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ABSTRACT. In a recent paper (CF. [I9]), we have presented the definitions
and the essential properties of the generalized topological operators g-Intg,
g-Cly : Z(Q) — Z(Q) (g-Tg-interior and g-Tq-closure operators) in a
generalized topological space Ty = (2, J5) (Jg-space). Principally, we have
shown that (g—lntg7 g—Clg) 2 x Z2(Q) — Z2(Q) x Z2(Q) is (2,0)-
grounded, (expansive, non-expansive), (idempotent, idempotent) and (N, U)-
additive. We have also shown that g-Inty : 2 (Q) — Z(Q) is finer (or,
larger, stronger) than intg : & (Q) — 2 (Q) and g-Cly : £ (Q) — Z(Q)
is coarser (or, smaller, weaker) than clg : Z(Q) — £ (). In this pa-
per, we study the commutativity of g-Inty, g-Cl; : & (Q) — £ (Q) and
Tg-sets having some (g—Intg,g—Clg)—based properties (g-B,, g-Q,-properties)
in Jg-spaces. The main results of the study are: The g-Tq-operators g-Int,
g-Cl; : 2 (Q) — Z(Q) are duals and g-P-property is preserved under their
g-Tg-operations. A Tg-set having g-B,-property is equivalent to the Tg-set or
its complement having g—Qg -property. The g—Dg—property is preserved under
the set-theoretic U-operation and g-P,-property is preserved under the set-
theoretic {U7 M, C}-operations. Finally, a T4-set having {g—‘Bg, g—QB}—pmperty
also has {94, Qg }-property.

1. INTRODUCTION

Many mathematicians have studied several kinds of ordinary and generalized
topological operators (T,, g-Tq-operators) in ordinary (a = o) and generalized
(a = g) topological spaces (T,-spaces) [1 2] 3, @, 5, ©] [7, [& O 10, 1T, 12, 13], 14
15, 16, (17, [18].

Jung and Nam [3] have used the T,-interior and ¥,-closure operators (-)°, () :
Z () — Z(Q) to establish several necessary and sufficient conditions related

2020 Mathematics Subject Classification. Primary: 54A05; Secondaries: 54A99.

Key words and phrases. Generalized topological space; generalized sets; generalized interior
operator; generalized closure operator.

(©2023 Proceedings of International Mathematical Sciences.

Submitted on 03.12.2022. Accepted on 02.05.2023.

37



38 MOHAMMAD IRSHAD KHODABOCUS AND NOOR-UL-HACQ SOOKIA

to openness and closeness properties of sets in a ,-space. Lei and Zhang [4]
have considered the T,-interior and ¥,-closure operators Int, Cl : & (Q) —
Z () in studying some topological characterizations axiomatically in J,-spaces.
Gupta and Sarma [5] have established a variety of generalized sets (g-T4-sets)
under the possible compositions of the g-Tg-interior and g-Ty-closure operators i.,
ey Q) — P(Q) (y-interior and ~y-closure operators), respectively, where
v € {a, B, 7, 0}, in Fy-spaces. Rajendiran and Thamilselvan [6] have studied the
g-T,-interior and g-T,-closure operators g's Int, g's"Cl : 2 (Q) — 2 (Q) (g*s*-
interior and g*s*-closure operators), respectively, in J,-spaces. In Fg-spaces, Tyagi
and Choudhary [7] have study stronger forms of g-Tg-interior and g-T4-closure
operators I(.y, C(y: & () — £ () while Pankajam, V. [9] has presented some
properties of the g-%g-interior and g-T4-closure operators is, ¢s : & () — £ (Q)
(6-interior and §-closure operators), respectively, to mention but a few references.

Despite these references, in regard to the study of the commutativity of T, g-% -
operators in J-spaces (a € {0, g}), the literature is, to our knowledge, almost void
of studies in this direction [I7,[16]. Levine, N. [I7] has studied the commutativity of
the T,p-interior and ¥,-closure operators int,, cl, : & (Q) — 2 (Q) in a F-space.
Staley, D. H. [16] has presented some characterizations of ordinary sets (T,-sets)
for which the ¥,-interior operator int, : & (Q) — £ () commutes with the T,-
boundary operator bd, : & () — £ (Q) in a ,-space. In general, since ¥, =
(2, T,) # (Q, Fy) = T4 by virtue of F, # J and, (intm cla) * (g—Inta, g—Cla) for
each a € {0, g}, so it seems reasonable to expect the existence of nice and interesting
results in a J-space with respect to those established by Levine, N. [17] and Staley,
D. H. [16] in a ,-space.

Having made the study of the essential properties of the g-Ty-interior and g-%g-
closure operators g-Int, g-Cl; : &2 (Q) — & (Q), respectively, in Jy-spaces one
subject of inquiry (CF. [19]), the study of the commutativity properties of these
g-T4-operators in J-spaces may be made another subject of inquiry. In this paper,
we endeavor to undertake such inquiry.

The rest of the paper is structured as thus: In SECT. [2] necessary and sufficient
preliminary notions are described in SUBSECTS and the main results are
reported in SECT. In SECT. [ the establishment of the various relationships
between these g-T4-operators are discussed in SECTS To support the work,
a nice application of the g-%4-interior and g-%4-closure operators in a J;-space is
presented in SECT. Finally, the work is concluded in SECT.

2. THEORY

2.1. Necessary Preliminaries. Asin PART I. (CF. [I9]), the standard reference
for notations and concepts is the Ph.D. Thesis of Khodabocus, M. I. [2].

Herein, 41 symbolizes the universe of discourse, fixed within the framework of
T4, §-Zq-operator theory in J,-spaces, a € {0, g}, and containing underlying sets,
underlying subsets, and so forth. By convention, the relation (ay,as,...)R 24 X
aly X -+ means a1 R, as R.ah, ... where R =€, C, D, .... The pairs (IS,I,*L) -

79 x 7% and (I19,,1%) ~ Z9. x Z7 are pairs of finite and infinite index sets [1, 2].

o0 T o0

Definition 2.1 (,-Space [1}, 2]). A J-space is a topological structure T, def

(Q, T4) in which Q C U is an underlying set and On — Tu(00)
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an a-topology satisfying the compound T-axiom:
(Z6 (@) =0) AN(T5 (Os) C O)
/\('70 (ﬂuel,’; ﬁﬂﬂ/) = mueI; o (ﬁo,u))
Ax (%) (ﬁ) /\('7;J (Uuelgo ﬁaﬂ’) = UVGI;O '% (ﬁﬁﬂj)) (Cl = 0) )

(76 (@) = 0) A (F (Go) € Oy)
/\(%(Uuelgo ﬁgﬂf) = UVGI;C T4 (ﬁg,u)) (a=g).

By assumption, the J-space is void of any ¥, g-%4-separation axioms (ordinary
and generalized separation axioms) unless otherwise stated [I, 2, 20]. If a = o
(ordinary), then Ax (Z,) stands for an o-topology (ordinary topology) and T, =
(Q,9%) = (Q,9) = T is called a J,-space (ordinary topological space) and if
a = g (generalized), then Ax(J;) stands for a g-topology (generalized topology)
and Ty = (Q, ;) is called a Jy-space (generalized topological space). If Q € Fy,
then T, is a strong Jy-space [2, 2], 22] and if %(ﬂvel; Ogv) = ﬂvel; T (O41)
for any I C I, then T, is a quasi Jy-space |2, 23]. The notations I' C €,
Oy € Ty, Ky € =T, def {%{1 . Cq () € %} and ., C T, state that I", O,
JHy and S are a Q-subset, Ty-open set, T,-closed set and T,-set, respectively
intg, clg: Z(Q) — Z(Q)

Fa > inty (S), cla (F)
interior and T4-closure operators, respectively [IL 2]. For convenience of notation,

let (2%, 77,-77) (Q) = (2 \ {0}, Z\ {0},-Z.\ {0}) ().

op,: Z(Q) — 2
Sy +—> 0py ()
called a g-operation if and only if the following statements hold:

(V5% € 2%(Q))(3(On, Ha) € T x =T)[(0pg (B) = 0) V (—op, (0) = 0)
\/(5”‘1 Cop, (ﬁ’u)) v (fu 2 —op, (%))L (2.1)

—op,: Z(Q) — Z(Q)
Fa —> 0pg ()
and for all Ty-sets Lo, Sav, Lap € P* (), the following axioms are satisfied:

~ AX. 1. (Fa S op, (0a)) V (FLa 2 —0p, (Ha)),
~ AX. 1L (0pg (Fa) S 0pg00p, (Ga)) V (m0pg (La) 2 —0pg 0m0p, (Ha)),
AX. ML (S € Fap —> 0Pg (Oa) S 0pg (Oay))
V(Zau © Fap +— 70D (Hay) 2 0P, (Haw)),
- AX. 1v. (opa(UozwJ Yu,g) - U<7=V7u op, (ﬁavg))

\/(_‘ Opa (Uo‘:u,p, yavg) 2 Uo’:l@u - Opa (‘%70)) Y
for some Ty-sets Oy, Oy, Oy, € T and Ky, Koy, Hau € T

[l 2]. The operators are the T,-

Definition 2.2 (g-Operation [1, 2]). A mapping is

where is called its complementary g-operation,

The class %, [©] & {oPa, = (0Pa,,70P,,) : v E I} C L2010 x L5 [Q] =
{Opa,u Ve Ig} X {—'Opa’l, T ve I§}7 where
<0pa7y Ve I§> = (inta, clqoint,, intqocly, clgointgocly),

<—|opa’l,: v E Ig) = <C1a, inty ocly, clgointg, intaocluointa>,
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is the class of all possible pairs of g-operators and its complementary g-operators
in the J;-space T,.

Definition 2.3 (g-T,-Sets [1L2]). Let (Ya, ﬁa,%,opa’u) EP(Q) X Ty x Ty X
Za [Q] and let the predicates

def

Po(F0:0a;000,iC) = (3(0ay0pa,) € Ta x L3 [2)) [Sa C 0Dg,, (G0)]
Qu (S Hai=0Dg,i2) = (3 (Haym0pg,) € 7T x L2 [9)) (2:2)
[Sa 2 = 0p,, (Ha)]
be Boolean-valued functions on & (Q) x (TaU~Za) x (L U L) Q] x {C,2},

then g-v-S[%Tq) & = def & g-v-0 [T, U g-v-K [Z4] is the class of all g—l/—fa—sets and,

g-0[T] Y (S Po(Fa Oniopa,i )}, (2.3)
KT Y A Qu(Fas Hai~0pari D) )

respectively, are called the classes of all g-%-open and g-%,-closed sets of category
vin‘%,.

Then, S[T,] = {y Py (yavyaQOpmo;g)}U{ya : Qu(yuayu§_‘0pu,0§2)} =
Urego,xy E[Ta] is the class of all Tq-open and Tq-closed sets in T, [1 2]. Further,

0S%) ¥ JorSEl= |  erEE]= |J ¢E[S]

veld (v,E)eIdx{0O,K} Ee{O,K}

Definition 2.4 (g-T,-Separation, g-T,-Connected [2]). A g-v-T,-separation of two
Ta-sets 0 # Ro, S0 C Ty of a Ty-space Ty = (2, Ty) is realised if and only if there
exists either (Oq¢,O4¢) € Xaers g—V—O[‘Ia] or (HKae, Hac) € Xaer; g-v-K [‘Ia]
such that:

(|_| ﬁa,xze@au%)\/( L] %Aze@au%). (24)
A=£,¢ A=¢,¢
Otherwise, Z., -4 are said to be g-v-%,-connected.

Thus, ., C T, is g-F4-connected if and only if .7, € g-Q [T,] = Uuelg g-v-Q [T4]
and g-T,-separated if and only if .7, € g-D [T,] = Uuelg g-v-D [T,] where,

00-Q [T, = {«5” C Ta: (V(Oan, Han) € g--0[Ta] x g-v-K[T])

A=€.C
- <A|—§|<ﬁ”_ )/\ﬁ(A_Lwa—fu)}}; (25)

g-v-D [T d§f {Y C %, Oa A,%,A)/\:“ € g-1-0[Ta] x g-v-K[T))
[(/\I_glcﬁax— )\/(Al_glc%h )” (2:6)
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Definition 2.5 (g-v-%,-Interior, g-v-%T,-Closure Operators [19]). In a ,-space
To=(Q,9,), the one-valued maps

g-Int, , : Z () — 2(Q) (2.7)
Sy U O,
Oa€CE™ () [Fa]
gCl,,: Z2(Q) — 2 (2.8)
Sa N Ha
Ha€CYP 1z [ Fa]
where C3% oz, [Fa] € {Oa € g-0[Ta] : Oa © Fu} and CIF o [Fa] E
{lfu € gv-K [Sa] DK 2 S } are called g-v-Tq-interior and g-v-Tq-closure oper-
ators, respectively. Then, g-1[%,] = {g Int,,: vE IO} and g-C[% def {g Cly, :

ve Ig} are the classes of all g- ‘I -interior and g-%q-closure opemtors respectively.
Definition 2.6 (g-v-%,-Vector Operator [19]). In a Fy-space T, = (2, T,), the
two-valued map
glc,, : Z (Y xZ(Q) — Z(Q)xZ(Q) (2.9)
(%, Sa) > (oInty, (Za) ,0-Cly,, (S0))

def {g Ic (g—Intuﬁu,g—Cla’V) :

is called a g-v-Tq-vector operator. Then, g-1C [T
vE Ig} is the class of all g-%,-vector opemtors

Remark. For every v € 1Y, g-Ic, , = icq e (mta, cla) if based on O [T] x K [T].
ic,: Z(Q)x2Z2(Q) @(Q) ( ) )
Then, 18 a T4-vector operator
(Zar o)+ (inta (%a) ,cla (S2)) b

in a Jy-space Ty = (Q, Ty).

2.2. Sufficient Preliminaries. The notions of T4-sets having ., g-*B,-properties
and 9, g-Q,-properties in J;-spaces are now presented.

Definition 2.7 (Complement g-%,-Operator). Let T, = (2, T4) be a T,-space.
Then, the one-valued map

0Oz, : P (Q) — P2(Q) (2.10)
ya — B%a (ya);

where Cgq, + 2 (Q) — P (Q) denotes the relative complement of its operand with
respect to By € §-S[Ta), is called a natural complement g-T,-operator on & ().

For clarity, g-Op, 4, = 9-Op, whenever Z, = 2 and g-Opy 5, = Op, o, (nat-
ural complement Tq-operator) whenever Z, € S[Zq).

Definition 2.8 (Symmetric Difference g-T,-Operator). Let Ty, = (Q, T4) be a Ty-
space. Then, the one-valued map

gSd, : Z()x 2(Q) — 2(Q) (2.11)
(Za) Sa) & — & §-Opy 5, (F4) Ug-Op, o, (%)

is called the symmetric difference g-%q-operator on & (2).
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If g-Sd, : 2 () x Z () — Z(Q) is based on Op, 5, : Z () — Z(Q),
the concept of symmetric difference Tq-operator Sdq : & () x P (Q) — Z ()
presents itself.

Definition 2.9 (g-v-3,-Property). A Tq-set Sy C Ty in a Ty-space Tq = (Q, Ty)
is said to have g-v-B,-property in T, if and only if it belongs to:

def

g-v-P[T {Fa: g-Int, , 0g-Cl,, (Fu) > g-Cl, , 0g-Int, , (La)}, (2.12)

called the class of all Tq-sets having g-v-B,-property in T,.

Then, P [T,] & def &{Fs : intgocly (L) +— clgointq (F)} is the class of all

T a-sets having P, -property in T,. By ./, € g-P [T,] def Uuelg g-v-P [%,] is meant
a Ty-set having g-*B,-property in .

Definition 2.10 (g-v-9Q_-Property). A T,-set Sy C Tq in a Ty-space Ty = (2, Ty)
is said to have g-v-Q -property in T4 if and only if it belongs to:

def

g-v-Nd [T {Fa: gInt, ,0g-Cl,, : S0 r— 0}, (2.13)

called the class of all T4-set having g-Q,-property in T,.

Then, Nd [Z,] & e &{ S+ intqocly : Sy — 0} is the class of all To-sets

having Qq-property in T,. By %, € g-Nd[%,] def Uyelo g-v-Nd [T,] is meant a
T-set having g-Q -property in T,.

3. MAIN RESULTS

The main results relative to the commutativity of the g-Tg-closure and g-Tg-
interior operators, and Tg-sets having g-P, g—Qg—properties in J-spaces are pre-
sented.

Lemma 3.1. If g-Ic, € g-IC[T] be a given pair of g-Tq-operators g-Int,, g-Cly
Z(Q) — Z(Q) and g-Op, : & () — P (Q) be the natural complement g-T -
operator of its components in a Jy-space Ty = (Q, %), then:
(VS € 2(Q)) [(g—Intg (#4) ¢ g-Op, 0 g-Cl; 0 g-Op, (-#;)
/\(g—Clg (-#5) < g-Op, o g-Int; 0 g-Op, (-7 Nl (3.1)
(

Proof. Let g-Ic, € g-IC[T] be a given and, let g- Opg : Z(Q) — Z(Q) be the
Ty

natural complement g-Tg-operator of its components in a J-space = (Q, T).
Then, for a .7, € & (Q) taken arbitrarily, it follows that
g-Op, og-Int, : g-Op, () +—— ¢-Op, U ﬁg);
O€C3 1z [8-0P4 (£2)]
g-Op, 0 g-Cl; : g-Op, (S;) +—— g—Opg( ﬂ %).

Ha€CYR . B][g Op, (F)]
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Let {0y, : (Ve i) |04, C 7)) and { g, « (Ve L) [ Ay 2 S} stand

for ng‘_lg[%] [74] C g-O [%,] and ng'fﬁ[%] [74] C g-K [T], respectively. Then,

g-Opg< U ﬁg> = g—Opg< U (G4 € ¢-Op, (%)))

b I*
ﬁgec?jo[%] [6-Opg ()] vels,

_ CQ< U (6ss < 5Op, («5”9)))

velx,

= () (Ca(Gy.) 2Ca (Ca(H)))

velx,

= N g

HyeCEP | [-Opy (F4)]

a-K[Tg
Q—Opg< ﬂ %) = g—Opg( U (Oq C g-Op, (yg)))
%GC:IZ[‘EQ] [g—Opg(yE)] vely,
_ cﬂ( () (A 2 8-Op, @%)))
velx,

= U (Ca () S Lo (Ca(A)

velx,
= U O
Oa€Cy [z, [-0P5 ()]

Since . € & () is arbitrary, it follows that, for every .%; € &7 (Q), the relations

g-Int, (/3) «— g-Op,og-Cl;0g-Op, (S),
g-Clg (S) — g-Op, 0 g-Int 0 g-Op, (%)

hold. The proof of the lemma is complete. [

Theorem 3.2. A Ty-sets Sy C Ty in a Jy-space Ty = (2, Fy) is said to have
g-Bg-property in Ty if and only if:

4 € P [Tg] «— g-Opy (F) € g-P [T]. (3.2)
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Proof. Necessity. Let 7y € g-P [T4] be a Ty-set having g-F-property in a Fy-space
Ty = (92, ). Then,
g-Int, g-Cl, 0 g-Op, (#4) — g-Int; 0 g-Cl; 0 g-Op,, (F)
= g-Op,0g-Cl; 0g-Op, 0 g-Cl; 0g-Op, ()
= g-Op,0g-Cl;og-Int, (F)
= ¢-Op,og-Int;0g-Cl, ()
= ¢-Op,og-Int, 0g-Cl; 0g-Opy 0g-Op, ()
= g-Op,0g-Op, 0g-Cl; 0g-Op, 0g-Cl; 0 g-Op, 0 g-Op, (-4)
= g-Clyog-Int; 0g-Op, (S)
Thus, it follows that
g-Int o g-Cl, (g-Op, (7)) «— g-Cl, o g-Int, (g-Op, (-75)),

and hence, g-Op, () € g-P[T,]. The condition of the theorem is, therefore,
necessary.

Sufficiency. Conversely, suppose g-Op, (-75) € g-P [T4] be a Ty-set having g-B -
property in a Jg-space Ty. Set Zy = g-Op, (). Then,

Sy — 8-0pgog-Op, (F5) «— 9-Opy (%) -

But #Z, € g-P[T,] and it in turn implies g-Op, (%) € g-P [T4]. Hence, it follows
that g-Op, (y) € g-P [T,] implies 7 € g-P [Ty]. The condition of the theorem is,
therefore, sufficient. O

Proposition 3.3. If /; C T, be a Ty-set in a Ty-space Ty = (2, Ty), then:
~ 1. S € g-P[Ty] — g-Int, (F) € g-P[T],
— 1. Yy € g-P[T] — g-Cl, (S) € ¢-P [T

Proof. 1. Let 7 € g-P [T4] be a Ty-set having g-;-property in a J-space Ty =
(Q, 7). Then,
g-Int 0 g-Cl (g-Int, (.-74)) = g-Int, 0 g-Cl o g-Int; ()

< g-Int, 0 g-Cl; o g-Int; 0 g-Op, 0 g-Op, (-;)

+— g-Int; 0 g-Op, o g-Int; 0 g-Op,, 0 g-Int ; 0 g-Op, 0 g-Op,, ()

+— g-Int; 0 g-Op, o g-Int ; 0 g-Cl; 0 g-Op, (-#4)

+— g-Int; 0 g-Op, 0 g-Cl; 0 g-Int ; 0 g-Op, (F5)

¢ g-Int; 0 g-Op, 0 g-Op, 0 g-Int 0 g-Op, o g-Int; 0 g-Op,, (F5)

+— g-Int; o g-Int; 0 g-Op, o g-Int,; 0 g-Op,, ()

< g-Int, 0 g-Cl, (S;)

«— g-Cl, o g-Int () «— g-Cl, o g-Int; (g-Int, (7))

Hence, 7 € g-P [T] implies g-Int, (75) € g-P [T4]. The proof of ITEM I. of the
proposition is complete.
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1. Suppose %, € g-P [T4] in Ty. Then,

g-Cl, o g-Int (g-Cl, (.#5)) = g-Cl, o g-Int 0 g-Cl (-7;)
< g-Cl o g-Int, 0 g-Cl, 0 g-Op, 0 g-Op, ()
+— g-Cl; 0g-Op, 0g-Cl; 0 g-Op, 0 g-Cl; 0 g-Op, 0 g-Op, ()
¢ g-Cly 0g-Opy 0 g-Cly o g-Int, © g-Opy (F5)
< g-Cl; 0 g-Op, o g-Int 0 g-Cl 0 g-Op,, (-#5)
— g-Clg o g-Opgl o g—Opg o g—Clg o g—Opg o g-Clg ° Q-Opg (yg)
¢ g-Cl; 0 g-Cly 0 g-Opg 0 g-Clg 0 g-Opy ()
< g-Clog-Int, (“%)
«— g-Intg 0 g-Cl, (#) «— g-Int, 0 g-Cl, (g-Cl, (-7;))

Hence, .7 € g-P[T,] implies g-Cl, (#;) € g-P [T,4]. The proof of ITEM 11. of the
proposition is complete. ([l

Theorem 3.4. If .73 C T, be a Ty-set of a strong Ty-space Ty = (2, Ty) such
that 7y € g-Nd [Tg] or g-Op, (F) € ¢-Nd [Tg] in Ty, then S € g-P [T,

Proof. Let .3 C Ty be a Ty-set in a strong Fy-space Ty = (Q,.7;) such that
Fp € g-Nd[Ty] or g-Op, (:Z) € g-Nd[T,] in Tq. Then:

CaSE 1. Suppose 7y € g-Nd [Ty in T,. Then, for every g-Ic; € g-IC[T],
it follows that g-Int;og-Cl, : .75 +—— (. But g-Int,og-Cl, () 2 g-Int, (A%)
and consequently, g-Inty : % — (. Since T, is a strong Jg-space, it follows,
furthermore, that g-Clj o g-Int, : .#y — 0. Therefore, g-Int; 0 g-Cl; () = 0 =
g-Cly o g-Int () and, hence, 5’ € g-P [T,

CasE 11. Suppose g-Op, () € g-Nd [T,] in Ty Then, by virtue of the above
case, g-Op, (5) € ¢-P [T4] and by virtue of the fact that g-Op, (75) € g-P [T4] is
equivalent to .75 € g-P [T, it results that g-Op, () € g-Nd [Ty] implies .7 €
g-P [Z4]. The proof of the theorem is complete. O

Theorem 3.5. Let .73 C Ty be a Ty-set in a Ty-subspace Ty = (I, Ty 1) of a
Ty-space Tg.o = (Q, Tg.0), where Typ : P (L) — Tyr ={0,NT: Oy € Tya}.
Then:

~ 1. I' € g-O[%4 o] implies g-Int, 1 (F) = g-Int,  (F5),
— 1. ' € g-K[%g o] implies g-Cl 1 (S5) = ¢-Cl;  (S)-

Proof. Let %y C Tyr be a Tg-set in a Fy-subspace Tyr = (I, Fyr) of a J-
space Tgo = (2, F4,0) and let (g-Inty 5, g-Cly 5) € g-1[Tga] X g-C [Tq,a] be a pair
of g-Ty-interior and g-Ty-closure operators g-Inty », g-Cl; 5 : Z(A) — Z(A),
respectively, where A € {Q,T'}. Then:
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1. Suppose I' € g-O [T4,o] in T4,o. Then,

gty oSy —> U Oy
oyt :U,Q]m]
= U O,
ﬁgecz\jg TEYQ][myE]
c U Oy = g-Inty o (T) =T.
ﬁgeczlfg[%n][r]

Thus, T'N g-Int, o () = g-Int, o (7). On the other hand,

gty S —> U Oy

meczf‘;[%d [Fa]

— U (0gNT)
ﬁgec;'jg[%,r} (el

— U (O0gNT)
ﬁgeczljg[%,ﬂ] ol

«— I'n < U ﬁg) =INgInt; o ().

ﬁgeczu_g[%n][%]

But I' N g-Int, , () = g-Int, o () and hence, g-Int, () = g-Int,  (S)-
1. Suppose I' € g-K [Ty o] in Ty . Then,

gCly g Sy +— ﬂ H
XQEC?;[TD’Q] 7]
N A=gCla@=T

sup
%ecg»K[%Q][FJ

N
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Consequently, I' N g-Cl ¢, (#5) = 9-Cl; o (#5). On the other hand,

gClyp: Sy — N Hy

HaO e ]

— ﬂ (HgNT)
%gec;x_lz[%yr][yg]

— ﬂ (AgNT)
Ha ec:i[‘:gyg] [Za]

— Fm( N %) =T'NgClyq ().

xgec;‘j;[%n] (L]

But I' N g-Cl, () = 9-Cl; o () and hence, g-Cl;  (#5) = ¢-Cl; o (). The
proof of the theorem is complete. ([

Theorem 3.6. Let 2, € g-O[%T,] N g-K[Ty] be a g-Ty-open-closed set and let
(LgarTa8) S Ty x Ty be a pair of Ty-sets in a Ty-space Ty = (2, ). If
(yga@"ygyﬁ) g (e@g,g—Opg ("@9)); then:

(Vo-Inty € g-1[%g]) |g-Int g (Uy—p 5-75.0) = U g-Int,, (,5”&0)]. (3.3)

o=a,8

Proof. Let 24 € g-O [T,4] N g-K [Ty be a g-Ty-open-closed set, let (S a, -7,
Ty X Ty be a pair of Ty-sets in a Fy-space Ty = (Q, F;) and, suppose (Hy o, 75,8
(,@g,g—Opg (,@g)). Then, for every .7y € {Lg.0, 4.8},

~—_— —

NN

g-Int, : S +— U Oy
ﬁgecz‘j‘é[%][yg]
C U Og = glnty(Uy—n s%a0)-
ﬁgecz‘jg[%][yg,auyg,ﬁ]

Consequently, g-Int, (Ug:aﬁyg,g) D nga’ﬁ g-Int,, (S,0)- Set 5’?9,0( =S5aNZ,
and 5’?975 = SN g—Opg (2y). Then, since (Ly,a,5,8) C (o@g,g—Opg (Qg)), it
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follows that

31-18[39] [Ua=a,,8y970] = ng‘—lg[fg] [Uaza,ﬂjgvf’]

o=a,f3
— U C;u(]%[fz U Csub ] ]
o=, o=a,f3

Therefore, C;‘fg[%] [ngaﬁyg,a} = Ug:aﬁCbub [5’9 -], as a consequence of
the condition (A, %,8) < (,@g,g-Opg (24 )) Taklng this fact into account, it
follows, moreover, that

g-Int, Ug:a,ﬁyg,a — U Oy
ﬁgec;\jg[%][yg,auyg,g]

U &

Oq eUa:a,ﬁ Ci,“,”g[gg] [“g,0]

U ( U ﬁg> = |J ety (Ho).

= sub =
o=a,f3 ﬁgng_O[Tg][LS’g,g] o=a,B

N

N

Hence, g-Inty (Uy—g 5%%.0) € Uyea g 8-Inty (#5.0). The proof of the theorem is
complete. 0

Theorem 3.7. Let Ty = (I, Jyr) be a Jy-subspace of a Ty-space Tgo =
(Q, Z4.0), where Typ + P (L) — Tyr = {0, NT : Oy € Tya}. IfT
-0 [Tyl Ng-K[Tg0] and Sy € g-Nd [Ty 0], then S3NT € g-Nd [T, r).

m

Proof. Let Tgr = (I', J3r) be a Jy-subspace of a Jy-space Tya = (2, T.0)
and, suppose I' € g-O [T5 0] N g-K [Ty 0] and 7, € g-Nd [Ty q]. Then, since I' €
0-0O[Tg.0] N g-K [T 0] implies g-Int, 1 () = g-Int, o () and g-Cly p (S) =
g-Cl, q (F), it follows that

g-Inty pog-Clyp: SNT = g-Inty gog-Cly o (S NT)
C  gntygog-Cly o (S)-

Since .7y € g-Nd[%4 0], it follows, moreover, that g-Int; 5 0g-Cl; o @ S +— 0.
Consequently, g-Int; pog-Clyr : /3 N T+ () and hence, /3, NT' € g-Nd [Ty r].
The proof of the theorem is Complete O

Theorem 3.8. In order that a Ty-set Sy C Ty in a strong Fy-space Ty = (Q, Ty)
satisfies the condition Sy € g-P [Ty], it is necessary and sufficient that there exist a
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g-Tg-open-closed set 24 € g-O [Ty] N g-K[Ty] and a Ty-set Zy € g-Nd [Ty] having
g-Qg-property such that it be expressible as:

o = (Lg —Hg) U (Z#g — 2y) . (3.4)

Proof. Sufficiency. Let /3 C T4 be a Ty-set in a strong Jy-space Ty = (12, Fy)
and let there exist 2y € g-O[%,] N g-K[T,] and #Z,; € g-Nd [T,] such that the
relation 4y = (24 — %) U (#g — Zy) holds. Clearly, (24 — Xy, %y — 24) <
(e@g,g—Opg (,@g)), implying

Czl-lg[‘zg] [(39 - %g) U (%g - 39)] = Czug[”i ][Q - % ]
0w, [Zs — 2]
Set Sy (qr) = Lo — Xy and Sy (rq) = Hg— 2. Then, g-Int, (Yg (g.;r) Y Ly, (r, q))

g-nty (F4,q.r)) U g-Inty (S (g)) - Since (L g, -%5.0r0) € (2a>8-0pg (2))
and 24 € g-O [T,4] N g-K [T], it follows that

C

gInty (S qm) = 0ty o (Fam) -
0-Cly (Zo0m) = 8Cl o, (Foan)
glnty (So0) = g-Intg 5 0p, (2,) (La.0r0)) -
0-Cly (Lo0n) = 8-Cly g0, (2,) (Lara)) -
Consequently,
g-Inty : g-Cl, () — U O,

Ta€C ez, [6-C1, (F)]

= U O,

4 ECZ"E[ ol [9‘019,99 (yﬂv(QJ'))Ug_Clg,ngpg (Qg)(yn,('w))}

- (o, U 2

0a€Cy 8 1[8-Cl 2, (Fasam)]
o U %)
Op e | [0-Cly g-opg (2) (Larmn))]
= ¢-Inty (8-Cly o, (Lo.(m) Y 8-Cly g0p, (24) (La.r0))
= glIntgog-Cly o (Zatam)
U g-Intgog-Cly s o) (2,) (Zar0))
= glnty o 09'019799 (‘y&(flﬂ“))

U g—Intgyg_Opg(gg) Og-Clg,g-Opg(fzg) (yg,(nq)) :
Thus, it follows that
g-Intyog-Cly (#) = glnty o 0g-Cly o (Zaam)

U g—Intg’g_Opg(gg) OQ-Clg,g-opg(Qg) (yg,(nq)> :
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Similarly,

g-Cl, : g-Int, () +— N Hg

2, sup
Ha€C Yz, [o-Int, (F)]

= M o

%Eciﬁi[:g] [E—Intg,_@g (ym(qw))Ug'lntg,ngPg(gg) (y”’(r’q))]

- ( N )

Ha€CT Rz 1[50t 24 (Fo.0m))]

U ( N %)
eyt 50ty g op (2) (Farn)]
= g-Cly(gInty o, (Fy.(0m) UeIntg gop (2,) (Zora))
= g-ClyogInty o (L4
U g-Clyog-Inty g0, (2, (Lo.tra)
= gCly o, ogInty o (L (qr)

U g-Clygop,(2,) © 8-t g.0p, (2,) (Lo.ra)) -

Hence, it results that

g-Clyog-Inty (#) = ¢-Cly o og-Inty o (La.(am))

U g-Cly gop,(2,) 8-ty g.0p,(2,) (Lo.tra)) -

By virtue of the relation (Yg’(q’r),yg’(m)) - (ng—Opg (Q,J))7 it is plain that
Faar) = Ly — Ly N %y and S (1,q) = 8-0py (Zy) N %y. Since 2y € g-O [T N
g-K[%T,] and Z; € g-Nd[T], it follows that 23 N Z, is a Tg-set having g-Qg-
property in £ and g-Op, (Z4)N%, is a Tg-set having g-Q4-property in g-Op, (Zy).
But .7 (q.r) = Ca, (#,) and Z, € g-Nd [Ty]. Consequently, Z; has g-J3-property
in £ and hence,

g—Clgygg og—Irl‘cm’@g (Yg’(q’r)) = g—IntgﬁB OQ‘CIQ,,@B (fg’(q,r)).

On the other hand, the statement that g-Op, (2y) N %, is a Ty-set having g-0Q-
property in g-Op, (24) implies that 7 (. 4) has g-P,-property in g-Op, (Z4) and
therefore,

8-Cly g-0p, (2,) © 8-ty g 0p_(2,) (Zo.tr0)

= g_Intg,g-Opg (24) °© g_CIE’g'OPg (24) (yg,(T,q)) ’
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When all the foregoing set-theoretic expressions are taken into account, it results
that

g-Int; 0g-Cly (#) = gInty o 0g-Cly o (Za(am)
U g—Intg’g_opg(gg) Og_Clg,g—Opg(QD) (‘Sﬂgv(T»Q))
= 0-Cly o, og-Inty o (Fy.(gm)

U -Clggop,(2,) 8-ty g 0p, (2,) (Za.0r0))
= g-Clyog-Int, (S).

Hence, g-Int, o g-Cl; (/) = g-Cl; o g-Int (-#5). The condition of the theorem is,
therefore, sufficient.

Necessity. Conversely, suppose that .7 € g-P [T4]. Then, g-Int; o g-Cl, () =
g-Clyog-Inty (F). Set g-Int;og-Cly (S) = 24 = ¢g-Cljog-Int, (#). Then,
2, € g-0[%F,] N g-K [T,], meaning that 2, is a g-Tg-open-closed set in Ty. Set
yg,(s,q) = yg - Qg and yg,(q,s) = ,@g — yg. Then,

N

g-Int, 0 g-Cl (Yg’(qu)) g-Int, o g-Cl (S) = 2g;
g-Inty 0 g-Cly (S5, (5,)) S g-Inty0g-Cly(g-Opy (24)) = g-Op, (2y) .

But 24N g-Op, (Zy) = 0 and consequently, g-Int, 0 g-Cl : 7 (5,9) — @), meaning
that 2, is a Ty-set having g-Q4-property in .7;. On the other hand,

N

g-Int 0 g-Cl, (ng(qys))
g-Int ;0 g-Cl (5”&(%5))

g-Int; 0 g-Cly (2,) = Zy;

g-Int, o g-Cl, (g-Opg (#5))

g-Op, 0 g-Cl; 0g-Op, 0 g-Cl; 0 g-Op, (-#4)
g-Opg 0 g-Cly o g-Int (Fg) = 6-Opg (Zy) -

1N

Since 23Ng-Op, (Zy) = 0 it follows, consequently, that g-Int, 0 g-Cl; : 7 (g.6) =
0, meaning that 7, is a Ty-set having g-Qq-property in 2y. Set Zg = Fy (4.5) U
Sa,(s,q)- Then,

g-Int og-Cly : Zg +—— g-Inty 0 g-Cly (S5 q.5) U Lg.(s.0))
= gnt og-Cly (ygv(qﬁs)) U g-Int 0 g-Cl (y&(s,q))
= Qupd=0,

implying that 2, € g-Nd [T,]. Having evidenced the existence of a g-% ;-open-closed
set 2y € g-O0 [T, Ng-K[T,] and a Ty-set Zy € g-Nd [T] having g-Qg-property, it
only remains to show that %y C Ty is expressible as 7y = (Zy — Zy) U (Zy — Zy).
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Observe that
Zo.ar) YL (ra)

= {2,Ng-Op, (%)} U {%Z; N g-Op, (2,)}

= {2 N 9-Opy [(25 N g-Opy (#4)) U (7 N 9-Opy (2a)) ]}

U [(20 N 6-Opg (#9)) U (74 1 8-0pg (25))] 1 3-0p, (24)}

= {24 N g-Op, (2, Ng-Op, (-#3)) Ng-Op, (73 Ng-Op, (2y)) }

U{-%s N a-Opg () }

= {2, N (8-0py (24) U ) N (3-0py (S5) U 24) }

U{#, N 8-Op, (2y) }

= {(25 N ) N (8-0p, (F5) U 24) } U {75 N g-Op, (2y) }

= (2,N ) U (FNg-Op, (2y)).
But since g-Int;og-Cl; () = 2 = ¢-Clyog-Int, () and the latter in turn
implies g-Cl, o g-Int, (g-Op, (%)) = g-Op, (24) = g-Int, 0 g-Cl, (g-Op, (), it
follows that 24 N ., = /y and 73 N g-Op, (2Z,) = 0. Consequently, 7y 4.y U

Zarg) = Lo But, Sy 4.0 U Ty (rng) = (Lo — Hg) U (g — 2,) and hence, Fg =
(24 — Zy) U (Zy — 24). The condition of the theorem is, therefore, necessary. 0O

Observe that .7y = (24 — %) U(Zy — 2y) = 8-Opg 0, (%5)Ue-Opg 5, (Zg) =
g-5d, (Qg,%g). Thus, an immediate consequence of the above theorem is the fol-
lowing corollary.

Corollary 3.9. Let .7y C T4 be a Tq-set in a strong Ty-space Ty = (Q, Ty). Then,
Sy € 6-P [%,] if and only if:
(32, € g-0 [Ty N g-K[T,]) (3%, € 9-Nd [T,]) [Fy = 9-Sd4 (24, %) ]-
(3.5)
Proposition 3.10. If ./; € g-Nd [Ty be a T4-set having g-Qg-property, then
§-Cl, (7) # O
Sy € 0P [T — o-Cly (F) £ Q. (3.6)
Proof. Let ./, € g-Nd[Ty] be a Ty-set having g-Qg-property in a strong Jg-
space Ty = (9, 7). Then, since Ty is a strong Jy-space, it follows that Q €
g-O[Ty] x g-K[Ty]. Consequently, g-Int, o0g-Cl, (2) = Q. But, 7, € g-Nd[T]
implies g-Int, o g-Cl; (/) = 0. Thus, g-Int, 0 g-Cl; (#5) = 0 # Q = g-Int, (),
implying g-Cl; (-#5) # 2. The proof of the proposition is complete. d

Proposition 3.11. If .5 C T be a Ty-set in a strong Ty-space Ty = (R, T) and
Ty be g-T4-connected, then:

Sa € gP[Tg] «— (S € -Nd[T,]) Vv (g—Opg (S,) € g-Nd [T,]). (3.7

Proof. Let %y C T4 be a Ty-set in a strong Jy-space Ty = (2, Fy) and Ty be
g-Tg-connected. Suppose .; € g-P [T,]. Then, there exist a g-%4-open-closed set
24 € -0 %3] Ng-K[T,] and a Ty-set Zy; € g-Nd [T4] having g-Qg-property such
that . be expressible as y = (Zy — Zy)U (%3 — Z4). Since the strong J;-space
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Ty is g-Tg-connected, the only g-Tg-open-closed set are the improper Tg-sets 0,
2 C %4. Consequently,

o € 9P [Ty) ¢ (25 € {0,Q}) [S = (25 — %) U (%y — 2,)].

CASE 1. Suppose 24 = (. Then .y = (0 — Zy) U(Zy — 0). But 0 — %, = () and
Ry — 0 = Hy. Therefore, Sy =0U Ry = Ay. Thus, Sy € g-Nd [T].

CASE 11. Suppose 245 = Q. Then .y = (Q— %) U (%, — ). But Q — %, =
g-Op, (#y) and Zy— 2 = (). Consequently, .7y = g-Op, (#Z4) U = g-Op, (%) and
therefore, g-Op, (/) = g-Opy 0 g-Op,, (#;) = %4. Hence, g-Op, () € g-Nd [T].
The proof of the proposition is complete. O
Lemma 3.12. If (24, %y, %) € 9-S[Ty] xg-S[Tg| x9-S[T,] be a triple of g-Ty-sets
and g-Sd,; : P (Q) x Z(Q) — Z(Q) be the symmetric difference g-Tq-operator
in a Jy-space Ty = (Q, Ty), then:

— 1. g-Sdy (24, Z4) = g-Sd (% 2;) € g-S[%,],

— 1. g-Sd,(9-Sdy (24, %), Sy) = 0-5d, (2, 5-Sd, (%4, 7)) € 9-S[Ty].

~ 1. 2, N g-Sd (%g,y) = g-Sd, (2, ﬂ%’g,o@g N.7).
Proof. Let (24, %q,-%3) € 8-S[T4] x 8-S[T4] x 9-S[T4] and, let g-Sdy : Z(Q) x
Z(Q) — Z(Q) be the symmetric difference g-Tg-operator in a Jy-space Ty =
(©2, 7). The proof that g-Sd, (%929) € g-S [ig} holds for any (24, %4) € g-S [’)’Zg] X
g-S [Tg] is first supplied. It is evident that

984, (24, Z5) = 8-O0p4 0, (%) U e-Opg 4, (2)
= (24N g-Opy (%,)) U (%4 N g-Opgy (24)) C 24 U Xy,

implying g-Sd, (,@g,%’g) C 25Uy Since 2, U Z, € g—S[‘Ig}, it follows that
g-5d, (Qg,%’g) € g—S[‘Ig]. Items I., 1I. and III. are now proved.

I. Since the order of the operands under the U-operation does not change, it
follows that

g-Sd, (‘ng@g) = g'OPg,QH (%) UG'OPQ,% (Zy)
= g'Opg,.%’g (Qg) U g'Opg,QQ (%Q) = g'Sdg (%gv QG)

Hence, g-Sd,(2y, %,) = g-Sd, (%, 2;) € 9-S[T,].
1. For any (%,.%;) € g-S[T,] x g-S[T], it is plain that 9-Opg o, (73) =
X3 N g-Op, (). Therefore,
g-Sdg (9-Sdg (24, %), -7s) {8-5d, (24, Z5) N g-Opg (75)}
{741 9-Opy (a-5dy(2y. %)) }
{Qg N E‘Opg (%g) n Q‘OPg (yg)}
{*%g n g_Opg (QB) N g_opg (yg)}
{yg N Q'Opg (e@g) N Q'OPg (%g)}
{FeNZyNHy}.
If P(2y, %y, %) = 24N g-0p,y (#Z4) N g-Op, (S4), then
0-Sdg (9-Sd, (24, %), -75) = P(24, %y, 7y) UP (%y, 24,5)
U P (S, 2y, %) U (SN 2y N Ky).

-

c C C

def
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Since g-Sd, (g-Sdg (24, Zy),S5) = 9-Sdg (Fy, 8-Sy (24, Zy) ), it follows that
9-Sdy (2, 8-8dy (7, 7)) = 0-Sdy (S = 25, 9-5d4 (2 = Zo, #y = 7))
p ('@97‘5@7 QE) up (‘797%97 ‘Qg)
P(2y, g, S3) U (2y N Ry NFy).
But by virtue of the associativity and distributive properties of the N, U-operations,
the relations P (24, Zy, %3) = P(Ly, Sy, %y), P (%y, 2y, 7y) = P (%y, S5, 2y),
P (S, 2y, %y) = P (S, Xy, 2y), and Sy N 2Ly N Ay = 24 N Ky NS hold. Thus,
g-Sdg (9-Sd, (2, %), -75) = 8-Sy (24, 9-Sd, (%4, 7)) € 9-S[T,].
Il. Smce the relation g-Opg 4 ( a) = Z4Ng-Op,, (F4) holds for any (7, 7)) €
g- S[ ] X g- S[ ] it results that
25N Q‘Sdg (‘@97 yg) = 24N (g‘OPg,%g (S U Q‘Opg,fg (%g))
= (25N g-0pg 4, (7)) U (25N 9-0pg 5, (%))
= (24N (%3N 8-0py (H))) U (2N (S Ng-Opg (%))
= ((25N%y) Ng-Opy (F4)) U ((24 N F,) Ng-Opy (%))
= G‘Opg,,@gmﬂg (yg) U E‘Opg,,ﬁzgmyg (%g)
= §-8d, (24 N %y, 25N .T).
Hence, 24 N g-Sd, (,%’g,yg) = g-5d, (Qg NZy, 24 N Yg) € g—S[‘Ig}. The proof of

the lemma is complete. ([

Theorem 3.13. If S51, g2, .., Loo € P[] are 0 > 1 Ty-sets having
g-B,-property in a strong Ty-space Ty = (2, Ty), then ﬂuel* v € 0-P[Tg].

(-

Proof. Let S41, S4,2, -y 4,0 € 9-P [‘IQ] be 0 > 1 Ty-sets having g-*P,-property
in a strong Jy-space Ty = (Q, ). Then, since S 1, S52, -+ Fgo € §-P [Sg},
there exist 0 > 1 g-Tg-open-closed sets 21, Zg2, ..., Zg.o € -0 [Ty N g-K[T,]
and 0 > 1 Ty-sets #g,1, g2, - - -, Zg,0 € -Nd [T4] having g-Q4-property such that

Sg1 = g'Sdg(gﬂ,la%EJ)’
Fe2 = g—Sdg (99,2,%9’2), N g—Sdg (Qg,g,%g’a).

For an arbitrary pair (v,u) € I x I}, set 250, = Zaw NV Lo, Vg =
Low N By and Zy () = Hgw N Hg - Then,

Faw N Fgpn = FauNg-Sdg (gmu)%g,u)

= §-Sdy (S N Ly, Lo N Ry p1)

= g-5d, [G‘Sd (gg V?‘%%V) N g, 8-5d4 (Qg,m%gﬂ/) ﬂ%g,u]

= -8y [0-8d, (L, #a.(1)» 854 (W4 (000 P (v

= 054y {2y (1), -5y [ 5,000 8-5dg (W00 v ] }-
But, Zg.., Zg,, € g-Nd [T,] implies Zg () € 6-Nd [Tg], (Lg,0, Zg.u) € (8-0 [T4]N
0-K[Tg]) x g-Nd [T4] implies #4 (., € ¢-Nd[Ty] and, 25, 2,5, € g-O[Tg N
g-K[T,] implies 2, (.., € g- O[ o) N -K[Ty]. Thus, g-Sdy (#4,v.u)> Za,(v)) €
g-Nd [T,], implying g-Sd [7/ ()5 8-5d (%’SV’M),%&(V’M))] %g,(y’ﬂ) € g-Nd [T,].
Therefore, Sy, N Sy = 0- Sdg(,@g7(u7u),%g7(y7u)), where 2y () € g-O[% ] N
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g-K[T4] and *@g,(wu) € g-Nd[%,], and consequently, %, N %, € ¢-P[T,] for
any (v,u) € I; x I%. Hence, (), c; Lgw € 8-P[T4]. The proof of the theorem is
complete. ([

Proposition 3.14. If {7, C Ty : v € I} be a collection of 0 > 1 Ty-sets each
of which having g-B 4-property in a strong Ty-space Ty = (Q, Ty), then U, cr- Lo
has also g-*B,-property in Ty:

Noer: (Lo € 6P [Ty]) — U Zov € 0P [Ty (3.8)
velx

Proof. Let 41, Y42, -+, Sg.0 € 8-P[T4] be 0 > 1 Ty-sets having g-;-property
in a strong Jg-space Ty = (2, 7). Then, since .#; = g-Op,0g-Op, () for
any Tg-set S C Ty, it follows that 7 , U 7, = g-Op, 0 g-Opy (H40 U S ) =
g-Op, (9-Opg (F4.) N g-Op, (L4,u)) for any arbitrary pair (v, p) € I} x I}. But,
0-Op, (F4.v), 8-Op, (f@,) € g-P [Z4] and therefore, g-Op, (-75,,)Ng-Op, (Yg,ﬁ) €
g-P [Ty]. Set g-Op,(7y) = g-Op, (F4,,) Ng-Op, (Fg,u). Then, since g-Op, (-7;) €
g-P [T4] is equivalent to g-Op, o g-Op, (jg) € g-P[T,] and, the relation .7, U
o = 8-0py 0 g-Op, (5’?9) holds, it follows that ., U.%; , € g-P [T4]. The proof
of the proposition is complete. (I

Theorem 3.15. Let %y C %, be a Ty-set in a Ty-space Ty = (Q, Ty). If S has
g-PBy-property in Ty, then it has also Py-property in Tq:

(S CZ)[Fa € P [T — F €P[T]. (3.9)
Proof. Let #; € g-P[Ty] be a Ty-set having g-P-property in a Fy-space Ty =
(0, 7). Then, it satisfies the relation g-Int; o g-Cl; () <— g-Cl; o g-Int ().
Since (intq (-%3) ,8-Cly () C (g—Intg (), clg (F)), it follows that
intg ocly () 2 intg 0 g-Cly (F) € g-Int, 0 g-Cl, (F5) ,
clgointy () C clgog-Int, () 2 g-Clyog-Int, (F).
Consequently,
intg 0 g-Cly (S) Ng-Int 0 g-Cl; () = intgog-Cly (F)
= intgo0g-Cl (S) Nclgog-Int, (),
implying clg o g-Int () = intg ocly (F). But, clgog-Int, (F) Nelgointy (F) =
clgointg (/) and intg o g-Cly () Nintgocly () = intgog-Cly (F). Conse-
quently, it results that intg o g-Cl; (75) = clgointg (-#) which, in turn, implies
clgog-Inty () = clgointy (). Therefore, intg o cly (#;) = clg ointg (), mean-

ing that ., has also P -property in T,. Hence, /5 € P[Ty]. The proof of the
theorem is complete. O

Proposition 3.16. If {#;, C Ty : v € I:} be a collection of ¢ > 1 T4-sets having
g-Qq-property in a strong Ty-space Ty = (Q, Ty), then U, 1. S50 has also g-Qgq-
property in Ty:

Noer: (Fow € 8NA[T]) — | Fo0 € 0-Nd[T]. (3.10)

velx
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Proof. Let {F., € ¢-Nd[T,] : v € I} be a collection of o > 1 Ty-sets having
g-Qg-property in a Jg-space Tg = (€2,.7). Suppose A,c;. (F4 € g-Nd[T4])
implies J, ¢« 7a,v € 8-Nd [T,] is an untrue logical statement. Then, A, ;. (S5 €
g-Nd [Ty]) is true and g-Intg o g-Cly : U, ;- S, — 0 is untrue. Thus, to prove
the proposition, it suffices to prove that |J,¢ . #5 ¢ 9-Nd [T4] is a contradiction.
For arbitrary (v, pu (v)) € I5x I}, such that I*(V = I\{v}, set 5 ) = FawU
Sg.u(v)s Where {5’9,1,,5’97#(1,)} C ¢-Nd[Ty]. Since g-Int,og-Cl, (5’97(1,,#(1,))) C
g—Clg (yg,(u,u(u))) = g—Clg (jﬂg)l,) U g—Clg (yg”u(,,)), it follows that
g-Intq © g-Cly (S, (wu(v))) N 8-0Pg © 8-Cly (L))

S 0-Cly (o, n0) N 8-0pg 0 8-Cly (Lo )

= g_CIQ (‘Sﬂg U) N g_Opg 09_01 (yg u(l/)) c 9_019 (‘Sﬂg,u) .
Thus, for arbitrary (v, u(v)) € I x I,y such that I}, =I5\ {v}, it follows that

o(v) o(v
g-Intg [g-Inty 0 g-Cly (S5, (,uv)) N 8-Opg 0 8-Cly (S 0]
C g-Inty 0 g-Cly (F,.) = 0.

Since T, is a strong J;-space, it results that

g-Intg 0 g-Clg (S5, (v.u(v))) N 8-0Pg © 8-Clg (S ) = 0,
and therefore, g-Inty o g-Cly(-%y,vu(v))) € 8-Cly (Fg.ur))- On the other hand,
since g-Int; o g-Cl, (L. (wuv))) € 8-0[Ty], it follows that

g-Intg © g-Cly (S5, () € oIty 0 9-Cly (Sgu0)) =0,
Thus, 4 ) € 8-Nd[Ty] holds for arbitrary (v,u(v)) € I} x I}

o(v) such that
1oy =15 \ {v} and hence, UVGI* ov € 8-Nd[T4]. The relation Uyel; S o ¢

g-Nd [T] is therefore a contradiction. The proof of the proposition is complete. O
Theorem 3.17. Let /; C Ty be a Ty-set in a strong Tg-space Ty = (Q, Ty). If
Ty s a Tg-set having g-Qg-property in Ty, then it has also Qg-property in Ty:

(S CTy)[La € ¢NA[Ty] +— S € Nd[T]]. (3.11)
Proof. Let .7y € g-Nd [T,] be a Ty-set having g-Q -property in a strong J-space
Ty = (2,.7,). Suppose .7y € Nd [T ] implies .75 € g-Nd [T4] is an untrue log-
ical statement. Then, .7, € Nd[%,] is true and g-Int;jog-Cly : S +— 0 is
untrue. Thus, to prove the theorem, it suffices to prove that .%; ¢ g-Nd[T]
is a contradiction. Since g-Intgog-Cly (#) C g-Intyocly (), it follows that
g-Intg 0 g-Cl; (F) Ng-Int, ocly (F) C cl (#4)- Consequently,

intg [g-Int, 0 g-Cl (F) Ng-Int ocly (F)] C intgocly (F).
Since .7y € Nd [%,] and Ty is a strong Jg-space, it follows that intgoclg : .75 — 0
and therefore, g-Int ; o g-Cl; (/5)Ng-Int o cly (#) = 0. Since g-Int, 0 g-Cl, (F) C
g-Int, ocly (F), it results that
g-Int, 0 g-Cl (F) = g-Int; 0 g-Cl, (F) N g-Inty ocly () =0,

implying g-Int, 0 g-Cl; : 75 —— 0. Hence, ./, € g-Nd[Z,]. The relation .7 ¢
g-Nd [T] is therefore a contradiction. The proof of the theorem is complete. O

The important remark given below ends the present section.
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Remark. In a Jg-space Ty = (Q, Ty), the converse of the following statements
with respect to some Tg-set Sy C Ty are in general untrue:

— 1. S € g-P[Ty] — g-Int, (F) € g-P[T],

— 1. Yy € g-P[T] — g-Cl (S) € ¢-P [T,

~ 1L (S € g-Nd[Ty]) V (5-Op, (7)) € g-Nd [T]) — 7 € g-P [Ty].
Because, in the event that Ty = (Q, 7) = (R, Zgr) = Tgr and Sy = Q (Q and
R, respectively, denote the sets of rational and real numbers, where R D Q), the
converse of ITEMS I.,11. and 111., reading

~1v. Q€ g-P[Tyr]| +— g-Int, (Q) € g-P[Tyr),

V. Qe g-P[Tyr] «— g-Cl, (Q) € ¢-P[Tyz),

- VL. (Q e g-Nd[Tgr]) V (5-Op, (Q) € g-Nd [Ty r]) +— Q € g-P [Ty k],
respectively, are all untrue. In fact, every Jy-open set Oy € Jyr contains both
points £ € Q and ¢ € R\ Q. Consequently, there are no g-Ty-interior points
of Q. Therefore, g-Int, (Q) = 0 and g-Cl,; (Q) = R and thus, g-P [’)’ZQ’R] SR =
g-Cl, (R) = g-Inty0g-Cly (Q) # g-Cl og-Int, (Q) = g-Cl, (0) = 0 € g-P[Tyr);
(Q,g—Opg (Q)) ¢ g—Nd[‘Ig)R] X g—Nd[‘Ig)R] In ITEMS 1V., V. and VI., the con-
sequents Q € g-P[Tyr], Q € g-P[Tyr| and (Q € g-Nd[Tyr]) V (g—Opg Q) €
g-Nd [‘IQ,R]) are all untrue and on the other hand, their antecedents g-Int, (Q) €
o-P[Tyr], g-Cl, (Q) € g-P [Tar] and Q € g-P[Tyr] are all true. Consequently,
ITEMS 1v., V. and VI. are all untrue statements and hence, the converse of
ITEMS 1., 11. and 1I. are untrue statements. In addition, since (Q, g-Op, (Q)) ¢
g-Nd[Tgr| x g-Nd [Ty r] it follows that, for some Ty-set .Sy C Ty, the condition
9-Op, (F) € g-Nd [Ty] can be satisfied without the condition /3 € g-Nd [T4] being
satisfied, though Oy N g-Opyog-Cly (Fy) # 0 for every Oy € g-O[Ty] is a conse-
quence of Sy € g-Nd [T,].

4. DISCUSSION

4.1. Categorical Classifications. Having adopted a categorical approach in the
classifications of Ty-sets with {g-PB,, 9-B, }-property, the twofold purposes here
are, firstly, to establish the various relationships amongst the classes of T,-sets
with g-B,, g-Q,-properties, a € {0, g}, in a Fy-space Ty, and secondly, to illustrate
them through diagrams.

In a J;-space Ty, since 7, € g-P[T,] implies \/uelg (Ya € g-v-P [Ta]), it fol-
lows that, g-B, «— g-v-B, for each v € I3. Therefore, g-0-B, — g-1-B, —
g-3-P, +— g-2-B,. But, g-v-P, «— g-v-P, for each v € IY. Hence, Eq. (4.1)
present itself which may well be called g-*B,-property diagram.

g“?o A 9“130 A g_mo A g_ma

I 1 1 1

0B, — olP, — ¢3P, «— g-2-B,

| ! | | )

g'o_f‘pg — 9‘1'2139 — 9_3_;‘139 — 9'2_1;9

| | | |

g_mg A g_mg — 9‘%9 A g_mg
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In terms of the class {g-v-P[T.] : v € I3}, Fic. [1| present itself which may well
be called g-3,-class diagram.

g-P [T,]
FIGURE 1. Relationships: g-B,-class diagram in the Jg-space T.

In T,, since Su € g-Q[Ta] implies V¢ (S € g-v-Q[Zd]), it follows that,
-9, «— g-v-Q, for every v € I{. Therefore, g-0-Q, — g-1-Q, — ¢-3-Q, «—
g-2-Q,. But, g-v-Q, — g-v-Q, for each v € Ij. Thus, EQ. present itself
which may well be called g-Q-property diagram.

g'Qo — g_Qa — g'Do A g_Qo

i I I I

g-0-Q, — g¢-1-Q, — ¢39, «— g2-9,

| ! | ! 12

¢-0-Q, — g¢g1-Q, — ¢392, < 29

| | | |

9, <«— g9, +— g9, <+ g9

In terms of the class {g—l/—Nd [Za]: v e Ig“}, F1a. |2 present itself which may well
be called g-Q,-class diagram.

In T,, since .S € ¢g-Nd[T,], S4 € g-P[T4] and ¥, € Nd[T,] imply .7, €
0-P[%4], S € P[Z4] and S € g-Nd[%,], respectively, it follows that Q, —
-9, — ¢-P, — B, in Ty, Finally, S, € Nd[T,] and 7, € g-Nd[T,] imply
Za € Nd [Ty and .7, € g-Nd [T], respectively, and, %, € P[] and 4, € g-P [T,]
imply ., € P[%,] and ., € g-P [T,], respectively. Altogether, EQ. (4.3) present
itself which may well be called (‘Ba, 9-L.; Qa, g-Qu) -properties diagram.

2 — 2, — B — B,
[ i
Qy — o9, — P, — B,

In terms of the class {Nd[Tq],P[Ta],9-Nd [To], g-P [Ta]}, FIG. [3| present itself

which may well be called (‘Bu, 9-Bo; Qa, Q-Qa) -classes diagram.
As in our previous works [I, 2, 19, 20], the manner we have positioned the

arrows in the g-B, 3-Qq, (Ba» 5-Ba; Qa, 9-9Q,) -properties diagrams (Eqs (4.1)),
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g-Nd [T,]

g-Nd [T]
FIGURE 2. Relationships: g-Q,-property diagram in the J;-space Ty.

Nd[§,] =—»— g¢g-Nd[T,| —>»— g-P[T,] —>— P[T,]

Nd[Ty] —— ¢Nd[T] —>— gP[T] —>— P[3

FIGURE 3. Relationships: (‘Ba,g—‘pa;ﬂmg-ﬂu) -classes diagram
in the Jg-space Ty.

|i 1) and the g-*B,, 9-Q,, (‘Ba,g—‘Ba;Qa,g—Qa)—classes diagrams (FIGS
3) is solely to stress that, in general, the implications in EQs (4.1)—(4.3) and FiGs
[[M3] are irreversible.

4.2. A Nice Application. It is the purpose of this section to reveal through a
nice application some characterizations on the commutativity of the g-%4-interior
and g-T4-closure operators, and to give some other characterizations associated
with Tg-sets having g-FB;, g-Qg-properties in a Fy-space. Consider the Jy-space
Ty = (2, Fy), where Q = {C,, D VE Ig} and is topologized by the choice:

%(Q) = {@7{<l}a{gl7<37<5}59} = {ﬁg,laﬁg,Qaﬁgﬁ?ﬁg,ﬁl}; (44)
_‘% (Q) = {Q7{C27C3,C47C5}7{C27C4}a®} = {%,1a%,2)%737%,4}'(4'5)

For convenience of notation, let
where Zg,v,u) € & (Q2) denotes a Tg-set labeled v € 17, 45y and containing

JTS Igard(m elements. Then, Zg 10y = 0, ..., Zg(vp) = {Cl,Cg,...,C#}, cel
'%g,(32,5) - Q

For Zy € & (Q) such that card (#4) € {0,5}, let Zy (1,0) = 0 and Zy (32,5) = L.
For Z, € & (1) such that card (%,) € {1,4}, let %, 2,1) = {C1}, Zg,31) = {C2}s
Rq,11) = G}, £y, 5,1) = {Ca}, and Xy 6,1y = {(5}; Xy, 27,40 = {C15C2, (3, Cat,

%g,(28,4) = {C27437<47C5}7 e%97(2974) = {<17C33<47C5}7 %g,(30,4) = {C1,427C37C5}7
and %y (31,4) = {C1,¢2,C, (5} For Z3 € &2 (Q) such that card (%) € {2,3}, let
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Ky, 12) = {61, G}y Zg3.2) = 161,83 Zay02) = {C1, G}y Zg102) = 161,65}
Hya1,2) = G2 G} Xy 2,2) = G2 G}y Xy 32) = G2, G}y Zg1a,2) = 1G5 Gty
Kq,(152) = 13,5}, and Zg (16,2) = {Ca, (5} Py 17,3) = 1€1,62,C3}, Zg,(18,3) =
{C1, GGty Zyg,10,3) = 161,805 G5}y Zgy20,3) = {C1,C2, G}y Zgy21,3) = {€1,C2, 51,
Rg,(22,3) = 1€1,C3,C5}, Zyg,(23,3) = 1C2,C3,Ca}, Zyg,(24,3) = 1C2,C3,(5}, Zyg,(25,3) =
{¢3, ¢, G5}y and Zy (26,3) = {¢2,Ca, G5} Then,

intg(%gy(v,u)) gg—Intg(%M,,#)) = Ay, (4.7)
= 0-Cly(Zyv) C lo(Zg, ()

for every (v,u) € I:ard(@(ﬂ)) X Igard(ﬂ). Consequently,

g-Cly 0 g-Inty (% (v.)) = P (v) = 8- Ity 0 8-Clg (Zg (1)) (4.8)

for every (v, 1) € I7, 4 2 () % Igard(Q)' Introduce Jig = IF U(I2 \ I3)U (I35 \ ITo) U
(£36 \ I32) U (I35 \ I37). Then,

clgointy (Zy, () = 0 = intg o clg(Zg,v1)), (4.9)
clg ointg (%g,(ém)) =} =intg ocly (%g,(&n))

From Eq. ([4.8), it follows that g-Inty, g-Cly : & (Q) — & (Q), respectively, do
commute. Thus, g-Cljog-Int; : & (Q) — £ (Q) is both coarser and finer (or,
smaller and larger, weaker and stronger) than g-Int;og-Cl; : & (Q2) — 2 ().
Consequently, Zy € g-P [T,] for any Z; € & (). Furthermore, it is easily checked
from EqQ. that, Z; € g-Nd[T;] — %4 € g-P[T,] is untrue if and only if
Ry € 9-Nd [T4] is true and Z, € g-P [T,] is untrue.

From EqQ. 7 both Zy (1) € Nd [T4] for every (v, 1) € J35 % I and %y (5.,) €
Nd [T,] for every (d,n) € (I:ard(y(m)\Jgg) xISard(Q) are easily checked. Moreover, it
results from EQs , that, Zy (v,,) € Nd [Ty] is true and % (,,,,) € 9-Nd [T]
is untrue for every (v,p) € (J3g \ I7) x I. This confirms the statement that,
Ry € g-Nd [Ty «— Xy € Nd[T] is untrue if and only if Z; € Nd [T,] is true
and Z4 € g-Nd [T,] is untrue. Observing that, for every (v, p) € Jig x I and every
(6,m) € (I:ard(g(ﬂ)) \ J35) X Igard(fz)v the relations

0 = clg ointg (Zy (1)) C g-Cl; o g-Int,, (Zg, )

= g-Inty 0 g-Cly (Zg (v,)) 2 intg o cly(Zy () =0,
intg o cly(Zg,(5,n)) = Q@ 2 g-Inty 0 g-Cly (Zg (5,m))

= g-Cly o g-Inty (Zy,(5,7)) C Q= clgointy(Zg,5.))

respectively, hold, of which the first relation is the dual of the second, and con-
versely, it follows that the logical statement %y € g-P[T,] — %, € P[T ] is
satisfied for any #Z, € & (Q).

5. CONCLUSION

In a recent paper (CF. [19]), we defined and studied the essential properties
of g-Tg-interior and g-T4-closure operators in J;-spaces. We showed in a J-
space that (g-Inty, g-Cly) : 22 (Q) x Z(Q) — 2 (Q) x 2 (Q) is (2, 0)-grounded,
(expansive, non-expansive), (idempotent, idempotent) and (N, U)-additive. We also
showed in a Jj-space that g-Int, : & () — Z(Q) is finer (or, larger, stronger)
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than inty : & () — £ (Q) and g-Cl; : & () — Z (Q) is coarser (or, smaller,
weaker) than clg : & (Q) — Z(Q).

In this paper, we have studied in 7;-spaces the commutativity of g-Inty, g-Cl :
Z(Q) — Z(Q) and Ty-sets having some (g—Intg, g—Clg)—based properties called
9-B,, 9-Q,-properties. We have shown that the g-Tg-operators g-Inty, g-Clj :
Z(Q) — Z(Q) are duals and g-B,-property is preserved under their g-T,-
operations. We have also shown that a Tg-set having g--property is equivalent to
the Ty-set or its complement having g-Q-property. The g—Qg—property is preserved
under the set-theoretic U-operation and g-*B -property is preserved under the set-
theoretic {U, n, E}-opemtions. Finally, a T y-set having { Py g—Dg}-property also
has {4, Qg }-property.

An interestingly promising avenue for future research arises if the theorization
of g-T4-interior and g-Ty-closure operators of mixed categories in Jy-spaces be
made a new subject of inquiry. For instance, for some pair (v,u) € I3 x I3
such that v # pu, to study the g- (v, u)-Ty-interior and g- (v, p)-Tq-closure op-
erators g-Inty ., g-Cl; ,, + P () — () respectively, in Fy-spaces, where
g-Inty ,, + Sy — g-Inty ,, () describes a type of collection of points inte-
rior in %y and interiorness are characterized by g- (v, p)-T4-open sets belong-
ing to the class {0y = Oy, U Oy, :+ (Og.,04,) € gv-0[T,] x g-p-0[Tg] };
g-Cly ,,, + 5 — g-Cly ,,, () describes a type of collection of points close to .7
and closeness are characterized by g- (v, u)-T4-closed sets belonging to the class
{y = Ay N Ayt (Hgw, Hyu) € g-0-K[Tg] x g--K[T4]}. Such a study is
what we thought would be worth considering, and the discussion of this paper ends
here.
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