ p(0)e Ji ale)ds— i ps)ACs 4 / p(s) [ F(X.)duds
—L t+s
. . 0 0
_ o S als)ds—JE sacs / () / F((w))duds
t t t 0 v
. / e [, a(s)ds— [ b(s)dCs [a(v) + b(v)] / p(s) / f(Xu)dudev
0 —L v+s

0 t . . 0
+ / q(s) / 9(X,)dC,dC, — e~ Jo 2()ds=Jy bl)dC /
t

—L +s —L

0
a(s) / 9((u))AC,dC,

t t t 0 v
_ / e JL als)ds= L6 4 () 4 b)) / a(s) / 9(X,)dC,dCLdC,.
0 v

—L +s
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Let
M={¢:[-L,00) >R | ¢9 =1, ¢ is bounded and continuous}.

Define P : M — M by (P¢)(t) = ¢(t) for —L <t < 0. If ¢ > 0, then define

t

t t 0
(P)(t) = (0)e o als)ds=Ji m(s)aCs / p(s) [ F(o(w)duas

_ o S ale)ds—Ji ps)dC / / F((u))duds
t t t

_/ e Jo als)ds—J, b(8)ACs [a(v) + b(v) / / f(é(u))dudsdv
0

[ [ sowaciac,

—L t+s

t t 0 0
o [t a(s)ds— [ ps)ac. / o(s) / 9(t(1))ACudC,
—L s
t t t 0 v
_ / e JL als)ds= L6 4 () 4 b)) / o(s) / 9(6(1))dC,dC5dC,.
0 —L v+s
Let ¢,n € M. Then,

0

[(Pe)(t) — (Pn)(t)] </ p(s)l [ 1f(¢(w)) = fn(w))|duds

—L t+s
t
N /O effia(s>ds+ﬁfb<s>dcs[ (v) + b(v) / 9| / Fln(w))|dudsdo
0
+ / o) [ " 19(6(w) — gn(w)]dC,dC,
N /O o= 1 ads— [1HC 4 ) 4 (o) / 9| / — g(n(u))|dCudCdC,
0
< [2K1 [ ptopslas + 21k, / ds] 16— nll < allé .

Hence, P is a contraction mapping on M and there is a unique fixed point, a bounded solution.
If (3.3) holds and we add to M the condition that ¢(¢) — 0 as t — oo, then it can be shown that
(P¢)(t) — 0 whenever ¢(t) — 0 and the solution of (3.4) tends to zero. O

Consider the second equation as
t t
dX; = —/ e =) gin(t — 5)dtf(X,)ds — / e sin(t — 5)dCs_sg(X,)dCs, (3.7)
0 0
where a,b > 0. For K; and K of (3.1)) suppose

t oS]
2K, sup/ / ~%|sin(v)|dvdu 4+ 2K5 K, sup/ / e~ sin(v)|dvdu =: @ < 1. (3.8)
>0 t—u = t—u

Define 0o 00
Iy ::/ e~ sin(v)dv, Iy := / e % sin(v)dC,.
0 0

Because of the Lipschitz condition on f and g, it can be shown that for each Xy there is a unique solution
X:(0, Xp).
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Theorem 3.2. Let (3.1)), (3.2), and (3.8) hold. Then, every solution of ([B.7) is bounded. If, in addition,
(3.3) holds, then every solution tends to zero as t — oco.

Proof. Let Xy, = Xy and Xy; be the unique solution. Hence, (3.7)) can be written as

t
dX, = -l f(Xy)dt + d/0 /t Wsin(v)dv f(Xs)ds — lag(X:)dCy + d/ /t b sin(v)dCyg(X,)dCs.

Define ¢ (t) and co(t) as

c(t) == fg)(it), co(t) ==

9(X1¢)
X

Therefore, the equation can be written as

dX; = =l () Xodt —I—d/ / Usin(v)dv f(Xs)ds — laca(t) X dCy —I—d/ / sm( )dChLg(Xs)dCs.
t—s t—s
Use the variation of parameters formula to write the solution as

t
X, = Xpe— 1 Jo cr()ds—la [g e2(s)dCs +/ by [t er(s)ds—1s [T ea(s)dc, 4 / / ? sin(v)du f(Xs)dsdu

+/ o1 J! er(8)ds—La [* ea(s)dC, /t/ b in(0)dC,g (X, )AC,dC,
0 du
= Xge 1o c1(9)ds—la Jg e2(5)ACs | o—h [} er(s)ds—lz [ e2(s)dCs /u /OO e~ sin(v)dvf(X,)ds ]0
_ / by Jf ex(6)sta £ ex(DACH [, o () + Dy (u / / 0 gin(v)do f(X,)dsdu
4 el Jlea(s)ds—lz [} ca(s)AC, / / v sin(v)dC,g(X )dCs|g
7/0 el JLer(®ds—ta [ e2®AC 1 o ()  Lyeo(u / / Y sin(v)dC,g(X)dCsdC,,
_ Xpe—li Ji er(s)ds—a fj ex(s)aCs / / v in(v)do f(X d3+/ / Y sin(v)dCyg(X,)dC,
t—s
7/0 e~ S er (s —la [ a1, () + pea(u / / v in(v)dof(X,)dsdu
7/0 el JLer®ds—ta [{e2®dC 1 o ()  Loeo(u / / Y sin(v)dCyg(X;)dCsdC,,.

Now, define
M ={¢:]0,00) = R | ¢ is bounded and continuous, ¢(0) = Xy}.

Also, using the equation above, define P : M — M like in the proof of the Theorem [3.1 Let ¢,n € M.
Then,

t fe'e]
(PO)(®) — (Pr)(2)] (zKlsup / / e sinfo) dodu + 2K sup [ [ eb”|sin<v>|dvdu) 6 — 7

=0 20 Jo
<allg —n.

Thus, P is a contraction ma plng and we have a unique fixed point, a bounded function satisfying the
differential equation. If f( > ), > [ > 0, then it can be shown that (P¢)(t) — 0 whenever ¢(t) — 0.
Thus, all solutions tend to zero. O
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We next consider the third equation as

dx, = — / t p(s — t)dtf(X,)ds + / t q(s — t)dCs_1g(X,)dCs, (3.9)

—0o0 —0o0

/0 ()ds—/o q(s)dCs =1 and
/ / W)|dudy and / / W)[dCudC,  exist.

Assume also that for K; and K of (3.1), there exists a positive o < 1 such that

<2Klsup// |duds+2K2K,ysup// |duds> <a. (3.11)
>0

Theorem 3.3. Let (3.1), (3.2)), (3.10) and (3.11) hold. Then, every solution of (3.9) with bounded continuous
initial function v : (—00,0] — R is bounded. If in addition (3.3|) holds, then those solutions tend to zero as
t — oo.

Proof. We can write (3.9) as

in which

(3.10)

dX; = — f(X)) dt+d/ / w)duf(X,)ds — g(X;) dCt+d/ / w)dCyg(X,)dCs.

For a given bounded continuous initial function 1, let X1; be the unique solution which is defined on [0, c0).
Define continuous functions a(t) and b(t) as

f(X1r) 9(Xir)
a(t) := N b(t) := )
Q X1t ) Xit
and write the equation as
dX; = (t) Xydt + d/ / w)duf(Xs)ds — b(t) X, dCy + d/ / u)dCyg(Xs)dCs.
Now, use the variation of parameters formula to write the solution as
Xt:w( ) foas)ds fob(s dCs+/ e f a(u)du— f b(u)dCly, d / / duf( )deU
t d
_|_/ e — [T a(u)du— [F b(u)dCy, / / u)dCyg(Xs)dCsdC,,

— (0)e Jo AN BACs 4 o= [ alw)du= [ bw)dC, / /  p()duf(X.)dslh
t
= [ 1) b st [ pagau ) dsao
© o S afu)du- fb<ud0/ / w)dCg(X,)dC

_/0( a(v) + b(v))e — [, a(s)ds— [} b(s dcs/ / u)dCyg(Xs)dCsdC,
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= p(0)e o o) 5“3%*+/P / Wl (e)ds
—e foa (w)du— fo b(u)dCu / / duf ¢S

—/[<>+b<>1 -1l dsf”dcs// u)duf(X,)dsdv
/ / w)dCyg(X,)dC, — e~ Jo alwldu=Jg b(u)dCu / / u)dC,g(1hs)dCs

_/0[ a(v) + b(v)]e™ Jo a()ds— [ b(s)dCs / / u)dCyg(X)dCdC,.

Let
M ={¢:[0,00) - R | ¢ is bounded and continuous, ¢(t) = (t) for t < 0}.

For ¢t <0 define P: M — M as (P¢)(t) = v(t) and for ¢t > 0 define
t s—t
(Po)(®) = w(0)e S et [ [ ptuauf(os)as
—e~ fo a(u)du— fo (w)dCy / / duf ws

/[ () + b(u)]e™ i s Wsd@‘/ / wduf(6(s))dsdu

/ / W)ACg(6(5))AC, — e= Ja atwydu= [ buyac, / / W)dC,g(ts)d

_ — [la(s)ds— [} b(s)dCs
/0 la(v) + b(v)]e / / 0)dC,g(6(5))dCdC,.
Let £&,m € M. Then,

(Poe) - (ol < | / ) dul F(€(5)) — F(n(s))lds
/ o) + bole Kot Svoe: [ [ puaulfe(s) - fats)ldso
< / ) dulg(§(s)) — g(n(s))IdC
- [tat) + g mesioenes 1 [ guyaclote(o) - atatsniaciac,
2K, sup ) duds + 2K, K sup u)|duds ) € —
(el )

Therefore, P is a contraction and there is a unique fixed point.
If in addition (3.3]) holds, then modify M to include the condition ¢(t) — 0. Then, it can be shown that

(P¢)(t) — 0 whenever ¢(t) — 0 and the solution of (3.4) tends to zero. O
Our final equation is as follows.

dXy = [—a(t) f(Xq@)ldt + [=b(t)g(Xg1))]dC, (3.12)

where ¢ : R — R is continuous and strictly increasing to oo, ¢(t) < t, ¢ has the inverse function hA(t) and a

and b are continuous from [0, c0) to [0, 00). Suppose that for K; and Ky of (3.1}, there is an « such that

h(t)
sup/ [Kia(u) + KoK b(u)]du < a < 1. (3.13)

t>0
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Theorem 3.4. Let (3.1)), (3.2) and (3.13) hold. Then, every solution of (3.12) is bounded. If, in addition,
(3.3) holds and

t t
(/ a(s)ds—i—/ b(s)dCs) — 00 as t— oo, (3.14)
0 0
then every solution of (3.12)) tends to zero as t — oco.
Proof. Write (3.12) as

t t

a(5)f(Xyo)ds —d [ b)g(Xy)dC.

dXy = —a(h(t)h' () f(Xe)dt — b(h(t))R'(t)g(X:)dCy — d/ 0

h(t)

Now, considering a continuous initial function ¢ : [¢(0),0] — R, let X;; denotes the unique solution and
define the following continuous functions.

L(t) X := a(h(t))h’(t)f(;it), D(t) X, = b(h(t))h’(t)g(;it).

Therefore, the equation can be written as

t t

a(3)F(X,0))ds — D(t) X,dCyd / b(5)9(Xy)ACs.

AX, = —L(H)X,dt — d /
h(t)

h(t)
Like the method used in the previous theorems, we have

ot ¢ 1o . d rt
X, = p(0)e Jo Le)ds=Jo D(s)dC _ /0 e~ s Llwdu—[ D<“>d0u£ /h o a(u) f(Xq(u))duds

t t
- [t gpene. £ [ huyg(xy)dcudc,
0 ds h(t)

t t t t s
=(0)e” Jo L(s)ds— [ D(s)dCs _ = [, L(w)du— [ D(u)dCy / a(U)f(Xq(u))dMé

h(s)

t s
+/ [L(s)+D(s)]e—ffL(u)du—fﬁDW)dCu/ a(u) f(Xy(u))duds
0 h(s)

o ! L(wdu— [! D), /h( )b(u)g(Xq(u))dCu|6

t s
n / (L(s) + D(s)]e [t L(w)du— [ D(u)dC, / (1) g(Xy(u))dC,dCs
0 h(s)

t
_ ’L/J(O)e_ J§ L(s)ds— [y D(s)dCs _ /
h(t)

t s
+ / [L(s) + D(s)]e™ Js Lwdu—[f] D(u)dC., / a(u) f(X g )duds
0 h(s)

t 0
- / b(w)g(Xg(u))du + e~ Jo Llwdu=f5 D(w)dCy / b(w)g(X g(u))dCu
h(t) h(0)
t s
+ / [L(s) + D(s)]e” [t L(w)du— [ D(u)dC, / b(1)g(X y(u) )dC,dCs.
0 h(s)

Let
M ={¢:]0,00) - R | ¢ is bounded and continuous, ¢(0) = Xy},
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and define P: M — M for t > 0 by

(Po)(t) = 1p(0)e Jo L(9)ds— g D()dC: _ /

h(t)

t

0
awﬂwmw+fmmmﬁmm&/<mvwww

h(0)

t s
+ / [L(s) + D(s)]e™ J« Ldu=[; D(u)dC., / a(u) f((u))duds
0 h(s)
0

t
‘/ wwwwmwwﬁﬂwwﬁm“%/ b(u)g((u))AC,,
h(t) h(0)

t s
+ / [L(s) + D(s)]e” Ji Lw)du= [ D(w)dC, / b(u)g(¢p(u))dC,dCs.
0 h(s)

For ¢,n € M, we have

t t

a(w)|(fo)(uw) = (fn)(u)|du + /h(t) b(u)[(99)(u) = (gn)(w)|dCy < afl¢ =]

Thus, according to (3.13), P is a contraction mapping on M, and we have a bounded solution. If we have

(13-3), (3.14) and ¢(t) — 0 as t — oo, then the solution (3.12]) tends to zero. O

Example 3.5. Consider the equation

(Po)(t) — (P)(t)] < /

h(t)

dX, = [—(1.1 + Slzt)xt_r] dt + [—(1.1 + C(;t)Xt_r] dcy, (3.15)

where A, B and r are positive real numbers. It is easy to see that for r small enough and A and B large
enough, all conditions of Theorem are satisfied. Thus, every solution of (3.15)) tend to zero as t — oo.

4. A necessary and sufficient condition

In this section, a necessary and sufficient condition for the asymptotic stability of an UDDE will be

presented.
Consider the UDDE

dX; = [a(t) Xy + f(t, Xp—p)]dt + [-m(t) X + g(t, X;—r)]dC, (4.1)

in which a,m : [0,00) — R and f,g : [0,00) x G — R are continuous where G = {¢ : (—00,0] —
R, ¢ is bounded continuous} which is a Banach space with the supremum norm ||.|.

For each 8 > 0, define G(8) = {¢ € G : ||¢|| < B}. Also, given a function ¢ : R — R, define
1¥ll1s. = sup{|[¥(u)| : s <u < t}. For A > 0, a continuous function X; : (=00, A) — R is called a solution
of through (tg, ¢) € [0,00) x G if X, = ¢ and X, satisfies on [tg, A).

If f(t,¢) and g(t, ¢) are not linear functionals, we may find many fundamental difficulties in the process
of constructing a Lyapunov function. Therefore, fixed point method will be used to present a necessary and
sufficient condition about the stationary of (4.1]).

Theorem 4.1. Suppose that there exist positive constants a and L and continuous functions b,d : [0,00) —
[0,00) such that the following conditions hold.

(I) lim inf;_, oo f(f a(s)ds > —oo and liminf; . fg m(s)dCs > —o0.
(1) [ye” J3 atu)du—[ m(wdCup(s)ds < a < 1 where h(s) = max{b(s),d(s)} for 0 < s <t andt > 0.

() |f(t, &) — f(t, )] < b(E)l|¢ — bl and |g(t, ¢) — g(t, )| < d(t)|[¢ — | for all .4 € G(L) and
f(t,0) = g(t,0) = 0.



V.Roomi, H.R.Ahmadi, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 215231 227

(IV) For each € > 0 and t; > 0, there exists to > t1 such that [t > to, Xy € G(L)] implies | f(t, X;)| <
b(t)(e + | X Iy,q) and |g(t, Xe)| < d(t)(e + ([ X|l[1,0)-

Then, the zero solution of ({.1) is asymptotically stable if and only if
(V) fg a(s)ds — oo as t — oo and fg m(s)dCy — 00 as t — oo.
Proof. First, suppose that (V) holds. Let tg > 0 and find §p > 0 such that 6K + (1 + K, )aL < L where

K = sup {ei Jig (£)ds= i, m(s)dcs} ) (4.2)

Let ¢ € G(dp) be fixed and define
S={X:R->R, Xy, =¢,X, € G(L) for t > ty, Xy — 0 as t — oco}.
Then, S is a complete metric space with metric p(X,Y) = sup{|X; — Y;|}. Define P: S — S by (PX)(t) =
o(t) for t <t and e

t
(PX)(t) — (b(to)e* ftto a(s)dS*ftio m(s)dCs + / e~ f; a(u)duffst m(u)dCuf(S’ Xs)dS

to

t
n / e I3 awdu=[m@)dCug (o ¥ yaC,,

to
for t > tg. Clearly (PX): R — R is continuous with (PX)(ty) = ¢ and
t t t t t
(PX)0) < fpttle” o003 s
to

t
+ / e JEa(uyds—[! m(u)dCud(S) ||Xg ”dcv9
t

0

ot ot t +
< |¢(t0)|€7 jfo a(s)dsfjt0 m(s)dCs + / e /s a(u)ds—f; m(u)dC“h(S)”XSHdS

to

t
+ Kv/ e JLalwds— [ m(“)dc“'h(s)HXsts < Kéo +aL + KyaL < L.
to
Thus, (PX)(t) € G(L) for t > to.

Now, we show that (PX)(t) — 0 ast — oco. Let X € S and € > 0 be given. Since X; — 0 as t — o0,
there exists t; > to such that |X;| < e for all ¢ > ¢;. Since |Xy| < L for all t € R, by (IV) there is t2 > t;
such that ¢ > to implies

£t Xo)| < b(t)(e+ [ Xty ), [9(t Xo)| < d()(e+ 1 X ,.1)-
For t > t9, we have

+ t
/ o I* a(u)du— [ m(u)dc“f(S,XS>dS + / €_fs a(u)du— [ m(u)dCug(S’Xs)dCS

tU tO

to " + ¢ t "t
< [ e B g, X s [ S G s
to t2

tz " t t t t
+ / e Il [ mdACu | gg X )[dC, + [ e LA LImiCu g5 X ) 1dC,
to

ta

t2 t t t t t
< / o S a(udu— ! m(WdCup( )| X, [|ds + / o~ J1alwdu—J! m(WdCup(g)(e + X e,.5)|ds
to

ta
t2 t t t t t
I, [ A O 5| s K [ e I O ) X, ) s
to ta

< ale Ji; atwydu— [, m()dCu w)du— [, m(u)dCly

+2ae+ Kyale Jiy o + 2K ae.
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By (V), there exists t3 > to such that

Soe” ftto a(s)ds—ftt(J m(s)dCs + Le” fo (1,(:;)ds—ftt2 m(s)dCs + K,YLB_ fttz a(s)ds—f:2 m(s)dCs <

€.
Thus, for t > t3, we have

t t + t
(PX)(£)] < dge Jro @107y (304 o™ Jip @)1y m(£)AC5

t t
+ 20 + KyaLe Jip al)ds= [y m()ACs 2K e < 2(1 4+ K)ae.
Therefore, (PX)(t) — 0 as t — oo and hence (PX) € S.
To show that P is a contraction mapping, observer that for ¢ > #g

(PX)(t) — (PY)(t)] < / o T2 =[0G (5 X~ f(s, ) |d

to

t
* / e~ s atwdu—[im@dCu|g(s X} — g(s,Ys)|dCs
t

0
t
< / e JJ a(wdu—[! m(“)dc’“b(S)‘Xs —Y|ds
to

t
+ K’Y e~ f: a(u)du—f: m(u)dC,, d(S)le _ Y;lds
to

< alXy = Vil £+ Ky X, = Yi| = a(1 + K,)| X, — Vi
Thus, P has a unique fixed point X in S which is a solution of (4.1)) with ¢ € G(dy) and X; = X (to,¢) — 0
as t — oo.

To prove the asymptotic stability, we need to show that the zero solution of (4.1)) is stable. Let € > 0
(e < L) be given. Choose 6 > 0 (§ < €) such that 6K + (1 + K,)ae < e. If X; = X,(to, ¢) be a solution of
(4.1) with ||¢]| < J, then

t
X = pltg)e Iy NGy [ e et [N (s, s
to

t
n / e~ S atwdu=[Im@)dCug s x YAC,,.

to

We claim that |X;| < € for all ¢ > ¢y. Notice that |X;,| < €. If there exists t* > to such that | X+| = € and
| Xs| < € for tg < s < t*, then

t* t* t* * *
1 Xp| < de” fto a(s)ds—fto m(s)dCs _|_/ - [ a(u)du—[7 m(u)dCub(S)HXSHdS

to

+ [ e eI e g(s) X, Jac

to
* * t* * *
e iy Ny [ st )
to

*

+ KA/ e~ f; a(u)du_fst m(u)dcud(s)HXSHds
to

SOK 4+ (1+ Ky)ae <,

which contradicts the definition of ¢*. Thus, |X¢| < € for ¢t > to and the zero solution of (4.1)) is stable. This
shows that the zero solution of (4.1) is asymptotically stable if (V) holds.
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Conversely, assume that (V) does not satisfied. Then, by (I) there exists a sequence {t,}, t, — o0 as

n — 00, such that
tn tn
lim a(s)ds + lim m(s)dCs =1,

n—o0 0 n—oo 0

for some [ € R. We may choose a positive constant () satisfying

tn tn
—-Q < / a(s)ds +/ m(s)dCs < @,
0 0
forallm=1,2,.... By (II), we have
" a(uydu— [ m(u)dC
/ e~ Js" alwdu=[" m(u) vh(s)ds < a.
0
This yields

tn tn
/ ef()s a(u)du+f()s m(u)dCy b(S)dS + / efos a(u)du+f()s m(u)doud(s)dc’s
0 0

< aefot" a(u)dqufot" m(u)dCly + OéK,yefotn a(u)du+f0t" m(u)dCy

<a(l+ Kv)efotn a(u)dutfg" m(wdCu a(l+ K,)e?.

Therefore, the sequence

o0

t ‘ ] tn ; s
{ / eJ§ alu)dutf m@aCup oy 4 / eJo aw)dut foém(“)dC”d(S)dCt}
0

0 n=0

is bounded. Hence, there exists a convergent subsequence. We may assume

tn S S
lim [ eJoawdutfymdCuryoyqs 4 d(s)dCy] = 7,

n—oo 0
for some v € [0, 00) and choose a large enough positive integer & such that

l-a-—akK,

tn S S
/efo IS A b(s)ds + d(5)AC] <~

23

for all n > k. By (I), K in ([#.2) is well-defined. Now, consider the solution X; = X;(tz, ¢) with ¢(s) = do

for s < tz. Then, |X¢| < L for all t > ¢ and

t t t
|Xt| < 506_ ftl} a(s)ds—f% m(s)dCs + / e~ f: a(u)du—fst m(u)dcub(S)HXSHdS

122

t
4 / e~ Je alw)du—[m@dCu g )| X 1dCy < 60K + (1 + K)ol X |-

tg

This implies that
0o K
1X¢]| < - =\,
[1-(1+K,)a]
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for all ¢ > ;. On the other hand, for n > k, we have

n g (s)ds— [1 m(s)dCs tn n n
X, | 2506_ft15 (s)d t (s)dC _/ e_fst a(u)du— [7 m(u)dCub(S)HXsts

t
tn
N / e~ Jim alw)du=—[{" mwdCu g 5) || X || dC,
73
tn tn " ) S
g A IAC | atagdun [ muyac / oo alw)dut [ m@wdCup g g
123
tn .
) Ae? Otn a(u)du7 (;fn m(u)dCu / ef(; a(u)d’ul“rf; m(u)dCu d(S)dCs

122

1 q(s)ds— ;f” m
2

tn s s tn s s
S (5)dCs [50 K eJo a(w)du+ [ m(u)dub(s)ds ~\K eJo a(w)du+ [ m(U)dud(s)dCS
tg t;
tn _[tn m(s .
> %506_ ftl’c a(s)ds ftl_c (s)dCs > %506_2Q.

This implies X; - 0 as t — oco. Thus, condition (V) is necessary for the asymptotic stability of the zero
solution of (4.1)) and the proof is complete. O

Example 4.2. Consider the UDDE

1 2,3 1
dX, = | — VX, + Aef“’Xt_r} dt + [— VX, + E\/th_T dcy, (4.3)

where A and B are positive real numbers. It is easy to see that for A and B large enough and by choosing

5 3
b(s) = %67252 and d(s) = %+/s, there exist o € (0,1) and L such that all conditions of Theorem are
satisfied. Therefore, the zero solution of ({.3) is asymptotically stable.

5. Conclusion

In this work, we have studied the stability of four types of uncertain delay differential equations of
Volterra-Levin type. We have showed that the solutions were bounded and, with an additional condition,
the solutions tend to zero. Also, we have presented a necessary and sufficient condition for the stability of
an uncertain delay differential equation with the mean of the fixed point method.
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