GENERALIZED TOPOLOGICAL OPERATOR THEORY IN GENERALIZED TOPOLOGICAL SPACES
 PART II. GENERALIZED INTERIOR AND GENERALIZED CLOSURE

MOHAMMAD IRSHAD KHODABOCUS* AND NOOR-UL-HACQ SOOKIA**
*DEPARTMENT OF EMERGING TECHNOLOGIES, FACULTY OF SUSTAINABLE
DEVELOPMENT AND ENGINEERING, UNIVERSITÉ DES MASCAREIGNES, ROSE HILL CAMPUS, MAURITIUS. ORCID NUMBER: 0000-0003-2252-4342
**DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF
MAURITIUS, RÉDUIT, MAURITIUS. ORCID NUMBER: 0000-0002-3155-0473

Abstract

In a recent paper (CF. [19), we have presented the definitions and the essential properties of the generalized topological operators \mathfrak{g} - $\mathrm{Int}_{\mathfrak{g}}$, $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)\left(\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}\right.$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closure operators) in a generalized topological space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)\left(\mathscr{T}_{\mathfrak{g}}\right.$-space $)$. Principally, we have shown that $\left(\mathfrak{g}\right.$-Int $\left.\mathfrak{g}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\right): \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$ is (Ω, \emptyset) grounded, (expansive, non-expansive), (idempotent, idempotent) and (\cap, \cup) additive. We have also shown that $\mathfrak{g}-$ Int $_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is finer (or, larger, stronger $)$ than $\operatorname{int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is coarser (or, smaller, weaker) than $\mathrm{cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$. In this paper, we study the commutativity of \mathfrak{g} - Int $_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathfrak{T}_{\mathfrak{g}}$-sets having some $\left(\mathfrak{g}\right.$ - $\left.\operatorname{Int}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\right)$-based properties $\left(\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}, \mathfrak{g}\right.$ - $\mathfrak{Q}_{\mathfrak{g}}$-properties $)$ in $\mathscr{T}_{\mathfrak{g}}$-spaces. The main results of the study are: The \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-operators \mathfrak{g} - $\mathrm{Int}_{\mathfrak{g}}$, $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ are duals and $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property is preserved under their $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-operations. A $\mathfrak{T}_{\mathfrak{g}}$-set having $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property is equivalent to the $\mathfrak{T}_{\mathfrak{g}}$-set or its complement having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property. The $\mathfrak{g}-\mathfrak{Q}_{\mathfrak{g}}$-property is preserved under the set-theoretic \cup-operation and $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property is preserved under the settheoretic $\{\cup, \cap, C\}$-operations. Finally, a $\mathfrak{T}_{\mathfrak{g}}$-set having $\left\{\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}, \mathfrak{g}\right.$ - $\left.\mathfrak{Q}_{\mathfrak{g}}\right\}$-property also has $\left\{\mathfrak{P}_{\mathfrak{g}}, \mathfrak{Q}_{\mathfrak{g}}\right\}$-property.

1. Introduction

Many mathematicians have studied several kinds of ordinary and generalized topological operators ($\mathfrak{T}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-operators) in ordinary $(\mathfrak{a}=\mathfrak{o})$ and generalized $(\mathfrak{a}=\mathfrak{g})$ topological spaces $\left(\mathscr{T}_{\mathfrak{a}}\right.$-spaces $)$ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 .

Jung and Nam $\left[3\right.$ have used the $\mathfrak{T}_{\mathfrak{0}}$-interior and $\mathfrak{T}_{\mathfrak{0}}$-closure operators $(\cdot)^{\circ},(\cdot)$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ to establish several necessary and sufficient conditions related

[^0]to openness and closeness properties of sets in a $\mathscr{T}_{\mathfrak{o}}$-space. Lei and Zhang 4 . have considered the $\mathfrak{T}_{\mathfrak{o}}$-interior and $\mathfrak{T}_{\mathfrak{o}}$-closure operators Int, $\mathbf{C l}: \mathscr{P}(\Omega) \longrightarrow$ $\mathscr{P}(\Omega)$ in studying some topological characterizations axiomatically in \mathscr{T}_{o}-spaces. Gupta and Sarma [5] have established a variety of generalized sets (\mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-sets) under the possible compositions of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closure operators i_{γ}, $c_{\gamma}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)(\gamma$-interior and γ-closure operators $)$, respectively, where $\gamma \in\{\alpha, \beta, \pi, \sigma\}$, in $\mathscr{T}_{\mathfrak{g}}$-spaces. Rajendiran and Thamilselvan 6 have studied the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{o}}$-closure operators $\mathrm{g}^{*} \mathrm{~s}^{*}$ Int, $\mathrm{g}^{*} \mathrm{~s}^{*} \mathrm{Cl}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)\left(g^{*} s^{*}\right.$ interior and $g^{*} s^{*}$-closure operators), respectively, in \mathscr{T}_{0}-spaces. In $\mathscr{T}_{\mathfrak{g}}$-spaces, Tyagi and Choudhary [7] have study stronger forms of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-interior and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-closure operators $I_{(\cdot)}, C_{(\cdot)}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ while Pankajam, V. 9 has presented some properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closure operators $\mathrm{i}_{\delta}, \mathrm{c}_{\delta}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ (δ-interior and δ-closure operators), respectively, to mention but a few references.

Despite these references, in regard to the study of the commutativity of $\mathfrak{T}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$ operators in $\mathscr{T}_{\mathfrak{a}}$-spaces $(\mathfrak{a} \in\{\mathfrak{o}, \mathfrak{g}\})$, the literature is, to our knowledge, almost void of studies in this direction [17, 16]. Levine, N. [17] has studied the commutativity of the $\mathfrak{T}_{\mathfrak{o}}$-interior and $\mathfrak{T}_{\mathfrak{o}}$-closure operators int ${ }_{\mathfrak{o}}, \mathrm{cl}_{\mathfrak{o}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{a}}$-space. Staley, D. H. [16] has presented some characterizations of ordinary sets ($\mathfrak{T}_{\mathfrak{o}}$-sets) for which the $\mathfrak{T}_{\mathfrak{o}}$-interior operator int $_{\mathfrak{o}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ commutes with the $\mathfrak{T}_{\mathfrak{0}}$ boundary operator $\operatorname{bd}_{\mathfrak{o}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a \mathscr{T}_{0}-space. In general, since $\mathfrak{T}_{\mathfrak{o}}=$ $\left(\Omega, \mathscr{T}_{\mathfrak{o}}\right) \neq\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)=\mathfrak{T}_{\mathfrak{g}}$ by virtue of $\mathscr{T}_{\mathfrak{o}} \neq \mathscr{T}_{\mathfrak{g}}$ and, $\left(\right.$ int $\left._{\mathfrak{a}}, \mathrm{cl}_{\mathfrak{a}}\right) \neq\left(\mathfrak{g}\right.$-Int $\operatorname{la}_{\mathfrak{a}}, \mathfrak{g}$-Cl $\left.\mathrm{l}_{\mathfrak{a}}\right)$ for each $\mathfrak{a} \in\{\mathfrak{o}, \mathfrak{g}\}$, so it seems reasonable to expect the existence of nice and interesting results in a $\mathscr{T}_{\mathfrak{g}}$-space with respect to those established by Levine, N. [17] and Staley, D. H. [16] in a \mathscr{T}_{o}-space.

Having made the study of the essential properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-interior and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ closure operators \mathfrak{g} - Int $_{\mathfrak{g}}, \mathfrak{g}$ - $\mathrm{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, in $\mathscr{T}_{\mathfrak{g}}$-spaces one subject of inquiry (CF. [19]), the study of the commutativity properties of these \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-operators in $\mathscr{T}_{\mathfrak{g}}$-spaces may be made another subject of inquiry. In this paper, we endeavor to undertake such inquiry.

The rest of the paper is structured as thus: In Sect. 2, necessary and sufficient preliminary notions are described in Subsects 2.1, 2.2 and the main results are reported in Sect. 3. In Sect. 4, the establishment of the various relationships between these \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-operators are discussed in SECTS 4.1. To support the work, a nice application of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closure operators in a $\mathscr{T}_{\mathfrak{g}}$-space is presented in Sect. 4.2. Finally, the work is concluded in Sect. 5.

2. Theory

2.1. Necessary Preliminaries. As in Part I. (CF. 19]), the standard reference for notations and concepts is the Ph.D. Thesis of Khodabocus, M. I. [2].

Herein, \mathfrak{U} symbolizes the universe of discourse, fixed within the framework of $\mathfrak{T}_{\mathfrak{a}}, \mathfrak{g}$ - $\mathfrak{T}_{\mathfrak{a}}$-operator theory in $\mathscr{T}_{\mathfrak{a}}$-spaces, $\mathfrak{a} \in\{\mathfrak{o}, \mathfrak{g}\}$, and containing underlying sets, underlying subsets, and so forth. By convention, the relation $\left(\alpha_{1}, \alpha_{2}, \ldots\right) \mathrm{R} \mathscr{A}_{1} \times$ $\mathscr{A}_{2} \times \cdots$ means $\alpha_{1} \mathrm{R} \mathscr{A}_{1}, \alpha_{2} \mathrm{R} \mathscr{A}_{2}, \ldots$ where $\mathrm{R}=\in, \subset, \supset, \ldots$ The pairs $\left(I_{n}^{0}, I_{n}^{*}\right) \subset$ $\mathbb{Z}_{+}^{0} \times \mathbb{Z}_{+}^{*}$ and $\left(I_{\infty}^{0}, I_{\infty}^{*}\right) \sim \mathbb{Z}_{+}^{0} \times \mathbb{Z}_{+}^{*}$ are pairs of finite and infinite index sets [1, 2].

Definition 2.1 ($\mathscr{T}_{\mathfrak{a}}$-Space [1, 2]). A $\mathscr{T}_{\mathfrak{a}}$-space is a topological structure $\mathfrak{T}_{\mathfrak{a}} \stackrel{\text { def }}{=}$ $\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$ in which $\Omega \subset \mathfrak{U}$ is an underlying set and $\begin{array}{rll}\mathscr{T}_{\mathfrak{a}}: & \mathscr{P}(\Omega) & \longrightarrow \mathscr{P}(\Omega) \\ \mathscr{O}_{\mathfrak{a}} & \longmapsto & \mathscr{T}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}}\right)\end{array}$ is
an \mathfrak{a}-topology satisfying the compound $\mathscr{T}_{\mathfrak{a}}$-axiom:
$\operatorname{Ax}\left(\mathscr{T}_{\mathfrak{a}}\right) \stackrel{\text { def }}{\longleftrightarrow}\left\{\begin{array}{rlr}\left(\mathscr{T}_{\mathfrak{o}}(\emptyset)=\emptyset\right) & \wedge\left(\mathscr{T}_{\mathfrak{o}}\left(\mathscr{O}_{\mathfrak{o}, \nu}\right) \subseteq \mathscr{O}_{\mathfrak{o}, \nu}\right) & \\ & \wedge\left(\mathscr{T}_{\mathfrak{o}}\left(\bigcap_{\nu \in I_{n}^{*}} \mathscr{O}_{\mathfrak{o}, \nu}\right)=\bigcap_{\nu \in I_{n}^{*}} \mathscr{T}_{\mathfrak{o}}\left(\mathscr{O}_{\mathfrak{o}, \nu}\right)\right) \\ & \wedge\left(\mathscr{T}_{\mathfrak{o}}\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathscr{O}_{\mathfrak{o}, \nu}\right)=\bigcup_{\nu \in I_{\infty}^{*}} \mathscr{T}_{\mathfrak{o}}\left(\mathscr{O}_{\mathfrak{o}, \nu}\right)\right) \quad(\mathfrak{a}=\mathfrak{o}), \\ \left(\mathscr{T}_{\mathfrak{g}}(\emptyset)=\emptyset\right) & \wedge\left(\mathscr{T}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g}, \nu}\right) \subseteq \mathscr{O}_{\mathfrak{g}, \nu}\right) \\ & \wedge\left(\mathscr{T}_{\mathfrak{g}}\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathscr{O}_{\mathfrak{g}, \nu}\right)=\bigcup_{\nu \in I_{\infty}^{*}} \mathscr{T}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g}, \nu}\right)\right) \quad(\mathfrak{a}=\mathfrak{g}) .\end{array}\right.$
By assumption, the $\mathscr{T}_{\mathfrak{a}}$-space is void of any $\mathfrak{T}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-separation axioms (ordinary and generalized separation axioms) unless otherwise stated [1, 2, 20]. If $\mathfrak{a}=\mathfrak{o}$ (ordinary), then $\operatorname{Ax}\left(\mathscr{T}_{\mathfrak{o}}\right)$ stands for an \mathfrak{o}-topology (ordinary topology) and $\mathfrak{T}_{\mathfrak{o}}=$ $\left(\Omega, \mathscr{T}_{\mathfrak{o}}\right)=(\Omega, \mathscr{T})=\mathfrak{T}$ is called a $\mathscr{T}_{\mathfrak{o}}$-space (ordinary topological space) and if $\mathfrak{a}=\mathfrak{g}$ (generalized), then $\operatorname{Ax}\left(\mathscr{T}_{\mathfrak{g}}\right)$ stands for a \mathfrak{g}-topology (generalized topology) and $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ is called a $\mathscr{T}_{\mathfrak{g}}$-space (generalized topological space). If $\Omega \in \mathscr{T}_{\mathfrak{g}}$, then $\mathfrak{T}_{\mathfrak{a}}$ is a strong $\mathscr{T}_{\mathfrak{a}}$-space [2, 21, 22] and if $\mathscr{T}_{\mathfrak{g}}\left(\bigcap_{\nu \in I_{n}^{*}} \mathscr{O}_{\mathfrak{g}, \nu}\right)=\bigcap_{\nu \in I_{n}^{*}} \mathscr{T}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g}, \nu}\right)$ for any $I_{n}^{*} \subset I_{\infty}^{*}$, then $\mathfrak{T}_{\mathfrak{g}}$ is a quasi $\mathscr{T}_{\mathfrak{g}}$-space [2], 23]. The notations $\Gamma \subset \Omega$, $\mathscr{O}_{\mathfrak{a}} \in \mathscr{T}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}} \in \neg \mathscr{T}_{\mathfrak{a}} \stackrel{\text { def }}{=}\left\{\mathscr{K}_{\mathfrak{a}}: \complement_{\Omega}\left(\mathscr{K}_{\mathfrak{a}}\right) \in \mathscr{T}_{\mathfrak{a}}\right\}$ and $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ state that $\Gamma, \mathscr{O}_{\mathfrak{a}}$, $\mathscr{K}_{\mathfrak{a}}$ and $\mathscr{S}_{\mathfrak{a}}$ are a Ω-subset, $\mathscr{T}_{\mathfrak{a}}$-open set, $\mathscr{T}_{\mathfrak{a}}$-closed set and $\mathfrak{T}_{\mathfrak{a}}$-set, respectively [1, 2]. The operators int $_{\mathfrak{a}}, \mathrm{cl}_{\mathfrak{a}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$
$\mathscr{S}_{\mathfrak{a}} \longmapsto \operatorname{int}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right), \operatorname{cl}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right)$ are the $\mathfrak{T}_{\mathfrak{a}}-$ interior and $\mathfrak{T}_{\mathfrak{a}}$-closure operators, respectively [1, 2]. For convenience of notation, let $\left(\mathscr{P}^{*}, \mathscr{T}_{\mathfrak{a}}^{*}, \neg \mathscr{T}_{\mathfrak{a}}^{*}\right)(\Omega)=\left(\mathscr{P} \backslash\{\emptyset\}, \mathscr{T}_{\mathfrak{a}} \backslash\{\emptyset\}, \neg \mathscr{T}_{\mathfrak{a}} \backslash\{\emptyset\}\right)(\Omega)$.

Definition 2.2 (\mathfrak{g}-Operation [1, 2]). A mapping $\begin{aligned} \mathrm{op}_{\mathfrak{a}}: \mathscr{P}(\Omega) & \longrightarrow \mathscr{P}(\Omega) \\ \mathscr{S}_{\mathfrak{a}} & \longmapsto \mathrm{op}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right)\end{aligned}$ is called $a \mathfrak{g}$-operation if and only if the following statements hold:

$$
\begin{aligned}
\left(\forall \mathscr{S}_{\mathfrak{a}} \in \mathscr{P}^{*}(\Omega)\right)\left(\exists\left(\mathscr{O}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}}\right)\right. & \left.\in \mathscr{T}_{\mathfrak{a}}^{*} \times \neg \mathscr{T}_{\mathfrak{a}}^{*}\right)\left[\left(\mathrm{op}_{\mathfrak{a}}(\emptyset)=\emptyset\right) \vee\left(\neg \mathrm{op}_{\mathfrak{a}}(\emptyset)=\emptyset\right)\right. \\
& \left.\vee\left(\mathscr{S}_{\mathfrak{a}} \subseteq \operatorname{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}}\right)\right) \vee\left(\mathscr{S}_{\mathfrak{a}} \supseteq \neg \operatorname{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a}}\right)\right)\right], \quad(2.1)
\end{aligned}
$$

where $\begin{aligned} \neg \mathrm{op}_{\mathfrak{a}}: \quad \mathscr{P}(\Omega) & \longrightarrow \mathscr{P}(\Omega) \\ \mathscr{S}_{\mathfrak{a}} & \longmapsto \neg \mathrm{op}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right)\end{aligned} \quad$ is called its complementary \mathfrak{g}-operation, and for all $\mathfrak{T}_{\mathfrak{a}}$-sets $\mathscr{S}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}, \nu}, \mathscr{S}_{\mathfrak{a}, \mu} \in \mathscr{P}^{*}(\Omega)$, the following axioms are satisfied:

- Ax. I. $\left(\mathscr{S}_{\mathfrak{a}} \subseteq \operatorname{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}}\right)\right) \vee\left(\mathscr{S}_{\mathfrak{a}} \supseteq \neg \mathrm{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a}}\right)\right)$,
- Ax. II. $\left(\operatorname{op}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right) \subseteq \mathrm{op}_{\mathfrak{a}} \circ \mathrm{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}}\right)\right) \vee\left(\neg \mathrm{op}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right) \supseteq \neg \mathrm{op}_{\mathfrak{a}} \circ \neg \mathrm{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a}}\right)\right)$,
- Ax. III. $\left(\mathscr{S}_{\mathfrak{a}, \nu} \subseteq \mathscr{S}_{\mathfrak{a}, \mu} \longrightarrow \operatorname{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}, \nu}\right) \subseteq \mathrm{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}, \mu}\right)\right)$
$\vee\left(\mathscr{S}_{\mathfrak{a}, \mu} \subseteq \mathscr{S}_{\mathfrak{a}, \nu} \longleftarrow \neg \mathrm{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a}, \mu}\right) \supseteq \neg \mathrm{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a}, \nu}\right)\right)$,
- Ax. IV. $\left(\mathrm{op}_{\mathfrak{a}}\left(\bigcup_{\sigma=\nu, \mu} \mathscr{S}_{\mathfrak{a}, \sigma}\right) \subseteq \bigcup_{\sigma=\nu, \mu} \mathrm{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}, \sigma}\right)\right)$

$$
\vee\left(\neg \mathrm{op}_{\mathfrak{a}}\left(\bigcup_{\sigma=\nu, \mu} \mathscr{S}_{\mathfrak{a}, \sigma}\right) \supseteq \bigcup_{\sigma=\nu, \mu} \neg \mathrm{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a}, \sigma}\right)\right),
$$

for some $\mathscr{T}_{\mathfrak{a}}$-sets $\mathscr{O}_{\mathfrak{a}}, \mathscr{O}_{\mathfrak{a}, \nu}, \mathscr{O}_{\mathfrak{a}, \mu} \in \mathscr{T}_{\mathfrak{a}}^{*}$ and $\mathscr{K}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}, \nu}, \mathscr{K}_{\mathfrak{a}, \mu} \in \neg \mathscr{T}_{\mathfrak{a}}^{*}$.
The class $\mathscr{L}_{\mathfrak{a}}[\Omega] \stackrel{\text { def }}{=}\left\{\mathbf{o p}_{\mathfrak{a}, \nu}=\left(\mathrm{op}_{\mathfrak{a}, \nu}, \neg \mathrm{op}_{\mathfrak{a}, \nu}\right): \nu \in I_{3}^{0}\right\} \subseteq \mathscr{L}_{\mathfrak{a}}^{\omega}[\Omega] \times \mathscr{L}_{\mathfrak{a}}^{\kappa}[\Omega]=$ $\left\{\mathrm{op}_{\mathfrak{a}, \nu}: \nu \in I_{3}^{0}\right\} \times\left\{\neg \mathrm{op}_{\mathfrak{a}, \nu}: \nu \in I_{3}^{0}\right\}$, where

$$
\begin{aligned}
\left\langle\mathrm{op}_{\mathfrak{a}, \nu}: \nu \in I_{3}^{0}\right\rangle & =\left\langle\operatorname{int}_{\mathfrak{a}}, \mathrm{cl}_{\mathfrak{a}} \circ \operatorname{int}_{\mathfrak{a}}, \operatorname{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}}, \mathrm{cl}_{\mathfrak{a}} \circ \operatorname{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}}\right\rangle, \\
\left\langle\neg \mathrm{op}_{\mathfrak{a}, \nu}: \nu \in I_{3}^{0}\right\rangle & =\left\langle\mathrm{cl}_{\mathfrak{a}}, \operatorname{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}}, \mathrm{cl}_{\mathfrak{a}} \circ \operatorname{int}_{\mathfrak{a}}, \operatorname{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}} \circ \operatorname{int}_{\mathfrak{a}}\right\rangle,
\end{aligned}
$$

is the class of all possible pairs of \mathfrak{g}-operators and its complementary \mathfrak{g}-operators in the $\mathscr{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{a}}$.

Definition $2.3\left(\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}\right.$-Sets [1] [2]). $\operatorname{Let}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{O}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}}, \mathbf{o p}_{\mathfrak{a}, \nu}\right) \in \mathscr{P}(\Omega) \times \mathscr{T}_{\mathfrak{a}} \times \neg \mathscr{T}_{\mathfrak{a}} \times$ $\mathscr{L}_{\mathfrak{a}}[\Omega]$ and let the predicates

$$
\begin{align*}
& \mathrm{P}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{O}_{\mathfrak{a}} ; \mathrm{op}_{\mathfrak{a}, \nu} ; \subseteq\right) \stackrel{\text { def }}{=}\left(\exists\left(\mathscr{O}_{\mathfrak{a}}, \mathrm{op}_{\mathfrak{a}, \nu}\right) \in \mathscr{T}_{\mathfrak{a}} \times \mathscr{L}_{\mathfrak{a}}^{\omega}[\Omega]\right)\left[\mathscr{S}_{\mathfrak{a}} \subseteq \mathrm{op}_{\mathfrak{a}, \nu}\left(\mathscr{O}_{\mathfrak{a}}\right)\right], \\
& \mathrm{Q}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}} ; \neg \mathrm{op}_{\mathfrak{a}, \nu} ; \supseteq\right) \stackrel{\text { def }}{=}\left(\exists\left(\mathscr{K}_{\mathfrak{a}}, \neg \mathrm{op}_{\mathfrak{a}, \nu}\right) \in \neg \mathscr{T}_{\mathfrak{a}} \times \mathscr{L}_{\mathfrak{a}}^{\kappa}[\Omega]\right) \tag{2.2}\\
& {\left[\mathscr{S}_{\mathfrak{a}} \supseteq \neg \mathrm{op}_{\mathfrak{a}, \nu}\left(\mathscr{K}_{\mathfrak{a}}\right)\right] }
\end{align*}
$$

be Boolean-valued functions on $\mathscr{P}(\Omega) \times\left(\mathscr{T}_{\mathfrak{a}} \cup \neg \mathscr{T}_{\mathfrak{a}}\right) \times\left(\mathscr{L}_{\mathfrak{a}}^{\omega} \cup \mathscr{L}_{\mathfrak{a}}^{\kappa}\right)[\Omega] \times\{\subseteq, \supseteq\}$, then $\mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right] \& \stackrel{\text { def }}{=} \& \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right] \cup \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ is the class of all $\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{a}}$-sets and,

$$
\begin{align*}
\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right] & \stackrel{\text { def }}{=} \quad\left\{\mathscr{S}_{\mathfrak{a}}: \mathrm{P}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{O}_{\mathfrak{a}} ; \mathrm{op}_{\mathfrak{a}, \nu} ; \subseteq\right)\right\} \tag{2.3}\\
\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right] & \stackrel{\text { def }}{=} \quad\left\{\mathscr{S}_{\mathfrak{a}}: \mathrm{Q}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}} ; \neg \operatorname{op}_{\mathfrak{a}, \nu} ; \supseteq\right)\right\}
\end{align*}
$$

respectively, are called the classes of all $\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$-closed sets of category ν in $\mathfrak{T}_{\mathfrak{a}}$.

Then, $\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right]=\left\{\mathscr{S}_{\mathfrak{a}}: \mathrm{P}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}} ; \operatorname{op}_{\mathfrak{a}, 0} ; \subseteq\right)\right\} \cup\left\{\mathscr{S}_{\mathfrak{a}}: \mathrm{Q}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}} ; \neg \mathrm{op}_{\mathfrak{a}, 0} ; \supseteq\right)\right\}=$ $\bigcup_{\mathrm{E} \in\{\mathrm{O}, \mathrm{K}\}} \mathrm{E}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ is the class of all $\mathfrak{T}_{\mathfrak{a}}$-open and $\mathfrak{T}_{\mathfrak{a}}$-closed sets in $\mathfrak{T}_{\mathfrak{a}}$ [1, 2]. Further,

$$
\mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=} \bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right]=\bigcup_{(\nu, \mathrm{E}) \in I_{3}^{0} \times\{\mathrm{O}, \mathrm{~K}\}} \mathfrak{g}-\nu-\mathrm{E}\left[\mathfrak{T}_{\mathfrak{a}}\right]=\bigcup_{\mathrm{E} \in\{\mathrm{O}, \mathrm{~K}\}} \mathfrak{g}-\mathrm{E}\left[\mathfrak{T}_{\mathfrak{a}}\right]
$$

Definition $2.4\left(\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}\right.$-Separation, $\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-Connected [2]). $A \mathfrak{g}$ - ν - $\mathfrak{T}_{\mathfrak{a}}$-separation of two $\mathfrak{T}_{\mathfrak{a}}$-sets $\emptyset \neq \mathscr{R}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}} \subseteq \mathfrak{T}_{\mathfrak{a}}$ of a $\mathscr{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{a}}=\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$ is realised if and only if there exists either $\left(\mathscr{O}_{\mathfrak{a}, \xi}, \mathscr{O}_{\mathfrak{a}, \zeta}\right) \in \times_{\alpha \in I_{2}^{*}} \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ or $\left(\mathscr{K}_{\mathfrak{a}, \xi}, \mathscr{K}_{\mathfrak{a}, \zeta}\right) \in \times_{\alpha \in I_{2}^{*}} \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ such that:

$$
\begin{equation*}
\left(\bigsqcup_{\lambda=\xi, \zeta} \mathscr{O}_{\mathfrak{a}, \lambda}=\mathscr{R}_{\mathfrak{a}} \sqcup \mathscr{S}_{\mathfrak{a}}\right) \bigvee\left(\bigsqcup_{\lambda=\xi, \zeta} \mathscr{K}_{\mathfrak{a}, \lambda}=\mathscr{R}_{\mathfrak{a}} \sqcup \mathscr{S}_{\mathfrak{a}}\right) \tag{2.4}
\end{equation*}
$$

Otherwise, $\mathscr{R}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}}$ are said to be \mathfrak{g} - $\nu-\mathfrak{T}_{\mathfrak{a}}$-connected.
Thus, $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ is $\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-connected if and only if $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\mathrm{Q}\left[\mathfrak{T}_{\mathfrak{a}}\right]=\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{Q}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-separated if and only if $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}$-D $\left[\mathfrak{T}_{\mathfrak{a}}\right]=\bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-\mathrm{D}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ where,

$$
\begin{align*}
& \mathfrak{g}-\nu-\mathrm{Q}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}\left\{\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}:\left(\forall\left(\mathscr{O}_{\mathfrak{a}, \lambda}, \mathscr{K}_{\mathfrak{a}, \lambda}\right)_{\lambda=\xi, \zeta} \in \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right] \times \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right]\right)\right. \\
& {\left.\left[\neg\left(\bigsqcup_{\lambda=\xi, \zeta} \mathscr{O}_{\mathfrak{a}, \lambda}=\mathscr{S}_{\mathfrak{a}}\right) \bigwedge \neg\left(\bigsqcup_{\lambda=\xi, \zeta} \mathscr{O}_{\mathfrak{a}, \lambda}=\mathscr{S}_{\mathfrak{a}}\right)\right]\right\} ; } \tag{2.5}\\
& \mathfrak{g}-\nu-\mathrm{D}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}\left\{\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}:\left(\exists\left(\mathscr{O}_{\mathfrak{a}, \lambda}, \mathscr{K}_{\mathfrak{a}, \lambda}\right)_{\lambda=\xi, \zeta} \in \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right] \times \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right]\right)\right. \\
& {\left.\left[\left(\bigsqcup_{\lambda=\xi, \zeta} \mathscr{O}_{\mathfrak{a}, \lambda}=\mathscr{S}_{\mathfrak{a}}\right) \bigvee\left(\bigsqcup_{\lambda=\xi, \zeta} \mathscr{K}_{\mathfrak{a}, \lambda}=\mathscr{S}_{\mathfrak{a}}\right)\right]\right\} . } \tag{2.6}
\end{align*}
$$

Definition $2.5\left(\mathfrak{g}-\nu-\mathfrak{T}_{\mathfrak{a}}\right.$-Interior, \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$-Closure Operators [19]). In a $\mathscr{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{a}}=\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$, the one-valued maps
where $\mathrm{C}_{\mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right]}^{\text {sub }}\left[\mathscr{S}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}\left\{\mathscr{O}_{\mathfrak{a}} \in \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right]: \mathscr{O}_{\mathfrak{a}} \subseteq \mathscr{S}_{\mathfrak{a}}\right\}$ and $\mathrm{C}_{\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right]}^{\text {sup }}\left[\mathscr{S}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}$ $\left\{\mathscr{K}_{\mathfrak{a}} \in \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right]: \mathscr{K}_{\mathfrak{a}} \supseteq \mathscr{S}_{\mathfrak{a}}\right\}$ are called $\mathfrak{g}-\nu$ - $\mathfrak{T}_{\mathfrak{a}}$-interior and \mathfrak{g} - $\nu-\mathfrak{T}_{\mathfrak{a}}$-closure operators, respectively. Then, $\mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}\left\{\mathfrak{g}-\mathrm{Int}_{\mathfrak{a}, \nu}: \nu \in I_{3}^{0}\right\}$ and $\mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}\left\{\mathfrak{g}-\mathrm{Cl}_{\mathfrak{a}, \nu}\right.$: $\left.\nu \in I_{3}^{0}\right\}$ are the classes of all \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$-interior and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-closure operators, respectively.

Definition $2.6\left(\mathfrak{g}-\nu\right.$ - $\mathfrak{T}_{\mathfrak{a}}$-Vector Operator [19]). In a $\mathscr{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{a}}=\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$, the two-valued map

$$
\begin{align*}
\mathfrak{g}-\mathbf{I} \mathbf{c}_{\mathfrak{a}, \nu}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) & \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \tag{2.9}\\
\left(\mathscr{R}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}}\right) & \longmapsto\left(\mathfrak{g}-\operatorname{Int}_{\mathfrak{a}, \nu}\left(\mathscr{R}_{\mathfrak{a}}\right), \mathfrak{g}-\mathrm{Cl}_{\mathfrak{a}, \nu}\left(\mathscr{S}_{\mathfrak{a}}\right)\right)
\end{align*}
$$

is called $a \mathfrak{g}$ - ν - $\mathfrak{T}_{\mathfrak{a}}$-vector operator. Then, \mathfrak{g}-IC $\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}\left\{\mathfrak{g}-\mathbf{I c}_{\mathfrak{a}, \nu}=\left(\mathfrak{g}\right.\right.$ - $\left.\operatorname{Int}_{\mathfrak{a}, \nu}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{a}, \nu}\right)$: $\left.\nu \in I_{3}^{0}\right\}$ is the class of all $\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-vector operators.

Remark. For every $\nu \in I_{3}^{0}, \mathfrak{g}-\mathbf{I c}_{\mathfrak{a}, \nu}=\mathbf{i c}_{\mathfrak{a}} \stackrel{\text { def }}{=}\left(\operatorname{int}_{\mathfrak{a}}, \mathrm{cl}_{\mathfrak{a}}\right)$ if based on $\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right] \times \mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right]$. Then, $\quad \mathbf{i c}_{\mathfrak{a}}: \quad \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$

$$
\begin{aligned}
\times \mathscr{P}(\Omega) & \longrightarrow(\Omega) \times \mathscr{P}(\Omega) \\
\left(\mathscr{R}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}}\right) & \longmapsto\left(\operatorname{int}_{\mathfrak{a}}\left(\mathscr{R}_{\mathfrak{a}}\right), \operatorname{cl}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right)\right) \text { is a } \mathfrak{T}_{\mathfrak{a}} \text {-vector operator }
\end{aligned}
$$ in a $\mathscr{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{a}}=\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$.

2.2. Sufficient Preliminaries. The notions of $\mathfrak{T}_{\mathfrak{a}}$-sets having $\mathfrak{P}_{\mathfrak{a}}, \mathfrak{a}$ - $\mathfrak{P}_{\mathfrak{a}}$-properties and $\mathfrak{Q}_{\mathfrak{a}}, \mathfrak{g}$ - $\mathfrak{Q}_{\mathfrak{a}}$-properties in $\mathscr{T}_{\mathfrak{a}}$-spaces are now presented.

Definition 2.7 (Complement $\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-Operator). Let $\mathfrak{T}_{\mathfrak{a}}=\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$ be a $\mathscr{T}_{\mathfrak{a}}$-space. Then, the one-valued map

$$
\begin{align*}
\mathfrak{g}-\mathrm{Op}_{\mathfrak{a}, \mathscr{R}_{\mathfrak{a}}}: \mathscr{P}(\Omega) & \longrightarrow \mathscr{P}(\Omega) \tag{2.10}\\
\mathscr{S}_{\mathfrak{a}} & \longmapsto \complement_{\mathscr{R}_{\mathfrak{a}}}\left(\mathscr{S}_{\mathfrak{a}}\right),
\end{align*}
$$

where $\complement_{\mathscr{R}_{a}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ denotes the relative complement of its operand with respect to $\mathscr{R}_{\mathfrak{a}} \in \mathfrak{g}$-S $\left[\mathfrak{T}_{\mathfrak{a}}\right]$, is called a natural complement $\mathfrak{g}-\mathfrak{T}_{\mathfrak{a}}$-operator on $\mathscr{P}(\Omega)$.

For clarity, $\mathfrak{g}-\mathrm{Op}_{\mathfrak{a}, \mathscr{R}_{\mathfrak{a}}}=\mathfrak{g}$-Op $p_{\mathfrak{a}}$ whenever $\mathscr{R}_{\mathfrak{a}}=\Omega$ and $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}=\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}$ (natural complement $\mathfrak{T}_{\mathfrak{a}}$-operator) whenever $\mathscr{R}_{\mathfrak{a}} \in \mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right]$.
Definition 2.8 (Symmetric Difference \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$-Operator). Let $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$ be a $\mathscr{T}_{\mathfrak{a}}$ space. Then, the one-valued map

$$
\begin{equation*}
\mathfrak{g}-\mathrm{Sd}_{\mathfrak{a}}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \quad \longrightarrow \quad \mathscr{P}(\Omega) \tag{2.11}
\end{equation*}
$$

$$
\left(\mathscr{R}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}}\right) \& \longmapsto \& \mathfrak{g}-\mathrm{Op}_{\mathfrak{a}, \mathscr{R}_{\mathfrak{a}}}\left(\mathscr{S}_{\mathfrak{a}}\right) \cup \mathfrak{g}-\mathrm{Op}_{\mathfrak{a}, \mathscr{S}_{\mathfrak{a}}}\left(\mathscr{R}_{\mathfrak{a}}\right)
$$

is called the symmetric difference \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$-operator on $\mathscr{P}(\Omega)$.

$$
\begin{align*}
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{a}, \nu}: \mathscr{P}(\Omega) \quad \longrightarrow \quad \mathscr{P}(\Omega) \tag{2.7}\\
& \mathscr{S}_{\mathfrak{a}} \longmapsto \bigcup_{\substack{\mathscr{O}_{\mathfrak{a}} \in \mathrm{C}_{\begin{subarray}{c}{\text { sub } \\
\text { ub }\left[\mathfrak{O}_{\mathfrak{a}}\right]} }}\left[\mathscr{S}_{\mathfrak{a}}\right]}\end{subarray}} \mathscr{O}_{\mathfrak{a}}, \\
& \mathfrak{g}-\mathrm{Cl}_{\mathfrak{a}, \nu}: \mathscr{P}(\Omega) \quad \longrightarrow \quad \mathscr{P}(\Omega) \tag{2.8}\\
& \mathscr{S}_{\mathfrak{a}} \longmapsto \bigcap_{\mathscr{K}_{\mathfrak{a}} \in \mathrm{C}_{\mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{F}_{\mathfrak{a}}\right]}^{\text {sup }}\left[\mathscr{S}_{\mathfrak{a}}\right]} \mathscr{K}_{\mathfrak{a}}
\end{align*}
$$

If $\mathfrak{g}-\mathrm{Sd}_{\mathfrak{a}}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is based on $\mathrm{Op}_{\mathfrak{a}, \mathscr{R}_{\mathfrak{g}}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, the concept of symmetric difference $\mathfrak{T}_{\mathfrak{a}}$-operator $\mathrm{Sd}_{\mathfrak{a}}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ presents itself.

Definition 2.9 (\mathfrak{g} - $\nu-\mathfrak{P}_{\mathfrak{a}}$-Property). A $\mathfrak{T}_{\mathfrak{a}}$-set $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ in a $\mathscr{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{a}}=\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$ is said to have $\mathfrak{g}-\nu-\mathfrak{P}_{\mathfrak{a}}$-property in $\mathfrak{T}_{\mathfrak{a}}$ if and only if it belongs to:

$$
\begin{equation*}
\mathfrak{g}-\nu-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}\left\{\mathscr{S}_{\mathfrak{a}}: \mathfrak{g}-\operatorname{Int}_{\mathfrak{a}, \nu} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{a}, \nu}\left(\mathscr{S}_{\mathfrak{a}}\right) \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{a}, \nu} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{a}, \nu}\left(\mathscr{S}_{\mathfrak{a}}\right)\right\} \tag{2.12}
\end{equation*}
$$

called the class of all $\mathfrak{T}_{\mathfrak{a}}$-sets having \mathfrak{g} - $\nu-\mathfrak{P}_{\mathfrak{a}}$-property in $\mathfrak{T}_{\mathfrak{a}}$.
Then, $\mathrm{P}\left[\mathfrak{T}_{\mathfrak{a}}\right] \& \stackrel{\text { def }}{=} \&\left\{\mathscr{S}_{\mathfrak{a}}: \operatorname{int}_{\mathfrak{a}} \circ \operatorname{cl}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right) \longleftrightarrow \operatorname{cl}_{\mathfrak{a}} \circ \operatorname{int}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right)\right\}$ is the class of all $\mathfrak{T}_{\mathfrak{a}}$-sets having $\mathfrak{P}_{\mathfrak{a}}$-property in $\mathfrak{T}_{\mathfrak{a}}$. By $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=} \bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu$-P $\left[\mathfrak{T}_{\mathfrak{a}}\right]$ is meant a $\mathfrak{T}_{\mathfrak{a}}$-set having $\mathfrak{g}-\mathfrak{P}_{\mathfrak{a}}$-property in $\mathfrak{T}_{\mathfrak{a}}$.

Definition $2.10\left(\mathfrak{g}-\nu-\mathfrak{Q}_{\mathfrak{a}}\right.$-Property). $A \mathfrak{T}_{\mathfrak{a}}-$ set $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ in a $\mathscr{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{a}}=\left(\Omega, \mathscr{T}_{\mathfrak{a}}\right)$ is said to have \mathfrak{g} - $\nu-\mathfrak{Q}_{\mathfrak{a}}$-property in $\mathfrak{T}_{\mathfrak{a}}$ if and only if it belongs to:

$$
\begin{equation*}
\mathfrak{g}-\nu-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=}\left\{\mathscr{S}_{\mathfrak{a}}: \mathfrak{g}-\operatorname{Int}_{\mathfrak{a}, \nu} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{a}, \nu}: \mathscr{S}_{\mathfrak{a}} \longmapsto \emptyset\right\} \tag{2.13}
\end{equation*}
$$

called the class of all $\mathfrak{T}_{\mathfrak{a}}$-set having $\mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}}$-property in $\mathfrak{T}_{\mathfrak{a}}$.
Then, $\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right] \& \stackrel{\text { def }}{=} \&\left\{\mathscr{S}_{\mathfrak{a}}: \quad \operatorname{int}_{\mathfrak{a}} \circ \mathrm{cl}_{\mathfrak{a}}: \mathscr{S}_{\mathfrak{a}} \longmapsto \emptyset\right\}$ is the class of all $\mathfrak{T}_{\mathfrak{a}}$-sets having $\mathfrak{Q}_{\mathfrak{a}}$-property in $\mathfrak{T}_{\mathfrak{a}}$. By $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\text { def }}{=} \bigcup_{\nu \in I_{3}^{0}} \mathfrak{g}-\nu-N d\left[\mathfrak{T}_{\mathfrak{a}}\right]$ is meant a $\mathfrak{T}_{\mathfrak{a}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{a}}$-property in $\mathfrak{T}_{\mathfrak{a}}$.

3. Main Results

The main results relative to the commutativity of the $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-closure and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}{ }^{-}$ interior operators, and $\mathfrak{T}_{\mathfrak{g}}$-sets having $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}, \mathfrak{g}$ - $\mathfrak{Q}_{\mathfrak{g}}$-properties in $\mathscr{T}_{\mathfrak{g}}$-spaces are presented.

Lemma 3.1. If \mathfrak{g} - Ic $\mathbf{c}_{\mathfrak{g}} \in \mathfrak{g}$-IC $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a given pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-operators \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}}$, \mathfrak{g} - $\mathrm{Cl}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the natural complement $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}{ }^{-}$ operator of its components in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$, then:

$$
\begin{align*}
\left(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)\right)\left[\left(\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right.\right. & \left.\longleftrightarrow \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \\
& \left.\wedge\left(\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longleftrightarrow \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right] . \tag{3.1}
\end{align*}
$$

Proof. Let $\mathfrak{g}-\mathbf{I} \mathbf{c}_{\mathfrak{g}} \in \mathfrak{g}$-IC $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a given and, let $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the natural complement \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-operator of its components in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Then, for a $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ taken arbitrarily, it follows that

$$
\begin{aligned}
\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}: \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longmapsto \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{O}_{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{q}_{\mathfrak{g}}\right]}^{\text {sub }}\left[\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]} \mathscr{O}_{\mathfrak{g}}\right) ; \\
\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longmapsto \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{K}_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}[\mathfrak{z} \mathfrak{g}]}^{\text {sup }}\left[\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]} \mathscr{K}_{\mathfrak{g}}\right) .
\end{aligned}
$$

Let $\left\{\mathscr{O}_{\mathfrak{g}, \nu}:\left(\forall \nu \in I_{\infty}^{*}\right)\left[\mathscr{O}_{\mathfrak{g}, \nu} \subseteq \mathscr{S}_{\mathfrak{g}}\right]\right\}$ and $\left\{\mathscr{K}_{\mathfrak{g}, \nu}:\left(\forall \nu \in I_{\infty}^{*}\right)\left[\mathscr{K}_{\mathfrak{g}, \nu} \supseteq \mathscr{S}_{\mathfrak{g}}\right]\right\}$ stand for $\mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\mathrm{sub}}\left[\mathscr{S}_{\mathfrak{g}}\right] \subseteq \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\text {sup }}\left[\mathscr{S}_{\mathfrak{g}}\right] \subseteq \mathfrak{g}$-K $\left[\mathfrak{T}_{\mathfrak{g}}\right]$, respectively. Then,

$$
\begin{aligned}
& \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\bigcup_{\substack{\mathfrak{g} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}[\mathfrak{r} \mathfrak{g}]}^{\text {sub }}\left[\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]}} \mathscr{O}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\bigcup_{\nu \in I_{\infty}^{*}}\left(\mathscr{O}_{\mathfrak{g}, \nu} \subseteq \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right) \\
& =\complement_{\Omega}\left(\bigcup_{\nu \in I_{\infty}^{*}}\left(\mathscr{O}_{\mathfrak{g}, \nu} \subseteq \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right) \\
& =\bigcap_{\nu \in I_{\infty}^{*}}\left(\complement_{\Omega}\left(\mathscr{O}_{\mathfrak{g}, \nu}\right) \supseteq \complement_{\Omega}\left(\complement_{\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right) \\
& =\bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{z}_{\mathfrak{g}}\right]}^{\text {sup }}\left[\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]} \mathscr{K}_{\mathfrak{g}} ; \\
& \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}[\mathfrak{s} \mathfrak{g}]}^{\text {sup }}\left[\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]} \mathscr{K}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\bigcup_{\nu \in I_{\infty}^{*}}\left(\mathscr{O}_{\mathfrak{g}, \nu} \subseteq \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right) \\
& =\complement_{\Omega}\left(\bigcap_{\nu \in I_{\infty}^{*}}\left(\mathscr{K}_{\mathfrak{g}, \nu} \supseteq \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right) \\
& =\bigcup_{\nu \in I_{\infty}^{*}}\left(\complement_{\Omega}\left(\mathscr{K}_{\mathfrak{g}, \nu}\right) \subseteq \complement_{\Omega}\left(\complement_{\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right) \\
& =\bigcup_{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{q}_{\mathfrak{g}}\right]}^{\text {sub }}\left[\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]} \mathscr{O}_{\mathfrak{g}} .
\end{aligned}
$$

Since $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ is arbitrary, it follows that, for every $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$, the relations

$$
\begin{aligned}
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longleftrightarrow \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longleftrightarrow \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)
\end{aligned}
$$

hold. The proof of the lemma is complete.

Theorem 3.2. $A \mathfrak{T}_{\mathfrak{g}}$-sets $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ is said to have $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property in $\mathfrak{T}_{\mathfrak{g}}$ if and only if:

$$
\begin{equation*}
\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longleftrightarrow \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \tag{3.2}
\end{equation*}
$$

Proof. Necessity. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{T}_{\mathfrak{g}}$-set having $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property in a $\mathscr{T}_{\mathfrak{q}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Then,

$$
\begin{aligned}
\mathfrak{g}-\mathrm{Int}_{\mathfrak{g}}: & \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longmapsto \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
= & \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
= & \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
= & \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
= & \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
= & \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
= & \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)
\end{aligned}
$$

Thus, it follows that

$$
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{-int}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)
$$

and hence, $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The condition of the theorem is, therefore, necessary.

Sufficiency. Conversely, suppose $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{T}_{\mathfrak{g}}$-set having $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$ property in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}$. Set $\mathscr{R}_{\mathfrak{g}}=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Then,

$$
\mathscr{S}_{\mathfrak{g}} \longleftrightarrow \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longleftrightarrow \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)
$$

But $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and it in turn implies $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Hence, it follows that $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The condition of the theorem is, therefore, sufficient.

Proposition 3.3. If $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$, then:

- I. $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$,
- II. $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$.

Proof. i. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$-property in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=$ $\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Then,

$$
\begin{aligned}
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{-nt}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{-nt}_{\mathfrak{g}}\left(\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)
\end{aligned}
$$

Hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of Item I. of the proposition is complete.
II. Suppose $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ in $\mathfrak{T}_{\mathfrak{g}}$. Then,

$$
\begin{aligned}
& \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op} p_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{O} p_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& \longleftrightarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longleftrightarrow \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)
\end{aligned}
$$

Hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}$-P [$\left.\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of ITEM iI. of the proposition is complete.

Theorem 3.4. If $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set of a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ such that $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ or $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ in $\mathfrak{T}_{\mathfrak{g}}$, then $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$.

Proof. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ such that $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ or $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ in $\mathfrak{T}_{\mathfrak{g}}$. Then:

Case I. Suppose $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ in $\mathfrak{T}_{\mathfrak{g}}$. Then, for every $\mathfrak{g}-\mathbf{I c}_{\mathfrak{g}} \in \mathfrak{g}$-IC $\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it follows that $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. But $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \supseteq \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and consequently, \mathfrak{g}-Int $_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. Since $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}$-space, it follows, furthermore, that \mathfrak{g} - $\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}$ - $\operatorname{Int}_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. Therefore, \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\emptyset=$ $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and, hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$.

CASE II. Suppose $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ in $\mathfrak{T}_{\mathfrak{g}}$. Then, by virtue of the above case, $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and by virtue of the fact that $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is equivalent to $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it results that $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathscr{S}_{\mathfrak{g}} \in$ $\mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of the theorem is complete.

Theorem 3.5. Let $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}, \Gamma}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a $\mathscr{T}_{\mathfrak{g}}$-subspace $\mathfrak{T}_{\mathfrak{g}, \Gamma}=\left(\Gamma, \mathscr{T}_{\mathfrak{g}, \Gamma}\right)$ of a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathscr{T}_{\mathfrak{g}, \Omega}\right)$, where $\mathscr{T}_{\mathfrak{g}, \Gamma}: \mathscr{P}(\Gamma) \longmapsto \mathscr{T}_{\mathfrak{g}, \Gamma}=\left\{\mathscr{O}_{\mathfrak{g}} \cap \Gamma: \mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}, \Omega}\right\}$. Then:

- I. $\Gamma \in \mathfrak{g}$-O $\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ implies $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$,
- II. $\Gamma \in \mathfrak{g}$-K $\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ implies $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$.

Proof. Let $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g}, \Gamma}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a $\mathscr{T}_{\mathfrak{g}}$-subspace $\mathfrak{T}_{\mathfrak{g}, \Gamma}=\left(\Gamma, \mathscr{T}_{\mathfrak{g}, \Gamma}\right)$ of a $\mathscr{T}_{\mathfrak{g}}$ space $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathscr{T}_{\mathfrak{g}, \Omega}\right)$ and let $\left(\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Lambda}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Lambda}\right) \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right] \times \mathfrak{g}-\mathrm{C}\left[\mathfrak{T}_{\mathfrak{g}, \Lambda}\right]$ be a pair of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closure operators \mathfrak{g}-Int $\mathfrak{g}_{\mathfrak{g}, \Lambda}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Lambda}: \mathscr{P}(\Lambda) \longrightarrow \mathscr{P}(\Lambda)$, respectively, where $\Lambda \in\{\Omega, \Gamma\}$. Then:
I. Suppose $\Gamma \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ in $\mathfrak{T}_{\mathfrak{g}, \Omega}$. Then,

$$
\begin{aligned}
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega}: \mathscr{S}_{\mathfrak{g}} \longmapsto \quad \bigcup_{\substack{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}^{\text {sub }} \\
\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]}} \mathscr{O}_{\mathfrak{g}} \\
& =\bigcup_{\substack{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\begin{subarray}{c}{\text { sub } \\
\mathfrak{g}-\mathrm{O} \\
\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]} }} \mathscr{O}_{\mathfrak{g}}}\end{subarray}}^{\left[\Gamma \cap \mathscr{S}_{\mathfrak{g}}\right]} \\
& \subseteq \bigcup_{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]}^{[\Gamma]}} \mathscr{O}_{\mathfrak{g}}=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega}(\Gamma)=\Gamma .
\end{aligned}
$$

Thus, $\Gamma \cap \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$. On the other hand,

$$
\begin{aligned}
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Gamma}: \mathscr{S}_{\mathfrak{g}} \longmapsto \quad \bigcup_{\substack{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\begin{subarray}{c}{\text { sub } \\
\mathfrak{g}-\left[\mathfrak{T}_{\mathfrak{g}}, \Gamma\right]} }} \mathscr{O}_{\mathfrak{g}}} \\
{\left.\mathscr{S}_{\mathfrak{g}}\right]}\end{subarray}} \\
& \longleftrightarrow \bigcup_{\substack{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\begin{subarray}{c}{\text { sub } \\
\mathfrak{g}\left[\mathfrak{T}_{\mathfrak{g}, \Gamma}\right]} }}^{\left[\mathscr{S}_{\mathfrak{g}}\right]}}\end{subarray}}\left(\mathscr{O}_{\mathfrak{g}} \cap \Gamma\right) \\
& \longleftrightarrow \bigcup_{\substack{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\begin{subarray}{c}{\text { sub } \\
\text { sub } \\
\mathfrak{T}_{\mathfrak{g}}, \Omega} }}}\end{subarray}}\left(\mathscr{O}_{\mathfrak{g}} \cap \Gamma\right) \\
& \longleftrightarrow \Gamma \cap\left(\bigcup_{\left.\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\substack{\text { sub } \\
\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]}} \mathscr{O}_{\mathfrak{g}}\right)=\Gamma \cap \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)}\right.
\end{aligned}
$$

But $\Gamma \cap \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and hence, $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}$ - $\operatorname{Int}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$. II. Suppose $\Gamma \in \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ in $\mathfrak{T}_{\mathfrak{g}, \Omega}$. Then,

$$
\begin{aligned}
& \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}: \mathscr{S}_{\mathfrak{g}} \longmapsto \\
& \bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}, \Omega\right]}^{\text {sup }}\left[\mathscr{S}_{\mathfrak{g}}\right]} \mathscr{K}_{\mathfrak{g}} \\
& \subseteq \\
& \bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}, \Omega\right]}^{\text {sup }}[\Gamma]} \mathscr{K}_{\mathfrak{g}}=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}(\Gamma)=\Gamma .
\end{aligned}
$$

Consequently, $\Gamma \cap \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$. On the other hand,

$$
\begin{aligned}
& \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Gamma}: \mathscr{S}_{\mathfrak{g}} \longmapsto \bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Gamma}^{\mathrm{sup}}\right]}^{\left[\mathscr{S}_{\mathfrak{g}}\right]}} \mathscr{K}_{\mathfrak{g}}
\end{aligned}
$$

$$
\begin{aligned}
& \longleftrightarrow \bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{z}_{\mathfrak{g}}, \Omega\right]}^{\text {sup }}\left[\mathscr{S}_{\mathfrak{g}}\right]}\left(\mathscr{K}_{\mathfrak{g}} \cap \Gamma\right)
\end{aligned}
$$

But $\Gamma \cap \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and hence, $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$. The proof of the theorem is complete.

Theorem 3.6. Let $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}$-K $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-open-closed set and let $\left(\mathscr{S}_{\mathfrak{g}, \alpha}, \mathscr{S}_{\mathfrak{g}, \beta}\right) \subseteq \mathfrak{T}_{\mathfrak{g}} \times \mathfrak{T}_{\mathfrak{g}}$ be a pair of $\mathfrak{T}_{\mathfrak{g}}$-sets in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. If $\left(\mathscr{S}_{\mathfrak{g}, \alpha}, \mathscr{S}_{\mathfrak{g}, \beta}\right) \subseteq\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$, then:

$$
\begin{equation*}
\left(\forall \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)\left[\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\bigcup_{\sigma=\alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma}\right)=\bigcup_{\sigma=\alpha, \beta} \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \sigma}\right)\right] \tag{3.3}
\end{equation*}
$$

Proof. Let $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}$-O $\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}$-K $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-open-closed set, let $\left(\mathscr{S}_{\mathfrak{g}, \alpha}, \mathscr{S}_{\mathfrak{g}, \beta}\right) \subseteq$ $\mathfrak{T}_{\mathfrak{g}} \times \mathfrak{T}_{\mathfrak{g}}$ be a pair of $\mathfrak{T}_{\mathfrak{g}}$-sets in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ and, $\operatorname{suppose}\left(\mathscr{S}_{\mathfrak{g}, \alpha}, \mathscr{S}_{\mathfrak{g}, \beta}\right) \subseteq$ $\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$. Then, for every $\mathscr{S}_{\mathfrak{g}} \in\left\{\mathscr{S}_{\mathfrak{g}, \alpha}, \mathscr{S}_{\mathfrak{g}, \beta}\right\}$,

$$
\begin{aligned}
& \mathfrak{g}-\text { Int }_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g}} \longmapsto \\
& \bigcup_{\substack{\left.O_{\mathfrak{g}} \in \mathrm{C}_{\begin{subarray}{c}{\text { sub } \\
\mathfrak{g}-\mathrm{T} \\
\mathfrak{z} \mathfrak{g}]} }} \mathscr{S}_{\mathfrak{g}}\right]}\end{subarray}}^{\mathscr{O}_{\mathfrak{g}}} \\
& \subseteq \\
& \bigcup_{\substack{\mathfrak{g} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}[\mathfrak{T} \mathfrak{g}]}^{\text {sub }}\left[\mathscr{S}_{\mathfrak{g}, \alpha} \cup \mathscr{S}_{\mathfrak{g}, \beta}\right]}} \mathscr{O}_{\mathfrak{g}}=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\bigcup_{\sigma=\alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma}\right) .
\end{aligned}
$$

Consequently, \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}}\left(\bigcup_{\sigma=\alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma}\right) \supseteq \bigcup_{\sigma=\alpha, \beta} \mathfrak{g}$ - $\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \sigma}\right)$. Set $\hat{\mathscr{S}}_{\mathfrak{g}, \alpha}=\mathscr{S}_{\mathfrak{g}, \alpha} \cap \mathscr{Q}_{\mathfrak{g}}$ and $\hat{\mathscr{S}}_{\mathfrak{g}, \beta}=\mathscr{S}_{\mathfrak{g}, \beta} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)$. Then, since $\left(\mathscr{S}_{\mathfrak{g}, \alpha}, \mathscr{S}_{\mathfrak{g}, \beta}\right) \subseteq\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}\right.$-Op$\left.p_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$, it
follows that

$$
\begin{aligned}
\mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\text {sub }}\left[\bigcup_{\sigma=\alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma}\right] & =\mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\mathrm{sub}}\left[\bigcup_{\sigma=\alpha, \beta} \hat{\mathscr{S}}_{\mathfrak{g}, \sigma}\right] \\
& =\left\{\mathscr{O}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]: \mathscr{O}_{\mathfrak{g}} \subseteq \bigcup_{\sigma=\alpha, \beta} \hat{\mathscr{S}}_{\mathfrak{g}, \sigma}\right\} \\
& =\left\{\mathscr{O}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]: \bigvee_{\sigma=\alpha, \beta}\left(\mathscr{O}_{\mathfrak{g}} \subseteq \hat{\mathscr{S}}_{\mathfrak{g}, \sigma}\right)\right\} \\
& =\bigcup_{\sigma=\alpha, \beta}\left\{\mathscr{O}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]: \mathscr{O}_{\mathfrak{g}} \subseteq \hat{\mathscr{S}}_{\mathfrak{g}, \sigma}\right\} \\
& =\bigcup_{\sigma=\alpha, \beta} \mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\mathrm{sub}}\left[\hat{\mathscr{S}}_{\mathfrak{g}, \sigma}\right]=\bigcup_{\sigma=\alpha, \beta} \mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\mathrm{sub}}\left[\mathscr{S}_{\mathfrak{g}, \sigma}\right] .
\end{aligned}
$$

Therefore, $\mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\mathrm{sub}}\left[\bigcup_{\sigma=\alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma}\right]=\bigcup_{\sigma=\alpha, \beta} \mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\text {sub }}\left[\mathscr{S}_{\mathfrak{g}, \sigma]}\right]$, as a consequence of the condition $\left(\mathscr{S}_{\mathfrak{g}, \alpha}, \mathscr{S}_{\mathfrak{g}, \beta}\right) \subseteq\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}\right.$ - $\left.\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$. Taking this fact into account, it follows, moreover, that

$$
\begin{aligned}
\mathfrak{g} \text {-Int } \mathrm{g}_{\mathfrak{g}}: \bigcup_{\sigma=\alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma} & \longmapsto \\
& \subseteq \bigcup_{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}[\mathfrak{z} \mathfrak{g}]}^{\text {sub }}\left[\mathscr{S}_{\mathfrak{g}, \alpha} \cup \mathscr{S}_{\mathfrak{g}, \beta}\right]} \mathscr{O}_{\mathfrak{g}} \\
& \subseteq \bigcup_{\mathscr{O}_{\mathfrak{g}} \in \bigcup_{\sigma=\alpha, \beta}^{\mathrm{C}} \mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{I}_{\mathfrak{g}}\right]}^{\text {sub }}\left[\mathscr{S}_{\mathfrak{g}, \sigma}\right]} \mathscr{O}_{\mathfrak{g}} \\
& \subseteq \bigcup_{\sigma=\alpha, \beta}\left(\bigcup_{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}[\mathfrak{r} \mathfrak{g}]}^{\text {sub }}\left[\mathscr{S}_{\mathfrak{g}, \sigma]}\right.} \mathscr{O}_{\mathfrak{g}}\right)=\bigcup_{\sigma=\alpha, \beta} \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \sigma}\right) .
\end{aligned}
$$

Hence, $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\bigcup_{\sigma=\alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma}\right) \subseteq \bigcup_{\sigma=\alpha, \beta} \mathfrak{g}$ - $\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \sigma}\right)$. The proof of the theorem is complete.

Theorem 3.7. Let $\mathfrak{T}_{\mathfrak{g}, \Gamma}=\left(\Gamma, \mathscr{T}_{\mathfrak{g}, \Gamma}\right)$ be a $\mathscr{T}_{\mathfrak{g}}$-subspace of a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}, \Omega}=$ $\left(\Omega, \mathscr{T}_{\mathfrak{g}, \Omega}\right)$, where $\mathscr{T}_{\mathfrak{g}, \Gamma}: \mathscr{P}(\Gamma) \longmapsto \mathscr{T}_{\mathfrak{g}, \Gamma}=\left\{\mathscr{O}_{\mathfrak{g}} \cap \Gamma: \mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}, \Omega}\right\}$. If $\Gamma \in$ $\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ and $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$, then $\mathscr{S}_{\mathfrak{g}} \cap \Gamma \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \Gamma}\right]$.

Proof. Let $\mathfrak{T}_{\mathfrak{g}, \Gamma}=\left(\Gamma, \mathscr{T}_{\mathfrak{g}, \Gamma}\right)$ be a $\mathscr{T}_{\mathfrak{g}}$-subspace of a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}, \Omega}=\left(\Omega, \mathscr{T}_{\mathfrak{g}, \Omega}\right)$ and, suppose $\Gamma \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ and $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$. Then, since $\Gamma \in$ $\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$ implies \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}, \Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}$ - $\operatorname{Int}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right)=$ $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$, it follows that

$$
\begin{aligned}
\mathfrak{g}-\mathrm{Int}_{\mathfrak{g}, \Gamma} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Gamma}: \mathscr{S}_{\mathfrak{g}} \cap \Gamma & \longmapsto \\
& \subseteq \mathfrak{g}^{-\operatorname{Int}_{\mathfrak{g}, \Omega} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}} \cap \Gamma\right)} \\
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)
\end{aligned}
$$

Since $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \Omega}\right]$, it follows, moreover, that $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \Omega} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Omega}: \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. Consequently, \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}, \Gamma} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \Gamma}: \mathscr{S}_{\mathfrak{g}} \cap \Gamma \longmapsto \emptyset$ and hence, $\mathscr{S}_{\mathfrak{g}} \cap \Gamma \in \mathfrak{g}$-Nd [$\left.\mathfrak{T}_{\mathfrak{g}, \Gamma}\right]$. The proof of the theorem is complete.

Theorem 3.8. In order that a $\mathfrak{T}_{\mathfrak{g}}$-set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ satisfies the condition $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it is necessary and sufficient that there exist a
$\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-open-closed set $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and a $\mathfrak{T}_{\mathfrak{g}}$-set $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property such that it be expressible as:

$$
\begin{equation*}
\mathscr{S}_{\mathfrak{g}}=\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right) \tag{3.4}
\end{equation*}
$$

Proof. Sufficiency. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ and let there exist $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ such that the relation $\mathscr{S}_{\mathfrak{g}}=\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right)$ holds. Clearly, $\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right) \subseteq$ $\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$, implying

$$
\begin{array}{ll}
\mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\mathrm{sub}}\left[\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right)\right] & =\mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\mathrm{sub}}\left[\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right] \\
& \cup \mathrm{C}_{\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}^{\text {sub }}\left[\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right] .
\end{array}
$$

Set $\mathscr{S}_{\mathfrak{g},(q, r)}=\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g},(r, q)}=\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}$. Then, $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q, r)} \cup \mathscr{S}_{\mathfrak{g},(r, q)}\right)=$ $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \cup \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) . \quad \operatorname{Since}\left(\mathscr{S}_{\mathfrak{g},(q, r)}, \mathscr{S}_{\mathfrak{g},(r, q)}\right) \subseteq\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$ and $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it follows that

$$
\begin{aligned}
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right), \\
& \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right), \\
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \\
&\left.\mathfrak{g}-\mathscr{S}_{\mathfrak{g},(r, q)}\right), \\
&\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}: \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longmapsto \quad \bigcup_{\substack{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}}^{\text {sub }}[\mathfrak{z} \mathfrak{g}]}}\left[\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\bigcup_{\left.\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\substack{\text { sub } \\
\text { sub } \\
\mathfrak{T} \mathfrak{g}]}} \bigcup_{\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right)\right]} \mathscr{O}_{\mathfrak{g}}\right) \\
& \cup(\underbrace{}_{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{O}[\mathfrak{x} \mathfrak{g}]}^{\mathrm{sub}}\left[\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{O} \mathrm{P}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g})}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right)\right]} \mathscr{O}_{\mathfrak{g}}) \\
& =\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \cup \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right)\right) \\
& =\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \\
& \cup \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) \\
& =\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \\
& \cup \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) .
\end{aligned}
$$

Thus, it follows that

$$
\begin{aligned}
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & =\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \\
& \cup \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)
\end{aligned}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) .
$$

Similarly,

$$
\begin{aligned}
& \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longmapsto \bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{\tau _ { \mathfrak { g } }]}\right]}^{\operatorname{sug}} \bigcap_{\left[\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]} \mathscr{K}_{\mathfrak{g}}} \\
& =\bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}[\mathfrak{z} \mathfrak{g}]}^{\text {sup }}\left[\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \cup \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{O}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right)\right]} \mathscr{K}_{\mathfrak{g}} \\
& =\left(\bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{I}_{\mathfrak{g}}\right]}^{\text {sup }}\left[\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right)\right]} \mathscr{K}_{\mathfrak{g}}\right) \\
& \cup\left(\bigcap_{\mathscr{K}_{\mathfrak{g}} \in \mathrm{C}_{\mathfrak{g}-\mathrm{K}\left[\mathfrak{I}_{\mathfrak{g}}\right]}^{\text {sup }}\left[{\left.\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{OP}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right)\right]}^{\mathscr{K}_{\mathfrak{g}}}\right) .}\right. \\
& =\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \cup \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right)\right) \\
& =\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \\
& \cup \quad \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) \\
& =\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \\
& \cup \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) \text {. }
\end{aligned}
$$

Hence, it results that

$$
\begin{aligned}
\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & =\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}-\operatorname{-nt}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \\
& \cup \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)
\end{aligned}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) .
$$

By virtue of the relation $\left(\mathscr{S}_{\mathfrak{g},(q, r)}, \mathscr{S}_{\mathfrak{g},(r, q)}\right) \subseteq\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$, it is plain that $\mathscr{S}_{\mathfrak{g},(q, r)}=\mathscr{Q}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g},(r, q)}=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cap \mathscr{R}_{\mathfrak{g}}$. Since $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap$ \mathfrak{g}-K $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}$ - $\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it follows that $\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ property in $\mathscr{Q}_{\mathfrak{g}}$ and \mathfrak{g} - $\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cap \mathscr{R}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property in \mathfrak{g}-Op $p_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)$. But $\mathscr{S}_{\mathfrak{g},(q, r)}=\complement_{\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right)$ and $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Consequently, $\mathscr{R}_{\mathfrak{g}}$ has $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property in $\mathscr{Q}_{\mathfrak{g}}$ and hence,

$$
\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right)
$$

On the other hand, the statement that $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cap \mathscr{R}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ property in \mathfrak{g} - $\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)$ implies that $\mathscr{S}_{\mathfrak{g},(r, q)}$ has \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$-property in \mathfrak{g} - $\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)$ and therefore,

$$
\left.\begin{array}{rl}
\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) \\
& =\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)
\end{array}\right) \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) .
$$

When all the foregoing set-theoretic expressions are taken into account, it results that

$$
\begin{aligned}
& \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \\
& \cup \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \\
&\left.=\mathfrak{S}-\mathscr{S}_{\mathfrak{g},(r, q)}\right) \\
& \cup \mathfrak{G} l_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q, r)}\right) \\
&=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \mathfrak{g}-\mathrm{Op}}^{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\left(\mathscr{S}_{\mathfrak{g},(r, q)}\right) \\
&\left(\mathscr{S}_{\mathfrak{g}}\right) .
\end{aligned}
$$

Hence, $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. The condition of the theorem is, therefore, sufficient.

Necessity. Conversely, suppose that $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Then, \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=$ $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Set $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathscr{Q}_{\mathfrak{g}}=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}$-Int $\mathfrak{g}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Then, $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, meaning that $\mathscr{Q}_{\mathfrak{g}}$ is a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-open-closed set in $\mathfrak{T}_{\mathfrak{g}}$. Set $\mathscr{S}_{\mathfrak{g},(s, q)}=\mathscr{S}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g},(q, s)}=\mathscr{Q}_{\mathfrak{g}}-\mathscr{S}_{\mathfrak{g}}$. Then,

$$
\begin{array}{ll}
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(s, q)}\right) & \subseteq \mathfrak{g}-\operatorname{-nt}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathscr{Q}_{\mathfrak{g}} ; \\
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(s, q)}\right) & \subseteq \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) .
\end{array}
$$

But $\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)=\emptyset$ and consequently, \mathfrak{g} - $\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g},(s, q)} \longmapsto \emptyset$, meaning that $\mathscr{Q}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property in $\mathscr{S}_{\mathfrak{g}}$. On the other hand,

$$
\begin{aligned}
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q, s)}\right) & \subseteq \mathfrak{g}-\operatorname{-nt}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)=\mathscr{Q}_{\mathfrak{g}} ; \\
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q, s)}\right) & \subseteq \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}-O p_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \\
& =\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& =\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-O p_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) .
\end{aligned}
$$

Since $\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)=\emptyset$ it follows, consequently, that \mathfrak{g} - $\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g},(q, s)} \longmapsto$ \emptyset, meaning that $\mathscr{S}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property in $\mathscr{Q}_{\mathfrak{g}}$. Set $\mathscr{R}_{\mathfrak{g}}=\mathscr{S}_{\mathfrak{g},(q, s)} \cup$ $\mathscr{S}_{\mathfrak{g},(s, q)}$. Then,

$$
\begin{aligned}
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{R}_{\mathfrak{g}} & \longmapsto \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q, s)} \cup \mathscr{S}_{\mathfrak{g},(s, q)}\right) \\
& =\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q, s)}\right) \cup \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(s, q)}\right) \\
& =\emptyset \cup \emptyset=\emptyset,
\end{aligned}
$$

implying that $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-N d\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Having evidenced the existence of a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-open-closed set $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and a $\mathfrak{T}_{\mathfrak{g}}$-set $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property, it only remains to show that $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ is expressible as $\mathscr{S}_{\mathfrak{g}}=\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right)$.

Observe that

$$
\begin{aligned}
\mathscr{S}_{\mathfrak{g},(q, r)} & \cup \mathscr{S}_{\mathfrak{g},(r, q)} \\
& =\left\{\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right\} \cup\left\{\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right\} \\
& =\left\{\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left[\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cup\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)\right]\right\} \\
& \cup\left\{\left[\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cup\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)\right] \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right\} \\
& =\left\{\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)\right\} \\
& \cup\left\{\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right\} \\
& =\left\{\mathscr{Q}_{\mathfrak{g}} \cap\left(\mathfrak{g}-\mathrm{Op}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cup \mathscr{S}_{\mathfrak{g}}\right) \cap\left(\mathfrak{g}-O p_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathscr{Q}_{\mathfrak{g}}\right)\right\} \\
& \cup\left\{\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right\} \\
& =\left\{\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \cap\left(\mathfrak{g}-\mathrm{Op} p_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathscr{Q}_{\mathfrak{g}}\right)\right\} \cup\left\{\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right\} \\
& =\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \cup\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right) .
\end{aligned}
$$

But since $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathscr{Q}_{\mathfrak{g}}=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and the latter in turn implies $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)$, it follows that $\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}=\mathscr{S}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)=\emptyset$. Consequently, $\mathscr{S}_{\mathfrak{g},(q, r)} \cup$ $\mathscr{S}_{\mathfrak{g},(r, q)}=\mathscr{S}_{\mathfrak{g}}$. But, $\mathscr{S}_{\mathfrak{g},(q, r)} \cup \mathscr{S}_{\mathfrak{g},(r, q)}=\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right)$ and hence, $\mathscr{S}_{\mathfrak{g}}=$ $\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right)$. The condition of the theorem is, therefore, necessary.

Observe that $\mathscr{S}_{\mathfrak{g}}=\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \mathfrak{g}-O p_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}\left(\mathscr{Q}_{\mathfrak{g}}\right)=$ $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right)$. Thus, an immediate consequence of the above theorem is the following corollary.

Corollary 3.9. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Then, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ if and only if:

$$
\begin{equation*}
\left(\exists \mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)\left(\exists \mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)\left[\mathscr{S}_{\mathfrak{g}}=\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right)\right] \tag{3.5}
\end{equation*}
$$

Proposition 3.10. If $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property, then $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \neq \Omega$:

$$
\begin{equation*}
\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \neq \Omega \tag{3.6}
\end{equation*}
$$

Proof. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property in a strong $\mathscr{T}_{\mathfrak{g}}$ space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Then, since $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}$-space, it follows that $\Omega \in$ $\mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}$-K $\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Consequently, \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}(\Omega)=\Omega$. But, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\emptyset$. Thus, $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\emptyset \neq \Omega=\mathfrak{g}$-Int $\mathfrak{g}_{\mathfrak{g}}(\Omega)$, implying $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \neq \Omega$. The proof of the proposition is complete.

Proposition 3.11. If $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ and $\mathfrak{T}_{\mathfrak{g}}$ be \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-connected, then:

$$
\begin{equation*}
\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longleftrightarrow\left(\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \vee\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \tag{3.7}
\end{equation*}
$$

Proof. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$ and $\mathfrak{T}_{\mathfrak{g}}$ be $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-connected. Suppose $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Then, there exist a $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-open-closed set $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and a $\mathfrak{T}_{\mathfrak{g}}$-set $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property such that $\mathscr{S}_{\mathfrak{g}}$ be expressible as $\mathscr{S}_{\mathfrak{g}}=\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right)$. Since the strong $\mathscr{T}_{\mathfrak{g}}$-space
$\mathfrak{T}_{\mathfrak{g}}$ is $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-connected, the only \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-open-closed set are the improper $\mathfrak{T}_{\mathfrak{g}}$-sets \emptyset, $\Omega \subset \mathfrak{T}_{\mathfrak{g}}$. Consequently,

$$
\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longleftrightarrow\left(\mathscr{Q}_{\mathfrak{g}} \in\{\emptyset, \Omega\}\right)\left[\mathscr{S}_{\mathfrak{g}}=\left(\mathscr{Q}_{\mathfrak{g}}-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\right)\right]
$$

Case i. Suppose $\mathscr{Q}_{\mathfrak{g}}=\emptyset$. Then $\mathscr{S}_{\mathfrak{g}}=\left(\emptyset-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\emptyset\right)$. But $\emptyset-\mathscr{R}_{\mathfrak{g}}=\emptyset$ and $\mathscr{R}_{\mathfrak{g}}-\emptyset=\mathscr{R}_{\mathfrak{g}}$. Therefore, $\mathscr{S}_{\mathfrak{g}}=\emptyset \cup \mathscr{R}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}}$. Thus, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$.

Case in. Suppose $\mathscr{Q}_{\mathfrak{g}}=\Omega$. Then $\mathscr{S}_{\mathfrak{g}}=\left(\Omega-\mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{R}_{\mathfrak{g}}-\Omega\right)$. But $\Omega-\mathscr{R}_{\mathfrak{g}}=$ $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)$ and $\mathscr{R}_{\mathfrak{g}}-\Omega=\emptyset$. Consequently, $\mathscr{S}_{\mathfrak{g}}=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \emptyset=\mathfrak{g}-O p_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)$ and therefore, $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)=\mathscr{R}_{\mathfrak{g}}$. Hence, $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of the proposition is complete.
Lemma 3.12. If $\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}$-S $\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}$-S $\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}$-S $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a triple of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-sets and $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the symmetric difference $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-operator in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$, then:

- I. $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \mathscr{Q}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$,
- II. $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right), \mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right)\right) \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$,
- III. $\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right)$.

Proof. Let $\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and, let $\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}: \mathscr{P}(\Omega) \times$ $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the symmetric difference \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-operator in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=$ $\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. The proof that $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}} \mathscr{Q}_{\mathfrak{g}}\right) \in \mathfrak{g}$-S $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ holds for any $\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right) \in \mathfrak{g}$-S $\left[\mathfrak{T}_{\mathfrak{g}}\right] \times$ $\mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is first supplied. It is evident that

$$
\begin{aligned}
\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right) & =\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)} \\
& =\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \cup\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right) \subseteq \mathscr{Q}_{\mathfrak{g}} \cup \mathscr{R}_{\mathfrak{g}}
\end{aligned}
$$

implying $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right) \subseteq \mathscr{Q}_{\mathfrak{g}} \cup \mathscr{R}_{\mathfrak{g}}$. Since $\mathscr{Q}_{\mathfrak{g}} \cup \mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it follows that $\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Items I., II. and III. are now proved.
I. Since the order of the operands under the \cup-operation does not change, it follows that

$$
\begin{aligned}
\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right) & =\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \\
& =\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cup \mathfrak{g}-\operatorname{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}\right)
\end{aligned}
$$

Hence, $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$.
II. For any $\left(\mathscr{S}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}$-S $\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it is plain that \mathfrak{g}-Op $\mathfrak{g}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g}}\right)=$ $\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Therefore,

$$
\begin{aligned}
\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right), \mathscr{S}_{\mathfrak{g}}\right) & =\left\{\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right\} \\
& \cup\left\{\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right)\right)\right\} \\
& =\left\{\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cap \mathfrak{g}-O p_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right\} \\
& \cup\left\{\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cap \mathfrak{g}-O p_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right\} \\
& \cup\left\{\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cap \mathfrak{g}-O p_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right\} \\
& \cup\left\{\mathscr{S}_{\mathfrak{g}} \cap \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}\right\} .
\end{aligned}
$$

If P $\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \stackrel{\text { def }}{=} \mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$, then

$$
\begin{aligned}
\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right), \mathscr{S}_{\mathfrak{g}}\right) & =\mathrm{P}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \cup \mathrm{P}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \\
& \cup \mathrm{P}\left(\mathscr{S}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right) \cup\left(\mathscr{S}_{\mathfrak{g}} \cap \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}\right) .
\end{aligned}
$$

Since $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right), \mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right)\right)$, it follows that

$$
\begin{aligned}
\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right)\right) & =\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}=\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}=\mathscr{R}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}=\mathscr{S}_{\mathfrak{g}}\right)\right) \\
& =\mathrm{P}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}\right) \cup \mathrm{P}\left(\mathscr{S}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}\right) \\
& \cup \mathrm{P}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \cup\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) .
\end{aligned}
$$

But by virtue of the associativity and distributive properties of the \cap, \cup-operations, the relations $\mathrm{P}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right)=\mathrm{P}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right), \mathrm{P}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right)=\mathrm{P}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}\right)$, $\mathrm{P}\left(\mathscr{S}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right)=\mathrm{P}\left(\mathscr{S}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}\right)$, and $\mathscr{S}_{\mathfrak{g}} \cap \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}=\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}$ hold. Thus, $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right), \mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right)\right) \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$.
III. Since the relation \mathfrak{g} - $\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}$ - $\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$ holds for any $\left(\mathscr{S}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \in$ $\mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it results that

$$
\begin{aligned}
& \mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right)=\mathscr{Q}_{\mathfrak{g}} \cap\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{S}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \\
& =\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cup\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{S}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \\
& =\left(\mathscr{Q}_{\mathfrak{g}} \cap\left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right) \cup\left(\mathscr{Q}_{\mathfrak{g}} \cap\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right)\right) \\
& =\left(\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cup\left(\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right)\right) \\
& =\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right) \\
& =\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \text {. }
\end{aligned}
$$

Hence, $\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{S}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of the lemma is complete.
Theorem 3.13. If $\mathscr{S}_{\mathfrak{g}, 1}, \mathscr{S}_{\mathfrak{g}, 2}, \ldots, \mathscr{S}_{\mathfrak{g}, \sigma} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ are $\sigma \geq 1 \mathfrak{T}_{\mathfrak{g}}$-sets having $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$, then $\bigcap_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$.

Proof. Let $\mathscr{S}_{\mathfrak{g}, 1}, \mathscr{S}_{\mathfrak{g}, 2}, \ldots, \mathscr{S}_{\mathfrak{g}, \sigma} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be $\sigma \geq 1 \mathfrak{T}_{\mathfrak{g}}$-sets having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$-property in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Then, since $\mathscr{S}_{\mathfrak{g}, 1}, \mathscr{S}_{\mathfrak{g}, 2}, \ldots, \mathscr{S}_{\mathfrak{g}, \sigma} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$, there exist $\sigma \geq 1 \mathfrak{g}$ - $\mathfrak{T}_{\mathfrak{g}}$-open-closed sets $\mathscr{Q}_{\mathfrak{g}, 1}, \mathscr{Q}_{\mathfrak{g}, 2}, \ldots, \mathscr{Q}_{\mathfrak{g}, \sigma} \in \mathfrak{g}$-O $\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}$-K $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\sigma \geq 1 \mathfrak{T}_{\mathfrak{g}}$-sets $\mathscr{R}_{\mathfrak{g}, 1}, \mathscr{R}_{\mathfrak{g}, 2}, \ldots, \mathscr{R}_{\mathfrak{g}, \sigma} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property such that

$$
\begin{aligned}
\mathscr{S}_{\mathfrak{g}, 1} & =\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}, 1}, \mathscr{R}_{\mathfrak{g}, 1}\right) \\
\mathscr{S}_{\mathfrak{g}, 2} & =\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}, 2}, \mathscr{R}_{\mathfrak{g}, 2}\right), \ldots, \mathscr{S}_{\mathfrak{g}, \sigma}=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}, \sigma}, \mathscr{R}_{\mathfrak{g}, \sigma}\right)
\end{aligned}
$$

For an arbitrary pair $(\nu, \mu) \in I_{\sigma}^{*} \times I_{\sigma}^{*}$, set $\mathscr{Q}_{\mathfrak{g},(\nu, \mu)}=\mathscr{Q}_{\mathfrak{g}, \nu} \cap \mathscr{Q}_{\mathfrak{g}, \mu}$, $\mathscr{W}_{\mathfrak{g},(\nu, \mu)}=$ $\mathscr{Q}_{\mathfrak{g}, \nu} \cap \mathscr{R}_{\mathfrak{g}, \mu}$, and $\mathscr{R}_{\mathfrak{g},(\nu, \mu)}=\mathscr{R}_{\mathfrak{g}, \nu} \cap \mathscr{R}_{\mathfrak{g}, \mu}$. Then,

$$
\begin{aligned}
\mathscr{S}_{\mathfrak{g}, \nu} \cap \mathscr{S}_{\mathfrak{g}, \mu} & =\mathscr{S}_{\mathfrak{g}, \nu} \cap \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}, \mu}, \mathscr{R}_{\mathfrak{g}, \mu}\right) \\
& =\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu} \cap \mathscr{Q}_{\mathfrak{g}, \mu}, \mathscr{S}_{\mathfrak{g}, \nu} \cap \mathscr{R}_{\mathfrak{g}, \mu}\right) \\
& =\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left[\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}, \nu}, \mathscr{R}_{\mathfrak{g}, \nu}\right) \cap \mathscr{Q}_{\mathfrak{g}, \mu}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}, \nu}, \mathscr{R}_{\mathfrak{g}, \nu}\right) \cap \mathscr{R}_{\mathfrak{g}, \mu}\right] \\
& \left.=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left[\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g},(\nu, \mu)}, \mathscr{W}_{\mathfrak{g},(\mu, \nu)}\right), \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}} \mathscr{W}_{\mathfrak{g},(\nu, \mu)}, \mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right)\right] \\
& =\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left\{\mathscr{Q}_{\mathfrak{g},(\nu, \mu)}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left[\mathscr{W}_{\mathfrak{g},(\mu, \nu)}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g},(\nu, \mu)}, \mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right)\right]\right\} .
\end{aligned}
$$

But, $\mathscr{R}_{\mathfrak{g}, \nu}, \mathscr{R}_{\mathfrak{g}, \mu} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathscr{R}_{\mathfrak{g},(\nu, \mu)} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right],\left(\mathscr{Q}_{\mathfrak{g}, \nu}, \mathscr{R}_{\mathfrak{g}, \mu}\right) \in\left(\mathfrak{g}\right.$-O $\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap$ $\left.\mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \times \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathscr{W}_{\mathfrak{g},(\nu, \mu)} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and, $\mathscr{Q}_{\mathfrak{g}, \nu}, \mathscr{Q}_{\mathfrak{g}, \mu} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap$ \mathfrak{g}-K $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathscr{Q}_{\mathfrak{g},(\nu, \mu)} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Thus, $\mathfrak{g}-\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g},(\nu, \mu)}, \mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right) \in$ $\mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, implying $\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left[\mathscr{W}_{\mathfrak{g},(\mu, \nu)}, \mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g},(\nu, \mu)}, \mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right)\right]=\hat{\mathscr{R}}_{\mathfrak{g},(\nu, \mu)} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Therefore, $\mathscr{S}_{\mathfrak{g}, \nu} \cap \mathscr{S}_{\mathfrak{g}, \mu}=\mathfrak{g}-\operatorname{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g},(\nu, \mu)}, \hat{\mathscr{R}}_{\mathfrak{g},(\nu, \mu)}\right)$, where $\mathscr{Q}_{\mathfrak{g},(\nu, \mu)} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap$
$\mathfrak{g}-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\hat{\mathscr{R}}_{\mathfrak{g},(\nu, \mu)} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, and consequently, $\mathscr{S}_{\mathfrak{g}, \nu} \cap \mathscr{S}_{\mathfrak{g}, \mu} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ for any $(\nu, \mu) \in I_{\sigma}^{*} \times I_{\sigma}^{*}$. Hence, $\bigcap_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of the theorem is complete.

Proposition 3.14. If $\left\{\mathscr{S}_{\mathfrak{g}, \nu} \subset \mathfrak{T}_{\mathfrak{g}}: \nu \in I_{\sigma}^{*}\right\}$ be a collection of $\sigma \geq 1 \mathfrak{T}_{\mathfrak{g}}$-sets each of which having $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$, then $\bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu}$ has also $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property in $\mathfrak{T}_{\mathfrak{g}}$:

$$
\begin{equation*}
\bigwedge_{\nu \in I_{\sigma}^{*}}\left(\mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \longrightarrow \bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \tag{3.8}
\end{equation*}
$$

Proof. Let $\mathscr{S}_{\mathfrak{g}, 1}, \mathscr{S}_{\mathfrak{g}, 2}, \ldots, \mathscr{S}_{\mathfrak{g}, \sigma} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be $\sigma \geq 1 \mathfrak{T}_{\mathfrak{g}}$-sets having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$-property in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Then, since $\mathscr{S}_{\mathfrak{g}}=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$ for any $\mathfrak{T}_{\mathfrak{g}}$-set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, it follows that $\mathscr{S}_{\mathfrak{g}, \nu} \cup \mathscr{S}_{\mathfrak{g}, \mu}=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu} \cup \mathscr{S}_{\mathfrak{g}, \mu}\right)=$ $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu}\right)\right)$ for any arbitrary pair $(\nu, \mu) \in I_{\sigma}^{*} \times I_{\sigma}^{*}$. But, $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu}\right), \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and therefore, $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu}\right) \in$ $\mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Set $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\hat{\mathscr{S}}_{\mathfrak{g}}\right)=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu}\right)$. Then, since $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\hat{\mathscr{S}}_{\mathfrak{g}}\right) \in$ $\mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is equivalent to $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\hat{\mathscr{S}}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and, the relation $\mathscr{S}_{\mathfrak{g}, \nu} \cup$ $\mathscr{S}_{\mathfrak{g}, \mu}=\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\hat{\mathscr{S}}_{\mathfrak{g}}\right)$ holds, it follows that $\mathscr{S}_{\mathfrak{g}, \nu} \cup \mathscr{S}_{\mathfrak{g}, \mu} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of the proposition is complete.

Theorem 3.15. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. If $\mathscr{S}_{\mathfrak{g}}$ has $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property in $\mathfrak{T}_{\mathfrak{g}}$, then it has also $\mathfrak{P}_{\mathfrak{g}}$-property in $\mathfrak{T}_{\mathfrak{g}}$:

$$
\begin{equation*}
\left(\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}\right)\left[\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathscr{S}_{\mathfrak{g}} \in \mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right] \tag{3.9}
\end{equation*}
$$

Proof. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$-property in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=$ $\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Then, it satisfies the relation \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longleftrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}$ - $\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Since $\left(\operatorname{int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right), \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \subseteq\left(\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right), \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)$, it follows that

$$
\begin{aligned}
\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \supseteq \operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right), \\
\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \operatorname{cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \supseteq \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & =\operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\
& =\operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cap \operatorname{cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right),
\end{aligned}
$$

implying $\operatorname{cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. But, $\operatorname{cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cap \mathrm{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=$ $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and $\operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cap \operatorname{int}_{\mathfrak{g}} \circ \mathrm{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Consequently, it results that $\operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$ which, in turn, implies $\operatorname{cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Therefore, $\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$, meaning that $\mathscr{S}_{\mathfrak{g}}$ has also $\mathfrak{P}_{\mathfrak{g}}$-property in $\mathfrak{T}_{\mathfrak{g}}$. Hence, $\mathscr{S}_{\mathfrak{g}} \in \mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of the theorem is complete.

Proposition 3.16. If $\left\{\mathscr{S}_{\mathfrak{g}, \nu} \subset \mathfrak{T}_{\mathfrak{g}}: \nu \in I_{\sigma}^{*}\right\}$ be a collection of $\sigma \geq 1 \mathfrak{T}_{\mathfrak{g}}$-sets having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$, then $\bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu}$ has also \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ property in $\mathfrak{T}_{\mathfrak{g}}$:

$$
\begin{equation*}
\bigwedge_{\nu \in I_{\sigma}^{*}}\left(\mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \longrightarrow \bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \tag{3.10}
\end{equation*}
$$

Proof. Let $\left\{\mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}\right.$-Nd $\left.\left[\mathfrak{T}_{\mathfrak{g}}\right]: \nu \in I_{\sigma}^{*}\right\}$ be a collection of $\sigma \geq 1 \mathfrak{T}_{\mathfrak{g}}$-sets having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Suppose $\bigwedge_{\nu \in I_{\sigma}^{*}}\left(\mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}\right.$-Nd $\left.\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)$ implies $\bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is an untrue logical statement. Then, $\bigwedge_{\nu \in I_{\sigma}^{*}}\left(\mathscr{S}_{\mathfrak{g}, \nu} \in\right.$ $\left.\mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)$ is true and \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \longmapsto \emptyset$ is untrue. Thus, to prove the proposition, it suffices to prove that $\bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \notin \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is a contradiction. For arbitrary $(\nu, \mu(\nu)) \in I_{\sigma}^{*} \times I_{\sigma(\nu)}^{*}$ such that $I_{\sigma(\nu)}^{*}=I_{\sigma}^{*} \backslash\{\nu\}$, set $\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}=\mathscr{S}_{\mathfrak{g}, \nu} \cup$ $\mathscr{S}_{\mathfrak{g}, \mu(\nu)}$, where $\left\{\mathscr{S}_{\mathfrak{g}, \nu}, \mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right\} \subset \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Since $\mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right) \subseteq$ $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right)=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu}\right) \cup \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right)$, it follows that

$$
\begin{aligned}
\mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}- & \mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right) \\
& \subseteq \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right) \\
& =\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right) \subseteq \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu}\right) .
\end{aligned}
$$

Thus, for arbitrary $(\nu, \mu(\nu)) \in I_{\sigma}^{*} \times I_{\sigma(\nu)}^{*}$ such that $I_{\sigma(\nu)}^{*}=I_{\sigma}^{*} \backslash\{\nu\}$, it follows that

$$
\begin{aligned}
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left[\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\right. & \left.\circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right)\right] \\
& \subseteq \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \nu}\right)=\emptyset
\end{aligned}
$$

Since $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}$-space, it results that

$$
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right) \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right)=\emptyset
$$

and therefore, $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right) \subseteq \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right)$. On the other hand, since $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right) \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it follows that

$$
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))}\right) \subseteq \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}, \mu(\nu)}\right)=\emptyset
$$

Thus, $\mathscr{S}_{\mathfrak{g},(\nu, \mu(\nu))} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ holds for arbitrary $(\nu, \mu(\nu)) \in I_{\sigma}^{*} \times I_{\sigma(\nu)}^{*}$ such that $I_{\sigma(\nu)}^{*}=I_{\sigma}^{*} \backslash\{\nu\}$ and hence, $\bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The relation $\bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g}, \nu} \notin$ $\mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is therefore a contradiction. The proof of the proposition is complete.

Theorem 3.17. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$-set in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. If $\mathscr{S}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$-set having $\mathfrak{g}-\mathfrak{Q}_{\mathfrak{g}}$-property in $\mathfrak{T}_{\mathfrak{g}}$, then it has also $\mathfrak{Q}_{\mathfrak{g}}$-property in $\mathfrak{T}_{\mathfrak{g}}$:

$$
\begin{equation*}
\left(\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}\right)\left[\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longleftarrow \mathscr{S}_{\mathfrak{g}} \in \mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right] \tag{3.11}
\end{equation*}
$$

Proof. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{T}_{\mathfrak{g}}$-set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property in a strong $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$. Suppose $\mathscr{S}_{\mathfrak{g}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is an untrue logical statement. Then, $\mathscr{S}_{\mathfrak{g}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is true and $\mathfrak{g}-\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$ is untrue. Thus, to prove the theorem, it suffices to prove that $\mathscr{S}_{\mathfrak{g}} \notin \mathfrak{g}$-Nd [$\left.\mathfrak{T}_{\mathfrak{g}}\right]$ is a contradiction. Since $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}(\mathscr{S} \mathscr{g}) \subseteq \mathfrak{g}$ - $\operatorname{Int}_{\mathfrak{g}} \circ \mathrm{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$, it follows that $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Consequently,

$$
\operatorname{int}_{\mathfrak{g}}\left[\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right] \subseteq \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)
$$

Since $\mathscr{S}_{\mathfrak{g}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}$-space, it follows that int ${ }_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$ and therefore, $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathrm{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\emptyset$. Since $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \subseteq$ $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$, it results that

$$
\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cap \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\emptyset
$$

implying $\mathfrak{g}-$ Int $_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. Hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The relation $\mathscr{S}_{\mathfrak{g}} \notin$ $\mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is therefore a contradiction. The proof of the theorem is complete.

The important remark given below ends the present section.

Remark. In a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$, the converse of the following statements with respect to some $\mathfrak{T}_{\mathfrak{g}}$-set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ are in general untrue:

- I. $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$,
- II. $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$,
- III. $\left(\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \vee\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \longrightarrow \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$.

Because, in the event that $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)=\left(\mathbb{R}, \mathscr{T}_{\mathfrak{g}, \mathbb{R}}\right)=\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}$ and $\mathscr{S}_{\mathfrak{g}}=\mathbb{Q}(\mathbb{Q}$ and \mathbb{R}, respectively, denote the sets of rational and real numbers, where $\mathbb{R} \supset \mathbb{Q}$), the converse of ITEMS I.,II. and III., reading

> - IV. $\mathbb{Q} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right] \longleftarrow \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}(\mathbb{Q}) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]$,
> - V. $\mathbb{Q} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{q}, \mathbb{R}}\right] \longleftarrow \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}(\mathbb{Q}) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]$,
> - VI. $\left(\mathbb{Q} \in \mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]\right) \vee\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}(\mathbb{Q}) \in \mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]\right) \longleftarrow \mathbb{Q} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]$,
respectively, are all untrue. In fact, every $\mathscr{T}_{\mathfrak{g}}$-open set $\mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g}, \mathbb{R}}$ contains both points $\xi \in \mathbb{Q}$ and $\zeta \in \mathbb{R} \backslash \mathbb{Q}$. Consequently, there are no \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-interior points of \mathbb{Q}. Therefore, \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}}(\mathbb{Q})=\emptyset$ and $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}(\mathbb{Q})=\mathbb{R}$ and thus, \mathfrak{g}-P $\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right] \ni \mathbb{R}=$ $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}(\mathbb{R})=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}(\mathbb{Q}) \neq \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}(\mathbb{Q})=\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}(\emptyset)=\emptyset \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right] ;$ $\left(\mathbb{Q}, \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}(\mathbb{Q})\right) \notin \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right] \times \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]$. In ITEMS IV., V. and VI., the consequents $\mathbb{Q} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right], \mathbb{Q} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]$ and $\left(\mathbb{Q} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]\right) \vee\left(\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}(\mathbb{Q}) \in\right.$ $\mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}]}\right]$ are all untrue and on the other hand, their antecedents $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}(\mathbb{Q}) \in$ $\mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right], \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}(\mathbb{Q}) \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]$ and $\mathbb{Q} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right]$ are all true. Consequently, ITEMS IV., V. and Vi. are all untrue statements and hence, the converse of ITEMS I., II. and III. are untrue statements. In addition, since $\left(\mathbb{Q}, \mathfrak{g}\right.$ - $\left.\mathrm{Op}_{\mathfrak{g}}(\mathbb{Q})\right) \notin$ $\mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}, \mathbb{R}}\right] \times \mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}, \mathbb{R}\right]$ it follows that, for some $\mathfrak{T}_{\mathfrak{g}}$-set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$, the condition $\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ can be satisfied without the condition $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ being satisfied, though $\mathscr{O}_{\mathfrak{g}} \cap \mathfrak{g}-\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \neq \emptyset$ for every $\mathscr{O}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is a consequence of $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$.

4. Discussion

4.1. Categorical Classifications. Having adopted a categorical approach in the classifications of $\mathfrak{T}_{\mathfrak{a}}$-sets with $\left\{\mathfrak{g}-\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}\right.$ - $\left.\mathfrak{P}_{\mathfrak{a}}\right\}$-property, the twofold purposes here are, firstly, to establish the various relationships amongst the classes of $\mathfrak{T}_{\mathfrak{a}}$-sets with \mathfrak{g} - $\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}$ - $\mathfrak{Q}_{\mathfrak{a}}$-properties, $\mathfrak{a} \in\{\mathfrak{o}, \mathfrak{g}\}$, in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}$, and secondly, to illustrate them through diagrams.

In a $\mathscr{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{g}}$, since $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{a}}\right]$ implies $\bigvee_{\nu \in I_{3}^{0}}\left(\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\right.$ - ν-P $\left.\left[\mathfrak{T}_{\mathfrak{a}}\right]\right)$, it follows that, $\mathfrak{g}-\mathfrak{P}_{\mathfrak{a}} \longleftarrow \mathfrak{g}-\nu-\mathfrak{P}_{\mathfrak{a}}$ for each $\nu \in I_{3}^{0}$. Therefore, $\mathfrak{g}-0-\mathfrak{P}_{\mathfrak{a}} \longrightarrow \mathfrak{g}-1-\mathfrak{P}_{\mathfrak{a}} \longrightarrow$ $\mathfrak{g}-3-\mathfrak{P}_{\mathfrak{a}} \longleftarrow \mathfrak{g}-2-\mathfrak{P}_{\mathfrak{a}}$. But, $\mathfrak{g}-\nu-\mathfrak{P}_{\mathfrak{g}} \longleftarrow \mathfrak{g}-\nu-\mathfrak{P}_{\mathfrak{o}}$ for each $\nu \in I_{3}^{0}$. Hence, EQ. 4.1. present itself which may well be called $\mathfrak{g}-\mathfrak{P}_{\mathfrak{a}}$-property diagram.

In terms of the class $\left\{\mathfrak{g}-\nu-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{a}}\right]: \nu \in I_{3}^{*}\right\}$, Fig. 1 present itself which may well be called $\mathfrak{g}-\mathfrak{P}_{\mathfrak{a}}$-class diagram.

Figure 1. Relationships: $\mathfrak{g}-\mathfrak{P}_{\mathfrak{a}}$-class diagram in the $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}$.
In $\mathfrak{T}_{\mathfrak{a}}$, since $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\mathrm{Q}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ implies $\bigvee_{\nu \in I_{3}^{0}}\left(\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\nu-\mathrm{Q}\left[\mathfrak{T}_{\mathfrak{a}}\right]\right)$, it follows that, $\mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}} \longleftarrow \mathfrak{g}-\nu-\mathfrak{Q}_{\mathfrak{a}}$ for every $\nu \in I_{3}^{0}$. Therefore, $\mathfrak{g}-0-\mathfrak{Q}_{\mathfrak{a}} \longrightarrow \mathfrak{g}-1-\mathfrak{Q}_{\mathfrak{a}} \longrightarrow \mathfrak{g}-3-\mathfrak{Q}_{\mathfrak{a}} \longleftarrow$ $\mathfrak{g}-2-\mathfrak{Q}_{\mathfrak{a}}$. But, $\mathfrak{g}-\nu-\mathfrak{Q}_{\mathfrak{o}} \longrightarrow \mathfrak{g}-\nu-\mathfrak{Q}_{\mathfrak{g}}$ for each $\nu \in I_{3}^{0}$. Thus, EQ. 4.2 present itself which may well be called \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{a}}$-property diagram.

In terms of the class $\left\{\mathfrak{g}-\nu-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right]: \nu \in I_{3}^{*}\right\}$, Fig. 2 present itself which may well be called \mathfrak{g} - $\mathfrak{a}_{\mathfrak{a}}$-class diagram.

In $\mathfrak{T}_{\mathfrak{a}}$, since $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right], \mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ and $\mathscr{S}_{\mathfrak{a}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ imply $\mathscr{S}_{\mathfrak{a}} \in$ $\mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{a}}\right], \mathscr{S}_{\mathfrak{a}} \in \mathrm{P}\left[\mathfrak{T}_{\mathfrak{a}}\right]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right]$, respectively, it follows that $\mathfrak{Q}_{\mathfrak{a}} \longrightarrow$ $\mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}} \longrightarrow \mathfrak{g}-\mathfrak{P}_{\mathfrak{a}} \longrightarrow \mathfrak{P}_{\mathfrak{g}}$ in $\mathfrak{T}_{\mathfrak{g}}$. Finally, $\mathscr{S}_{\mathfrak{a}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{o}}\right]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{o}}\right]$ imply $\mathscr{S}_{\mathfrak{a}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-N d\left[\mathfrak{T}_{\mathfrak{g}}\right]$, respectively, and, $\mathscr{S}_{\mathfrak{a}} \in \mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ imply $\mathscr{S}_{\mathfrak{a}} \in \mathrm{P}\left[\mathfrak{T}_{\mathfrak{o}}\right]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{o}}\right]$, respectively. Altogether, Eq. (4.3) present itself which may well be called $\left(\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{P}_{\mathfrak{a}} ; \mathfrak{Q}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}}\right)$-properties diagram.

$$
\begin{array}{cccccccc}
\mathfrak{Q}_{\mathfrak{o}} & \longrightarrow & \mathfrak{g}-\mathfrak{Q}_{\mathfrak{o}} & \longrightarrow & & \mathfrak{g}-\mathfrak{P}_{\mathfrak{o}} & \longrightarrow & \longrightarrow \tag{4.3}\\
\downarrow_{\mathfrak{o}} & & \downarrow^{\downarrow} & & \uparrow & & & \uparrow \\
\mathfrak{Q}_{\mathfrak{g}} & \longrightarrow & \mathfrak{g}-\mathfrak{Q}_{\mathfrak{g}} & \longrightarrow & \mathfrak{g}-\mathfrak{P}_{\mathfrak{g}} & \longrightarrow & & \mathfrak{P}_{\mathfrak{g}}
\end{array}
$$

In terms of the class $\left\{\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right], \mathrm{P}\left[\mathfrak{T}_{\mathfrak{a}}\right], \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right], \mathfrak{g}\right.$-P $\left.\left[\mathfrak{T}_{\mathfrak{a}}\right]\right\}$, FIG. 3 present itself which may well be called $\left(\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{P}_{\mathfrak{a}} ; \mathfrak{Q}_{\mathfrak{a}}, \mathfrak{g}\right.$ - $\left.\mathfrak{Q}_{\mathfrak{a}}\right)$-classes diagram.

As in our previous works [1, 2, 19, 20, the manner we have positioned the arrows in the $\mathfrak{g}-\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}},\left(\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{P}_{\mathfrak{a}} ; \mathfrak{Q}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}}\right)$-properties diagrams (EQS 4.1),

Figure 2. Relationships: \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{a}}$-property diagram in the $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}$.

Figure 3. Relationships: $\left(\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{X}_{\mathfrak{a}} ; \mathfrak{Q}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}}\right)$-classes diagram in the $\mathscr{T}_{\mathfrak{G}}$-space $\mathfrak{T}_{\mathfrak{g}}$.
(4.2), (4.3) and the $\mathfrak{g}-\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}},\left(\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{P}_{\mathfrak{a}} ; \mathfrak{Q}_{\mathfrak{a}}, \mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}}\right)$-classes diagrams (Figs 1,2 , 3) is solely to stress that, in general, the implications in EqS 4.1)-4.3 and FIGS 1.3 are irreversible.
4.2. A Nice Application. It is the purpose of this section to reveal through a nice application some characterizations on the commutativity of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closure operators, and to give some other characterizations associated with $\mathfrak{T}_{\mathfrak{g}}$-sets having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}, \mathfrak{g}$ - $\mathfrak{Q}_{\mathfrak{g}}$-properties in a $\mathscr{T}_{\mathfrak{g}}$-space. Consider the $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}}=\left(\Omega, \mathscr{T}_{\mathfrak{g}}\right)$, where $\Omega=\left\{\zeta_{\nu}: \nu \in I_{5}^{*}\right\}$ and is topologized by the choice:

$$
\begin{align*}
\mathscr{T}_{\mathfrak{g}}(\Omega) & =\left\{\emptyset,\left\{\zeta_{1}\right\},\left\{\zeta_{1}, \zeta_{3}, \zeta_{5}\right\}, \Omega\right\}=\left\{\mathscr{O}_{\mathfrak{g}, 1}, \mathscr{O}_{\mathfrak{g}, 2}, \mathscr{O}_{\mathfrak{g}, 3}, \mathscr{O}_{\mathfrak{g}, 4}\right\} ; \tag{4.4}\\
\neg \mathscr{T}_{\mathfrak{g}}(\Omega) & =\left\{\Omega,\left\{\zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right\},\left\{\zeta_{2}, \zeta_{4}\right\}, \emptyset\right\}=\left\{\mathscr{K}_{\mathfrak{g}, 1}, \mathscr{K}_{\mathfrak{g}, 2}, \mathscr{K}_{\mathfrak{g}, 3}, \mathscr{K}_{\mathfrak{g}, 4}\right\} . \tag{4.5}
\end{align*}
$$

For convenience of notation, let

$$
\begin{equation*}
\mathscr{P}(\Omega)=\left\{\mathscr{R}_{\mathfrak{g},(\nu, \mu)} \in \mathscr{P}(\Omega):(\nu, \mu) \in I_{\operatorname{card}(\mathscr{P}(\Omega))}^{*} \times I_{\operatorname{card}(\Omega)}^{0}\right\} \tag{4.6}
\end{equation*}
$$

where $\mathscr{R}_{\mathfrak{g},(\nu, \mu)} \in \mathscr{P}(\Omega)$ denotes a $\mathfrak{T}_{\mathfrak{g}}$-set labeled $\nu \in I_{\operatorname{card}(\mathscr{P}(\Omega))}^{*}$ and containing $\mu \in I_{\operatorname{card}(\Omega)}^{0}$ elements. Then, $\mathscr{R}_{\mathfrak{g},(1,0)}=\emptyset, \ldots, \mathscr{R}_{\mathfrak{g},(\nu, \mu)}=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{\mu}\right\}, \ldots$, $\mathscr{R}_{\mathfrak{g},(32,5)}=\Omega$.

For $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ such that $\operatorname{card}\left(\mathscr{R}_{\mathfrak{g}}\right) \in\{0,5\}$, let $\mathscr{R}_{\mathfrak{g},(1,0)}=\emptyset$ and $\mathscr{R}_{\mathfrak{g},(32,5)}=\Omega$. For $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ such that $\operatorname{card}\left(\mathscr{R}_{\mathfrak{g}}\right) \in\{1,4\}$, let $\mathscr{R}_{\mathfrak{g},(2,1)}=\left\{\zeta_{1}\right\}, \mathscr{R}_{\mathfrak{g},(3,1)}=\left\{\zeta_{2}\right\}$, $\mathscr{R}_{\mathfrak{g},(4,1)}=\left\{\zeta_{3}\right\}, \mathscr{R}_{\mathfrak{g},(5,1)}=\left\{\zeta_{4}\right\}$, and $\mathscr{R}_{\mathfrak{g},(6,1)}=\left\{\zeta_{5}\right\} ; \mathscr{R}_{\mathfrak{g},(27,4)}=\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right\}$, $\mathscr{R}_{\mathfrak{g},(28,4)}=\left\{\zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right\}, \mathscr{R}_{\mathfrak{g},(29,4)}=\left\{\zeta_{1}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right\}, \mathscr{R}_{\mathfrak{g},(30,4)}=\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{5}\right\}$, and $\mathscr{R}_{\mathfrak{g},(31,4)}=\left\{\zeta_{1}, \zeta_{2}, \zeta_{4}, \zeta_{5}\right\}$. For $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ such that card $\left(\mathscr{R}_{\mathfrak{g}}\right) \in\{2,3\}$, let
$\mathscr{R}_{\mathfrak{g},(7,2)}=\left\{\zeta_{1}, \zeta_{2}\right\}, \mathscr{R}_{\mathfrak{g},(8,2)}=\left\{\zeta_{1}, \zeta_{3}\right\}, \mathscr{R}_{\mathfrak{g},(9,2)}=\left\{\zeta_{1}, \zeta_{4}\right\}, \mathscr{R}_{\mathfrak{g},(10,2)}=\left\{\zeta_{1}, \zeta_{5}\right\}$,
$\mathscr{R}_{\mathfrak{g},(11,2)}=\left\{\zeta_{2}, \zeta_{3}\right\}, \mathscr{R}_{\mathfrak{g},(12,2)}=\left\{\zeta_{2}, \zeta_{4}\right\}, \mathscr{R}_{\mathfrak{g},(13,2)}=\left\{\zeta_{2}, \zeta_{5}\right\}, \mathscr{R}_{\mathfrak{g},(14,2)}=\left\{\zeta_{3}, \zeta_{4}\right\}$,
$\mathscr{R}_{\mathfrak{g},(15,2)}=\left\{\zeta_{3}, \zeta_{5}\right\}$, and $\mathscr{R}_{\mathfrak{g},(16,2)}=\left\{\zeta_{4}, \zeta_{5}\right\} ; \mathscr{R}_{\mathfrak{g},(17,3)}=\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}\right\}, \mathscr{R}_{\mathfrak{g},(18,3)}=$ $\left\{\zeta_{1}, \zeta_{3}, \zeta_{4}\right\}, \mathscr{R}_{\mathfrak{g},(19,3)}=\left\{\zeta_{1}, \zeta_{4}, \zeta_{5}\right\}, \mathscr{R}_{\mathfrak{g},(20,3)}=\left\{\zeta_{1}, \zeta_{2}, \zeta_{4}\right\}, \mathscr{R}_{\mathfrak{g},(21,3)}=\left\{\zeta_{1}, \zeta_{2}, \zeta_{5}\right\}$, $\mathscr{R}_{\mathfrak{g},(22,3)}=\left\{\zeta_{1}, \zeta_{3}, \zeta_{5}\right\}, \mathscr{R}_{\mathfrak{g},(23,3)}=\left\{\zeta_{2}, \zeta_{3}, \zeta_{4}\right\}, \mathscr{R}_{\mathfrak{g},(24,3)}=\left\{\zeta_{2}, \zeta_{3}, \zeta_{5}\right\}, \mathscr{R}_{\mathfrak{g},(25,3)}=$ $\left\{\zeta_{3}, \zeta_{4}, \zeta_{5}\right\}$, and $\mathscr{R}_{\mathfrak{g},(26,3)}=\left\{\zeta_{2}, \zeta_{4}, \zeta_{5}\right\}$. Then,

$$
\begin{align*}
\operatorname{int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right) \subseteq \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right) & =\mathscr{R}_{\mathfrak{g},(\nu, \mu)} \tag{4.7}\\
& =\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right) \subseteq \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right)
\end{align*}
$$

for every $(\nu, \mu) \in I_{\operatorname{card}(\mathscr{P}(\Omega))}^{*} \times I_{\operatorname{card}(\Omega)}^{0}$. Consequently,

$$
\begin{equation*}
\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right)=\mathscr{R}_{\mathfrak{g},(\nu, \mu)}=\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right) \tag{4.8}
\end{equation*}
$$

for every $(\nu, \mu) \in I_{\text {card }(\mathscr{P}(\Omega))}^{*} \times I_{\operatorname{card}(\Omega)}^{0}$. Introduce $J_{28}^{*}=I_{1}^{*} \cup\left(I_{7}^{*} \backslash I_{2}^{*}\right) \cup\left(I_{16}^{*} \backslash I_{10}^{*}\right) \cup$ $\left(I_{26}^{*} \backslash I_{22}^{*}\right) \cup\left(I_{28}^{*} \backslash I_{27}^{*}\right)$. Then,

$$
\begin{align*}
& \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right)=\emptyset=\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right), \tag{4.9}\\
& \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\delta, \eta)}\right)=\Omega=\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\delta, \eta)}\right)
\end{align*}
$$

From EQ. (4.8), it follows that $\mathfrak{g}-\mathrm{Int}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, do commute. Thus, $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is both coarser and finer (or, smaller and larger, weaker and stronger $)$ than $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$. Consequently, $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ for any $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$. Furthermore, it is easily checked from Eq. 4.8) that, $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}$-P $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue if and only if $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is true and $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue.

From EQ. 4.9), both $\mathscr{R}_{\mathfrak{g},(\nu, \mu)} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ for every $(\nu, \mu) \in J_{28}^{*} \times I_{4}^{0}$ and $\mathscr{R}_{\mathfrak{g},(\delta, \eta)} \in$ $\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ for every $(\delta, \eta) \in\left(I_{\operatorname{card}(\mathscr{P}(\Omega))}^{*} \backslash J_{28}^{*}\right) \times I_{\text {card }(\Omega)}^{0}$ are easily checked. Moreover, it results from EQS 4.8 , 4.9) that, $\mathscr{R}_{\mathfrak{g},(\nu, \mu)} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is true and $\mathscr{R}_{\mathfrak{g},(\nu, \mu)} \in \mathfrak{g}$-Nd $\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue for every $(\nu, \mu) \in\left(J_{28}^{*} \backslash I_{1}^{*}\right) \times I_{4}^{0}$. This confirms the statement that, $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longleftarrow \mathscr{R}_{\mathfrak{g}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue if and only if $\mathscr{R}_{\mathfrak{g}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is true and $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue. Observing that, for every $(\nu, \mu) \in J_{28}^{*} \times I_{4}^{0}$ and every $(\delta, \eta) \in\left(I_{\operatorname{card}(\mathscr{P}(\Omega))}^{*} \backslash J_{28}^{*}\right) \times I_{\operatorname{card}(\Omega)}^{0}$, the relations

$$
\begin{aligned}
\emptyset=\mathrm{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right) & \subseteq \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{-int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right) \\
& =\mathfrak{g}-\operatorname{-nt}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right) \supseteq \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu, \mu)}\right)=\emptyset \\
\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\delta, \eta)}\right)=\Omega & \supseteq \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\delta, \eta)}\right) \\
& =\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\delta, \eta)}\right) \subseteq \Omega=\mathrm{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\delta, \eta)}\right),
\end{aligned}
$$

respectively, hold, of which the first relation is the dual of the second, and conversely, it follows that the logical statement $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}-\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathscr{R}_{\mathfrak{g}} \in \mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is satisfied for any $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$.

5. Conclusion

In a recent paper (CF. [19]), we defined and studied the essential properties of \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closure operators in $\mathscr{T}_{\mathfrak{g}}$-spaces. We showed in a $\mathscr{T}_{\mathfrak{g}}$ space that $\left(\mathfrak{g}-\mathrm{Int}_{\mathfrak{g}}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}\right): \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$ is (Ω, \emptyset)-grounded, (expansive, non-expansive), (idempotent, idempotent) and (\cap, \cup)-additive. We also showed in a $\mathscr{T}_{\mathfrak{g}}$-space that $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is finer (or, larger, stronger)
than $\operatorname{int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is coarser (or, smaller, weaker) than $\mathrm{cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$.

In this paper, we have studied in $\mathscr{T}_{\mathfrak{g}}$-spaces the commutativity of \mathfrak{g} - $\operatorname{Int}_{\mathfrak{g}}, \mathfrak{g}$ - $\mathrm{Cl}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathfrak{T}_{\mathfrak{g}}$-sets having some $\left(\mathfrak{g}\right.$ - $\mathrm{Int}_{\mathfrak{g}}, \mathfrak{g}$-Cl $\left.\mathfrak{g}_{\mathfrak{g}}\right)$-based properties called $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}, \mathfrak{g}$ - $\mathfrak{Q}_{\mathfrak{g}}$-properties. We have shown that the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-operators \mathfrak{g}-Int $\mathfrak{g}_{\mathfrak{g}}$, \mathfrak{g}-Cl $\mathfrak{g}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ are duals and $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property is preserved under their \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ operations. We have also shown that a $\mathfrak{T}_{\mathfrak{g}}$-set having $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property is equivalent to the $\mathfrak{T}_{\mathfrak{g}}$-set or its complement having $\mathfrak{g}-\mathfrak{Q}_{\mathfrak{g}}$-property. The \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$-property is preserved under the set-theoretic \cup-operation and $\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}$-property is preserved under the settheoretic $\{\cup, \cap, C\}$-operations. Finally, a $\mathfrak{T}_{\mathfrak{g}}$-set having $\left\{\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}, \mathfrak{g}\right.$ - $\left.\mathfrak{Q}_{\mathfrak{g}}\right\}$-property also has $\left\{\mathfrak{P}_{\mathfrak{g}}, \mathfrak{Q}_{\mathfrak{g}}\right\}$-property.

An interestingly promising avenue for future research arises if the theorization of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$-interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$-closure operators of mixed categories in $\mathscr{T}_{\mathfrak{g}}$-spaces be made a new subject of inquiry. For instance, for some pair $(\nu, \mu) \in I_{3}^{0} \times I_{3}^{0}$ such that $\nu \neq \mu$, to study the \mathfrak{g} - $(\nu, \mu)-\mathfrak{T}_{\mathfrak{g}}$-interior and \mathfrak{g} - $(\nu, \mu)-\mathfrak{T}_{\mathfrak{g}}$-closure operators $\mathfrak{g}-\mathrm{Int}_{\mathfrak{g}, \nu \mu}, \mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \nu \mu}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ respectively, in $\mathscr{T}_{\mathfrak{g}}$-spaces, where $\mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \nu \mu}: \mathscr{S}_{\mathfrak{g}} \longmapsto \mathfrak{g}-\operatorname{Int}_{\mathfrak{g}, \nu \mu}\left(\mathscr{S}_{\mathfrak{g}}\right)$ describes a type of collection of points interior in $\mathscr{S}_{\mathfrak{g}}$ and interiorness are characterized by $\mathfrak{g}(\nu, \mu)-\mathfrak{T}_{\mathfrak{g}}$-open sets belonging to the class $\left\{\mathscr{O}_{\mathfrak{g}}=\mathscr{O}_{\mathfrak{g}, \nu} \cup \mathscr{O}_{\mathfrak{g}, \mu}: \quad\left(\mathscr{O}_{\mathfrak{g}, \nu}, \mathscr{O}_{\mathfrak{g}, \mu}\right) \in \mathfrak{g}-\nu-\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}-\mu\right.$ - $\left.\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right\} ;$ $\mathfrak{g}-\mathrm{Cl}_{\mathfrak{g}, \nu \mu}: \mathscr{S}_{\mathfrak{g}} \longmapsto \mathfrak{g}^{-} \mathrm{Cl}_{\mathfrak{g}, \nu \mu}\left(\mathscr{S}_{\mathfrak{g}}\right)$ describes a type of collection of points close to $\mathscr{S}_{\mathfrak{g}}$ and closeness are characterized by $\mathfrak{g}(\nu, \mu)-\mathfrak{T}_{\mathfrak{g}}$-closed sets belonging to the class $\left\{\mathscr{K}_{\mathfrak{g}}=\mathscr{K}_{\mathfrak{g}, \nu} \cap \mathscr{K}_{\mathfrak{g}, \mu}: \quad\left(\mathscr{K}_{\mathfrak{g}, \nu}, \mathscr{K}_{\mathfrak{g}, \mu}\right) \in \mathfrak{g}-\nu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] \times \mathfrak{g}-\mu-\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right\}$. Such a study is what we thought would be worth considering, and the discussion of this paper ends here.

Author Contributions. All authors contributed equally to this work. They all read and approved the last version of the manuscript.

Conflict of Interest. The authors declare no conflict of interest.

Acknowledgments. The authors would like to express their sincere thanks to Prof. (Dr.) Endre Makai, Jr. (Professor Emeritus of the Mathematical Institute of the Hungarian Academy of Sciences) for his valuable suggestions.

References

[1] M. I. Khodabocus and N. -U. -H. Sookia, Theory of Generalized Sets in Generalized Topological Spaces, Journal of New Theory 36 (2021) 18-38.
[2] M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius, Réduit, Mauritius (2020) 1-311 (i.-xxxvi.).
[3] S. -M. Jung and D. Nam, Some Properties of Interior and Closure in General Topology, Mathematics (MDPI Journal) 7 (624) (2019) 1-10.
[4] Y. Lei and J. Zhang, Generalizing Topological Set Operators, Electronic Notes in Theoretical Science 345 (2019) 63-76.
[5] A. Gupta and R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, Math. Appl. 6 (2017) 11-20.
[6] R. Rajendiran and M. Thamilselvan, Properties of $g^{*} s^{*}$-Closure, $g^{*} s^{*}$-Interior and $g^{*} s^{*}$ Derived Sets in Topological Spaces, Applied Mathematical Sciences 8(140) (2014) 6969-6978.
[7] B. K. Tyagi and R. Choudhary, On Generalized Closure Operators in Generalized Topological Spaces, International Journal of Computer Applications $82(15)$ (2013) 1-5.
[8] C. Cao and B. Wang and W. Wang, Generalized Topologies, Generalized Neighborhood Systems, and Generalized Interior Operators, Acta Math. Hungar. 132(4) (2011) 310-315.
[9] V. Pankajam, On the Properties of δ-Interior and δ-Closure in Generalized Topological Spaces, International Journal for Research in Mathematical Archive 2(8) (2011) 1321-1332.
[10] B. J. Gardner and M. Jackson, The Kuratowski Closure-Complement Theorem, New Zealand Journal of Mathematics 38 (2008) 9-44.
[11] Á. Császár, Further Remarks on the Formula for γ-Interior, Acta Math. Hungar. 113(4) (2006) 325-332.
[12] Á. Császár, On the γ-Interior and γ-Closure of a Set, Acta Math. Hungar. 80 (1998) 89-93.
[13] H. Ogata, Operations on Topological Spaces and Associated Topology, Math. Japonica 36 (1991) 175-184.
[14] I. Z. Kleiner, Closure and Boundary Operators in Topological Spaces, Ukr Math. J. 29 (1977) 295-296.
[15] F. R. Harvey, The Derived Set Operator, The American Mathematical Monthly 70(10) (1963) 1085-1086.
[16] D. H. Staley, On the Commutivity of the Boundary and Interior Operators in a Topological Space, The Ohio Journal of Science 68(2):84 (1968).
[17] N. Levine, On the Commutivity of the Closure and Interior Operators in Topological Spaces, Amer. Math. Monthly 68(5) (1961) 474-477.
[18] C. Kuratowski, Sur l'Opération \bar{A} de l'Analyse Situs, Fund. Math. 3 (1922) 182-199.
[19] M. I. Khodabocus and N. -Ul. -H. Sookia, Generalized Topological Operator Theory in Generalized Topological Spaces: Part I. Generalized Interior and Generalized Closure, Proceedings of International mathematical Sciences 5(1) (2023) 6-36.
[20] M. I. Khodabocus and N. -U. -H. Sookia, Theory of Generalized Separation Axioms in Generalized Topological Spaces, Journal of Universal Mathematics 5(1) (2022) 1-23.
[21] Á. Császár, Generalized Open Sets in Generalized Topologies, Acta Math. Hungar. 106(1-2) (2005) 53-66.
[22] V. Pavlović and A. S. Cvetković, On Generalized Topologies arising from Mappings, Vesnik 38(3) (2012) 553-565.
[23] Á. Császár, Remarks on Quasi-Topologies, Acta Math. Hungar. 119(1-2) (2008) 197-200.
Mohammad Irshad KhODABOCUS,
Department of Emerging Technologies, Faculty of Sustainable Development and Engineering, Université des Mascareignes, Rose Hill Campus, Mauritius, Phone: (+230) 460 9500 Orcid Number: 0000-0003-2252-4342

Email address: ikhodabocus@udm.ac.mu
Noor-Ul-Hace SOOKIA,
Department of Mathematics, Faculty of Science, University of Mauritius, Réduit, Mauritius, Phone: $(+230) 4037492$ Orcid Number: 0000-0002-3155-0473

Email address: sookian@uom.ac.mu

[^0]: 2020 Mathematics Subject Classification. Primary: 54A05; Secondaries: 54A99.
 Key words and phrases. Generalized topological space; generalized sets; generalized interior operator; generalized closure operator.
 (C)2023 Proceedings of International Mathematical Sciences.

 Submitted on 03.12.2022. Accepted on 02.05.2023.

