Proceedings of International Mathematical Sciences

ISSN: 2717-6355, URL: https://dergipark.org.tr/tr/pub/pims

Volume 5 Issue 1 (2023), Pages 37-62

Doi:https://doi.org/10.47086/pims.1214064

GENERALIZED TOPOLOGICAL OPERATOR THEORY IN GENERALIZED TOPOLOGICAL SPACES

PART II. GENERALIZED INTERIOR AND GENERALIZED CLOSURE

MOHAMMAD IRSHAD KHODABOCUS* AND NOOR-UL-HACQ SOOKIA**
*DEPARTMENT OF EMERGING TECHNOLOGIES, FACULTY OF SUSTAINABLE
DEVELOPMENT AND ENGINEERING, UNIVERSITÉ DES MASCAREIGNES, ROSE HILL
CAMPUS, MAURITIUS. ORCID NUMBER: 0000-0003-2252-4342
**DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF
MAURITIUS, RÉDUIT, MAURITIUS. ORCID NUMBER: 0000-0002-3155-0473

ABSTRACT. In a recent paper (Cf. [19]), we have presented the definitions and the essential properties of the generalized topological operators $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}},$ $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\ :\ \mathscr{P}\left(\Omega\right)\ \longrightarrow\ \mathscr{P}\left(\Omega\right)\ (\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}interior\ \mathrm{and}\ \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}closure\ operators})\ \mathrm{in}\ \mathrm{a}$ generalized topological space $\mathfrak{T}_{\mathfrak{g}}=(\Omega,\mathscr{T}_{\mathfrak{g}})$ $(\mathscr{T}_{\mathfrak{g}}\text{-space}).$ Principally, we have shown that $(\mathfrak{g}\text{-Int}_{\mathfrak{g}}, \mathfrak{g}\text{-Cl}_{\mathfrak{g}}) : \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$ is (Ω, \emptyset) grounded, (expansive, non-expansive), (idempotent, idempotent) and (\cap, \cup) additive. We have also shown that $\mathfrak{g}\text{-Int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is finer (or, larger, stronger) than $\operatorname{int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathfrak{g}\text{-Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is coarser (or, smaller, weaker) than $\operatorname{cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$. In this paper, we study the commutativity of $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}},\ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\ :\ \mathscr{P}\left(\Omega\right)\ \longrightarrow\ \mathscr{P}\left(\Omega\right)$ and $\mathfrak{T}_{\mathfrak{g}}\text{-sets having some } \big(\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big)\text{-based properties } \big(\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}},\ \mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}\text{-}properties\big)$ in $\mathcal{I}_{\mathfrak{g}}$ -spaces. The main results of the study are: The \mathfrak{g} - $\mathfrak{I}_{\mathfrak{g}}$ -operators \mathfrak{g} -Int \mathfrak{g} , $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}:\mathscr{P}(\Omega)\longrightarrow\mathscr{P}(\Omega)$ are duals and $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}\text{-}$ property is preserved under their $\mathfrak{g-T_g-}operations. \ A \ \mathfrak{T_g-}set \ having \ \mathfrak{g-P_g-}property \ is \ equivalent \ to \ the \ \mathfrak{T_g-}set \ or \ its \ complement \ having \ \mathfrak{g-Q_g-}property. \ The \ \mathfrak{g-Q_g-}property \ is \ preserved \ under \ property \ is \ preserved \ under \ property \ is \ preserved \ under \ property \ is \ preserved \ property \ prope$ the set-theoretic \cup -operation and \mathfrak{g} - $\mathfrak{P}_{\mathfrak{q}}$ -property is preserved under the settheoretic $\{\cup, \cap, \mathbb{C}\}$ -operations. Finally, a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\{\mathfrak{g}-\mathfrak{P}_{\mathfrak{g}}, \mathfrak{g}-\mathfrak{Q}_{\mathfrak{g}}\}$ -property also has $\{\mathfrak{P}_{\mathfrak{g}},\mathfrak{Q}_{\mathfrak{g}}\}$ -property.

1. Introduction

Many mathematicians have studied several kinds of ordinary and generalized topological operators ($\mathfrak{T}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -operators) in ordinary ($\mathfrak{a} = \mathfrak{o}$) and generalized ($\mathfrak{a} = \mathfrak{g}$) topological spaces ($\mathscr{T}_{\mathfrak{a}}$ -spaces) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

Jung and Nam [3] have used the $\mathfrak{T}_{\mathfrak{o}}$ -interior and $\mathfrak{T}_{\mathfrak{o}}$ -closure operators $(\cdot)^{\circ}$, (\cdot) : $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ to establish several necessary and sufficient conditions related

²⁰²⁰ Mathematics Subject Classification. Primary: 54A05; Secondaries: 54A99.

Key words and phrases. Generalized topological space; generalized sets; generalized interior operator; generalized closure operator.

^{©2023} Proceedings of International Mathematical Sciences.

Submitted on 03.12.2022. Accepted on 02.05.2023.

to openness and closeness properties of sets in a \mathscr{T}_0 -space. Lei and Zhang [4] have considered the \mathfrak{T}_0 -interior and \mathfrak{T}_0 -closure operators Int , $\operatorname{Cl}:\mathscr{P}(\Omega)\to\mathscr{P}(\Omega)$ in studying some topological characterizations axiomatically in \mathscr{T}_0 -spaces. Gupta and Sarma [5] have established a variety of generalized sets $(\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}-sets)$ under the possible compositions of the $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -interior and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -closure operators i_{γ} , $c_{\gamma}:\mathscr{P}(\Omega)\to\mathscr{P}(\Omega)$ (γ -interior and γ -closure operators), respectively, where $\gamma\in\{\alpha,\beta,\pi,\sigma\}$, in $\mathscr{T}_{\mathfrak{g}}$ -spaces. Rajendiran and Thamilselvan [6] have studied the $\mathfrak{g}-\mathfrak{T}_0$ -interior and $\mathfrak{g}-\mathfrak{T}_0$ -closure operators $\mathfrak{g}^*\mathfrak{s}^*$ Int, $\mathfrak{g}^*\mathfrak{s}^*$ Cl: $\mathscr{P}(\Omega)\to\mathscr{P}(\Omega)$ ($\mathfrak{g}^*\mathfrak{s}^*$ -interior and $\mathfrak{g}^*\mathfrak{s}^*$ -closure operators), respectively, in \mathscr{T}_0 -spaces. In $\mathscr{T}_{\mathfrak{g}}$ -spaces, Tyagi and Choudhary [7] have study stronger forms of $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -interior and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -closure operators $I_{(\cdot)}$, $C_{(\cdot)}:\mathscr{P}(\Omega)\to\mathscr{P}(\Omega)$ while Pankajam, V. [9] has presented some properties of the $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -interior and $\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}$ -closure operators i_{δ} , $c_{\delta}:\mathscr{P}(\Omega)\to\mathscr{P}(\Omega)$ (δ -interior and δ -closure operators), respectively, to mention but a few references.

Despite these references, in regard to the study of the commutativity of $\mathfrak{T}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -operators in $\mathscr{T}_{\mathfrak{a}}$ -spaces ($\mathfrak{a} \in \{\mathfrak{o},\mathfrak{g}\}$), the literature is, to our knowledge, almost void of studies in this direction [17, 16]. Levine, N. [17] has studied the commutativity of the $\mathfrak{T}_{\mathfrak{o}}$ -interior and $\mathfrak{T}_{\mathfrak{o}}$ -closure operators int₀, $\operatorname{cl}_{\mathfrak{o}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{a}}$ -space. Staley, D. H. [16] has presented some characterizations of ordinary sets ($\mathfrak{T}_{\mathfrak{o}}$ -sets) for which the $\mathfrak{T}_{\mathfrak{o}}$ -interior operator $\operatorname{int}_{\mathfrak{o}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ commutes with the $\mathfrak{T}_{\mathfrak{o}}$ -boundary operator $\operatorname{bd}_{\mathfrak{o}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ in a $\mathscr{T}_{\mathfrak{o}}$ -space. In general, since $\mathfrak{T}_{\mathfrak{o}} = (\Omega, \mathscr{T}_{\mathfrak{o}}) \neq (\Omega, \mathscr{T}_{\mathfrak{g}}) = \mathfrak{T}_{\mathfrak{g}}$ by virtue of $\mathscr{T}_{\mathfrak{o}} \neq \mathscr{T}_{\mathfrak{g}}$ and, ($\operatorname{int}_{\mathfrak{a}}$, $\operatorname{cl}_{\mathfrak{a}}$) \neq (\mathfrak{g} -Int_a, \mathfrak{g} -Cl_a) for each $\mathfrak{a} \in \{\mathfrak{o},\mathfrak{g}\}$, so it seems reasonable to expect the existence of nice and interesting results in a $\mathscr{T}_{\mathfrak{g}}$ -space with respect to those established by Levine, N. [17] and Staley, D. H. [16] in a $\mathscr{T}_{\mathfrak{o}}$ -space.

Having made the study of the essential properties of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closure operators \mathfrak{g} -Int $_{\mathfrak{g}}$, \mathfrak{g} -Cl $_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, in $\mathscr{T}_{\mathfrak{g}}$ -spaces one subject of inquiry (Cf. [19]), the study of the commutativity properties of these \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces may be made another subject of inquiry. In this paper, we endeavor to undertake such inquiry.

The rest of the paper is structured as thus: In Sect. 2, necessary and sufficient preliminary notions are described in Subsects 2.1, 2.2 and the main results are reported in Sect. 3. In Sect. 4, the establishment of the various relationships between these \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operators are discussed in Sects 4.1. To support the work, a nice application of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closure operators in a $\mathscr{T}_{\mathfrak{g}}$ -space is presented in Sect. 4.2. Finally, the work is concluded in Sect. 5.

2. Theory

2.1. **Necessary Preliminaries.** As in Part I. (Cf. [19]), the standard reference for notations and concepts is the Ph.D. Thesis of Khodabocus, M. I. [2].

Herein, $\mathfrak U$ symbolizes the *universe* of discourse, fixed within the framework of $\mathfrak T_{\mathfrak a}$, $\mathfrak g$ - $\mathfrak T_{\mathfrak a}$ -operator theory in $\mathscr T_{\mathfrak a}$ -spaces, $\mathfrak a \in \{\mathfrak o,\mathfrak g\}$, and containing *underlying sets*, underlying subsets, and so forth. By convention, the relation $(\alpha_1,\alpha_2,\ldots) \operatorname{R} \mathscr A_1 \times \mathscr A_2 \times \cdots$ means $\alpha_1 \operatorname{R} \mathscr A_1$, $\alpha_2 \operatorname{R} \mathscr A_2$, ... where $\operatorname{R} = \in$, \subset , \subset , The pairs $(I_n^0,I_n^*) \subset \mathbb Z_+^0 \times \mathbb Z_+^*$ and $(I_\infty^0,I_\infty^*) \sim \mathbb Z_+^0 \times \mathbb Z_+^*$ are pairs of *finite* and *infinite index sets* [1, 2].

Definition 2.1 ($\mathscr{T}_{\mathfrak{a}}$ -Space [1, 2]). A $\mathscr{T}_{\mathfrak{a}}$ -space is a topological structure $\mathfrak{T}_{\mathfrak{a}} \stackrel{\mathrm{def}}{=} (\Omega, \mathscr{T}_{\mathfrak{a}})$ in which $\Omega \subset \mathfrak{U}$ is an underlying set and $\mathscr{T}_{\mathfrak{a}} : \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is

an \mathfrak{a} -topology satisfying the compound $\mathscr{T}_{\mathfrak{a}}$ -axiom:

$$\operatorname{Ax}\left(\mathscr{T}_{\mathfrak{a}}\right) \overset{\operatorname{def}}{\longleftrightarrow} \begin{cases} \left(\mathscr{T}_{\mathfrak{o}}\left(\emptyset\right) = \emptyset\right) \wedge \left(\mathscr{T}_{\mathfrak{o}}\left(\mathscr{O}_{\mathfrak{o},\nu}\right) \subseteq \mathscr{O}_{\mathfrak{o},\nu}\right) \\ \wedge \left(\mathscr{T}_{\mathfrak{o}}\left(\bigcap_{\nu \in I_{n}^{*}} \mathscr{O}_{\mathfrak{o},\nu}\right) = \bigcap_{\nu \in I_{n}^{*}} \mathscr{T}_{\mathfrak{o}}\left(\mathscr{O}_{\mathfrak{o},\nu}\right)\right) \\ \wedge \left(\mathscr{T}_{\mathfrak{o}}\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathscr{O}_{\mathfrak{o},\nu}\right) = \bigcup_{\nu \in I_{\infty}^{*}} \mathscr{T}_{\mathfrak{o}}\left(\mathscr{O}_{\mathfrak{o},\nu}\right)\right) \\ \left(\mathscr{T}_{\mathfrak{g}}\left(\emptyset\right) = \emptyset\right) \wedge \left(\mathscr{T}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g},\nu}\right) \subseteq \mathscr{O}_{\mathfrak{g},\nu}\right) \\ \wedge \left(\mathscr{T}_{\mathfrak{g}}\left(\bigcup_{\nu \in I_{\infty}^{*}} \mathscr{O}_{\mathfrak{g},\nu}\right) = \bigcup_{\nu \in I_{\infty}^{*}} \mathscr{T}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g},\nu}\right)\right) \quad (\mathfrak{a} = \mathfrak{g}). \end{cases}$$

By assumption, the $\mathcal{T}_{\mathfrak{a}}$ -space is void of any $\mathfrak{T}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -separation axioms (ordinary and generalized separation axioms) unless otherwise stated [1, 2, 20]. If $\mathfrak{a} = \mathfrak{o}$ (ordinary), then $Ax(\mathcal{T}_o)$ stands for an \mathfrak{o} -topology (ordinary topology) and $\mathfrak{T}_o =$ $(\Omega, \mathscr{T}_0) = (\Omega, \mathscr{T}) = \mathfrak{T}$ is called a \mathscr{T}_0 -space (ordinary topological space) and if $\mathfrak{a} = \mathfrak{g}$ (generalized), then $\operatorname{Ax}(\mathscr{T}_{\mathfrak{g}})$ stands for a \mathfrak{g} -topology (generalized topology) and $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is called a $\mathscr{T}_{\mathfrak{g}}$ -space (generalized topological space). If $\Omega \in \mathscr{T}_{\mathfrak{g}}$, then $\mathfrak{T}_{\mathfrak{a}}$ is a strong $\mathscr{T}_{\mathfrak{a}}$ -space [2, 21, 22] and if $\mathscr{T}_{\mathfrak{g}}\left(\bigcap_{\nu\in I_n^*}\mathscr{O}_{\mathfrak{g},\nu}\right)=\bigcap_{\nu\in I_n^*}\mathscr{T}_{\mathfrak{g}}\left(\mathscr{O}_{\mathfrak{g},\nu}\right)$ for any $I_n^*\subset I_\infty^*$, then $\mathfrak{T}_{\mathfrak{g}}$ is a quasi $\mathscr{T}_{\mathfrak{g}}$ -space [2, 23]. The notations $\Gamma\subset\Omega$, $\begin{array}{l} \mathcal{O}_{\mathfrak{a}} \in \mathcal{J}_{\mathfrak{a}}, \, \mathcal{K}_{\mathfrak{a}} \in \neg \mathcal{T}_{\mathfrak{a}} \stackrel{\text{def}}{=} \left\{ \mathcal{K}_{\mathfrak{a}} : \, \mathsf{C}_{\Omega} \left(\mathcal{K}_{\mathfrak{a}} \right) \in \mathcal{T}_{\mathfrak{a}} \right\} \, \text{and} \, \, \mathcal{I}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}} \, \text{state that} \, \, \Gamma, \, \mathcal{O}_{\mathfrak{a}}, \\ \mathcal{K}_{\mathfrak{a}} \, \, \text{and} \, \, \mathcal{I}_{\mathfrak{a}} \, \, \text{are a} \, \, \Omega \text{-subset}, \, \, \mathcal{T}_{\mathfrak{a}} \text{-open set}, \, \, \mathcal{T}_{\mathfrak{a}} \text{-closed set} \, \, \text{and} \, \, \mathfrak{T}_{\mathfrak{a}} \text{-set}, \, \, \text{respectively} \\ [1, \, 2]. \, \, \text{The operators} & \inf_{\mathfrak{a}}, \, \operatorname{cl}_{\mathfrak{a}} : \, \, \mathcal{P} \left(\Omega \right) \\ \mathcal{I}_{\mathfrak{a}} \, \, \longmapsto \operatorname{int}_{\mathfrak{a}} \left(\mathcal{I}_{\mathfrak{a}} \right), \, \operatorname{cl}_{\mathfrak{a}} \left(\mathcal{I}_{\mathfrak{a}} \right) & \text{are the} \, \, \mathfrak{T}_{\mathfrak{a}} \text{-} \\ \mathcal{I}_{\mathfrak{a}} \, \, \longmapsto \operatorname{int}_{\mathfrak{a}} \left(\mathcal{I}_{\mathfrak{a}} \right), \, \operatorname{cl}_{\mathfrak{a}} \left(\mathcal{I}_{\mathfrak{a}} \right) & \text{are the} \, \, \mathfrak{T}_{\mathfrak{a}} \end{array}$ interior and $\mathfrak{T}_{\mathfrak{a}}$ -closure operators, respectively [1, 2]. For convenience of notation, let $(\mathscr{P}^*, \mathscr{T}^*_{\mathfrak{a}}, \neg \mathscr{T}^*_{\mathfrak{a}})(\Omega) = (\mathscr{P} \setminus \{\emptyset\}, \mathscr{T}_{\mathfrak{a}} \setminus \{\emptyset\}, \neg \mathscr{T}_{\mathfrak{a}} \setminus \{\emptyset\})(\Omega).$

Definition 2.2 (g-Operation [1, 2]). A mapping $\operatorname{op}_{\mathfrak{a}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ $\mathscr{S}_{\mathfrak{a}} \longmapsto \operatorname{op}_{\mathfrak{a}}(\mathscr{S}_{\mathfrak{a}})$ is called a g-operation if and only if the following statements hol

$$(\forall \mathscr{S}_{\mathfrak{a}} \in \mathscr{P}^{*}(\Omega)) (\exists (\mathscr{O}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}}) \in \mathscr{T}_{\mathfrak{a}}^{*} \times \neg \mathscr{T}_{\mathfrak{a}}^{*}) [(\operatorname{op}_{\mathfrak{a}}(\emptyset) = \emptyset) \vee (\neg \operatorname{op}_{\mathfrak{a}}(\emptyset) = \emptyset) \\ \vee (\mathscr{S}_{\mathfrak{a}} \subseteq \operatorname{op}_{\mathfrak{a}}(\mathscr{O}_{\mathfrak{a}})) \vee (\mathscr{S}_{\mathfrak{a}} \supseteq \neg \operatorname{op}_{\mathfrak{a}}(\mathscr{K}_{\mathfrak{a}}))], (2.1)$$

 $\begin{array}{ccc} where & \neg\operatorname{op}_{\mathfrak{a}}: & \mathscr{P}\left(\Omega\right) & \longrightarrow \mathscr{P}\left(\Omega\right) \\ \mathscr{S}_{\mathfrak{a}} & \longmapsto \neg\operatorname{op}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right) & is \ called \ its \ complementary \ \mathfrak{g}\text{-operation}, \end{array}$ and for all $\mathfrak{T}_{\mathfrak{a}}$ -sets $\mathscr{S}_{\mathfrak{a}}$, $\mathscr{S}_{\mathfrak{a},\nu}$, $\mathscr{S}_{\mathfrak{a},\mu} \in \mathscr{P}^*(\Omega)$, the following axioms are satisfied:

- Ax. I.
$$\left(\mathscr{S}_{\mathfrak{a}} \subseteq \operatorname{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}}\right)\right) \vee \left(\mathscr{S}_{\mathfrak{a}} \supseteq \neg \operatorname{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a}}\right)\right)$$

$$-\text{ Ax. II. }\left(\operatorname{op}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right)\subseteq\operatorname{op}_{\mathfrak{a}}\circ\operatorname{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a}}\right)\right)\vee\left(\neg\operatorname{op}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}\right)\supseteq\neg\operatorname{op}_{\mathfrak{a}}\circ\neg\operatorname{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a}}\right)\right),$$

- Ax. III.
$$\left(\mathscr{S}_{\mathfrak{a},\nu} \subseteq \mathscr{S}_{\mathfrak{a},\mu} \longrightarrow \operatorname{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a},\nu}\right) \subseteq \operatorname{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a},\mu}\right)\right)$$

 $\vee \left(\mathscr{S}_{\mathfrak{a},\mu} \subseteq \mathscr{S}_{\mathfrak{a},\nu} \longleftarrow \neg \operatorname{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a},\mu}\right) \supseteq \neg \operatorname{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a},\nu}\right)\right),$

– Ax. iv.
$$\left(\operatorname{op}_{\mathfrak{a}}\left(\bigcup_{\sigma=\nu,\mu}\mathscr{S}_{\mathfrak{a},\sigma}\right)\subseteq\bigcup_{\sigma=\nu,\mu}\operatorname{op}_{\mathfrak{a}}\left(\mathscr{O}_{\mathfrak{a},\sigma}\right)\right)$$

$$\vee \left(\neg\operatorname{op}_{\mathfrak{a}}\left(\bigcup_{\sigma=\nu,\mu}\mathscr{S}_{\mathfrak{a},\sigma}\right)\supseteq\bigcup_{\sigma=\nu,\mu}\neg\operatorname{op}_{\mathfrak{a}}\left(\mathscr{K}_{\mathfrak{a},\sigma}\right)\right),$$

for some $\mathscr{T}_{\mathfrak{a}}$ -sets $\mathscr{O}_{\mathfrak{a}}$, $\mathscr{O}_{\mathfrak{a},\nu}$, $\mathscr{O}_{\mathfrak{a},\mu} \in \mathscr{T}_{\mathfrak{a}}^*$ and $\mathscr{K}_{\mathfrak{a}}$, $\mathscr{K}_{\mathfrak{a},\nu}$, $\mathscr{K}_{\mathfrak{a},\mu} \in \neg \mathscr{T}_{\mathfrak{a}}^*$.

The class $\mathscr{L}_{\mathfrak{a}}\left[\Omega\right] \stackrel{\text{def}}{=} \left\{\mathbf{op}_{\mathfrak{a},\nu} = \left(\mathrm{op}_{\mathfrak{a},\nu}, \neg \, \mathrm{op}_{\mathfrak{a},\nu}\right) : \nu \in I_3^0\right\} \subseteq \mathscr{L}_{\mathfrak{a}}^{\omega}\left[\Omega\right] \times \mathscr{L}_{\mathfrak{a}}^{\kappa}\left[\Omega\right] = \left\{\mathrm{op}_{\mathfrak{a},\nu} : \nu \in I_3^0\right\} \times \left\{\neg \, \mathrm{op}_{\mathfrak{a},\nu} : \nu \in I_3^0\right\}, \text{ where}$

$$\left\langle \operatorname{op}_{\mathfrak{a},\nu}:\ \nu\in I_3^0\right\rangle \ = \ \left\langle \operatorname{int}_{\mathfrak{a}},\ \operatorname{cl}_{\mathfrak{a}}\circ\operatorname{int}_{\mathfrak{a}},\ \operatorname{int}_{\mathfrak{a}}\circ\operatorname{cl}_{\mathfrak{a}},\ \operatorname{cl}_{\mathfrak{a}}\circ\operatorname{int}_{\mathfrak{a}}\circ\operatorname{cl}_{\mathfrak{a}}\right\rangle,$$

$$\left\langle \neg \operatorname{op}_{\mathfrak{a},\nu}: \ \nu \in I_3^0 \right\rangle \ = \ \left\langle \operatorname{cl}_{\mathfrak{a}}, \ \operatorname{int}_{\mathfrak{a}} \circ \operatorname{cl}_{\mathfrak{a}}, \ \operatorname{cl}_{\mathfrak{a}} \circ \operatorname{int}_{\mathfrak{a}}, \ \operatorname{int}_{\mathfrak{a}} \circ \operatorname{cl}_{\mathfrak{a}} \circ \operatorname{int}_{\mathfrak{a}} \right\rangle,$$

is the class of all possible pairs of \mathfrak{g} -operators and its complementary \mathfrak{g} -operators in the $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}}$.

Definition 2.3 (g- $\mathfrak{T}_{\mathfrak{a}}$ -Sets [1, 2]). Let $(\mathscr{S}_{\mathfrak{a}}, \mathscr{O}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}}, \mathbf{op}_{\mathfrak{a},\nu}) \in \mathscr{P}(\Omega) \times \mathscr{T}_{\mathfrak{a}} \times \neg \mathscr{T}_{\mathfrak{a}} \times \mathscr{L}_{\mathfrak{a}}[\Omega]$ and let the predicates

$$P_{\mathfrak{a}}(\mathscr{S}_{\mathfrak{a}}, \mathscr{O}_{\mathfrak{a}}; \operatorname{op}_{\mathfrak{a}, \nu}; \subseteq) \stackrel{\operatorname{def}}{=} (\exists (\mathscr{O}_{\mathfrak{a}}, \operatorname{op}_{\mathfrak{a}, \nu}) \in \mathscr{T}_{\mathfrak{a}} \times \mathscr{L}_{\mathfrak{a}}^{\omega} [\Omega]) [\mathscr{S}_{\mathfrak{a}} \subseteq \operatorname{op}_{\mathfrak{a}, \nu} (\mathscr{O}_{\mathfrak{a}})],$$

$$Q_{\mathfrak{a}}(\mathscr{S}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}}; \neg \operatorname{op}_{\mathfrak{a}, \nu}; \supseteq) \stackrel{\operatorname{def}}{=} (\exists (\mathscr{K}_{\mathfrak{a}}, \neg \operatorname{op}_{\mathfrak{a}, \nu}) \in \neg \mathscr{T}_{\mathfrak{a}} \times \mathscr{L}_{\mathfrak{a}}^{\kappa} [\Omega])$$

$$[\mathscr{S}_{\mathfrak{a}} \supseteq \neg \operatorname{op}_{\mathfrak{a}, \nu} (\mathscr{K}_{\mathfrak{a}})]$$

$$[\mathscr{S}_{\mathfrak{a}} \supseteq \neg \operatorname{op}_{\mathfrak{a}, \nu} (\mathscr{K}_{\mathfrak{a}})]$$

be Boolean-valued functions on $\mathscr{P}(\Omega) \times (\mathscr{T}_{\mathfrak{a}} \cup \neg \mathscr{T}_{\mathfrak{a}}) \times (\mathscr{L}_{\mathfrak{a}}^{\omega} \cup \mathscr{L}_{\mathfrak{a}}^{\kappa}) [\Omega] \times \{\subseteq, \supseteq\},$ then $\mathfrak{g}\text{-}\nu\text{-}S[\mathfrak{T}_{\mathfrak{a}}] \& \stackrel{\mathrm{def}}{=} \& \mathfrak{g}\text{-}\nu\text{-}O[\mathfrak{T}_{\mathfrak{a}}] \cup \mathfrak{g}\text{-}\nu\text{-}K[\mathfrak{T}_{\mathfrak{a}}] \text{ is the class of all } \mathfrak{g}\text{-}\nu\text{-}\mathfrak{T}_{\mathfrak{a}}\text{-sets and,}$

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{\mathscr{S}_{\mathfrak{a}}: \ \mathrm{P}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{O}_{\mathfrak{a}}; \mathrm{op}_{\mathfrak{a}, \nu}; \subseteq\right)\right\}, \tag{2.3}$$

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{\mathscr{S}_{\mathfrak{a}}: \ \mathrm{Q}_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{K}_{\mathfrak{a}}; \neg \mathrm{op}_{\mathfrak{a}, \nu}; \supseteq\right)\right\},$$

respectively, are called the classes of all \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -open and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -closed sets of category ν in $\mathfrak{T}_{\mathfrak{a}}$.

Then, $S\left[\mathfrak{T}_{\mathfrak{a}}\right] = \left\{\mathscr{S}_{\mathfrak{a}}: \ P_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}}; \operatorname{op}_{\mathfrak{a},0}; \subseteq\right)\right\} \cup \left\{\mathscr{S}_{\mathfrak{a}}: \ Q_{\mathfrak{a}}\left(\mathscr{S}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}}; \neg \operatorname{op}_{\mathfrak{a},0}; \supseteq\right)\right\} = \bigcup_{E \in \{O,K\}} E\left[\mathfrak{T}_{\mathfrak{a}}\right] \text{ is the class of all } \mathfrak{T}_{\mathfrak{a}}\text{-}\textit{open} \text{ and } \mathfrak{T}_{\mathfrak{a}}\text{-}\textit{closed sets in } \mathfrak{T}_{\mathfrak{a}}\left[1,\,2\right]. \text{ Further,}$

$$\mathfrak{g}\text{-}\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right] \ \stackrel{\mathrm{def}}{=} \ \bigcup_{\nu \in I_{9}^{0}} \mathfrak{g}\text{-}\nu\text{-}\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right] = \bigcup_{(\nu, \mathrm{E}) \in I_{9}^{0} \times \left\{\mathrm{O}, \mathrm{K}\right\}} \mathfrak{g}\text{-}\nu\text{-}\mathrm{E}\left[\mathfrak{T}_{\mathfrak{a}}\right] = \bigcup_{\mathrm{E} \in \left\{\mathrm{O}, \mathrm{K}\right\}} \mathfrak{g}\text{-}\mathrm{E}\left[\mathfrak{T}_{\mathfrak{a}}\right]$$

Definition 2.4 (g- $\mathfrak{T}_{\mathfrak{a}}$ -Separation, g- $\mathfrak{T}_{\mathfrak{a}}$ -Connected [2]). A g- ν - $\mathfrak{T}_{\mathfrak{a}}$ -separation of two $\mathfrak{T}_{\mathfrak{a}}$ -sets $\emptyset \neq \mathscr{R}_{\mathfrak{a}}$, $\mathscr{S}_{\mathfrak{a}} \subseteq \mathfrak{T}_{\mathfrak{a}}$ of a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$ is realised if and only if there exists either $(\mathscr{O}_{\mathfrak{a},\xi},\mathscr{O}_{\mathfrak{a},\zeta}) \in \times_{\alpha \in I_2^*} \mathfrak{g}$ - ν -O $[\mathfrak{T}_{\mathfrak{a}}]$ or $(\mathscr{K}_{\mathfrak{a},\xi},\mathscr{K}_{\mathfrak{a},\zeta}) \in \times_{\alpha \in I_2^*} \mathfrak{g}$ - ν -K $[\mathfrak{T}_{\mathfrak{a}}]$ such that:

$$\left(\bigsqcup_{\lambda=\mathcal{E},\zeta}\mathscr{O}_{\mathfrak{a},\lambda}=\mathscr{R}_{\mathfrak{a}}\sqcup\mathscr{S}_{\mathfrak{a}}\right)\bigvee\left(\bigsqcup_{\lambda=\mathcal{E},\zeta}\mathscr{K}_{\mathfrak{a},\lambda}=\mathscr{R}_{\mathfrak{a}}\sqcup\mathscr{S}_{\mathfrak{a}}\right). \tag{2.4}$$

Otherwise, $\mathcal{R}_{\mathfrak{a}}$, $\mathcal{S}_{\mathfrak{a}}$ are said to be \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -connected.

Thus, $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ is \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -connected if and only if $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}$ -Q $[\mathfrak{T}_{\mathfrak{a}}] = \bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -Q $[\mathfrak{T}_{\mathfrak{a}}]$ and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -separated if and only if $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}$ -D $[\mathfrak{T}_{\mathfrak{a}}] = \bigcup_{\nu \in I_3^0} \mathfrak{g}$ - ν -D $[\mathfrak{T}_{\mathfrak{a}}]$ where,

$$\mathfrak{g}\text{-}\nu\text{-}Q\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{ \mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}} : \left(\forall \left(\mathscr{O}_{\mathfrak{a},\lambda}, \mathscr{K}_{\mathfrak{a},\lambda} \right)_{\lambda=\xi,\zeta} \in \mathfrak{g}\text{-}\nu\text{-}O\left[\mathfrak{T}_{\mathfrak{a}}\right] \times \mathfrak{g}\text{-}\nu\text{-}K\left[\mathfrak{T}_{\mathfrak{a}}\right] \right) \\
\left[\neg \left(\bigsqcup_{\lambda=\xi,\zeta} \mathscr{O}_{\mathfrak{a},\lambda} = \mathscr{S}_{\mathfrak{a}} \right) \bigwedge \neg \left(\bigsqcup_{\lambda=\xi,\zeta} \mathscr{O}_{\mathfrak{a},\lambda} = \mathscr{S}_{\mathfrak{a}} \right) \right] \right\}; \qquad (2.5)$$

$$\mathfrak{g}\text{-}\nu\text{-}D\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{ \mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}} : \left(\exists \left(\mathscr{O}_{\mathfrak{a},\lambda}, \mathscr{K}_{\mathfrak{a},\lambda} \right)_{\lambda=\xi,\zeta} \in \mathfrak{g}\text{-}\nu\text{-}O\left[\mathfrak{T}_{\mathfrak{a}}\right] \times \mathfrak{g}\text{-}\nu\text{-}K\left[\mathfrak{T}_{\mathfrak{a}}\right] \right) \\
\left[\left(\bigsqcup_{\lambda=\xi,\zeta} \mathscr{O}_{\mathfrak{a},\lambda} = \mathscr{S}_{\mathfrak{a}} \right) \bigvee \left(\bigsqcup_{\lambda=\xi,\zeta} \mathscr{K}_{\mathfrak{a},\lambda} = \mathscr{S}_{\mathfrak{a}} \right) \right] \right\}. \qquad (2.6)$$

Definition 2.5 (\mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -Interior, \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -Closure Operators [19]). In a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$, the one-valued maps

$$\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{a},\nu}:\mathscr{P}(\Omega)\longrightarrow\mathscr{P}(\Omega)$$

$$\mathscr{S}_{\mathfrak{a}}\longmapsto\bigcup_{\mathscr{O}_{\mathfrak{a}}\in \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g}-\nu-\mathrm{O}[\mathfrak{T}_{\mathfrak{a}}]}[\mathscr{S}_{\mathfrak{a}}]}\mathscr{O}_{\mathfrak{a}},$$

$$(2.7)$$

$$\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a},\nu}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \qquad (2.8)$$

$$\mathscr{S}_{\mathfrak{a}} \longmapsto \bigcap_{\mathscr{K}_{\mathfrak{a}}\in\mathrm{C}^{\sup}_{\mathfrak{a}-\nu-\mathrm{K}[\mathfrak{T}_{\mathfrak{a}}]}[\mathscr{S}_{\mathfrak{a}}]} \mathscr{K}_{\mathfrak{a}}$$

 $\begin{array}{l} \textit{where} \ C^{\mathrm{sub}}_{\mathfrak{g}\text{-}\nu\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{a}}]} \left[\mathscr{S}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{\mathscr{O}_{\mathfrak{a}} \in \mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{a}}\big] : \ \mathscr{O}_{\mathfrak{a}} \subseteq \mathscr{S}_{\mathfrak{a}}\right\} \ \textit{and} \ C^{\mathrm{sup}}_{\mathfrak{g}\text{-}\nu\text{-}\mathrm{K}[\mathfrak{T}_{\mathfrak{a}}]} \left[\mathscr{S}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{\mathscr{K}_{\mathfrak{a}} \in \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{a}}\big] : \ \mathscr{K}_{\mathfrak{a}} \supseteq \mathscr{S}_{\mathfrak{a}}\right\} \ \textit{are called} \ \mathfrak{g}\text{-}\nu\text{-}\mathfrak{T}_{\mathfrak{a}}\text{-}interior \ \textit{and} \ \mathfrak{g}\text{-}\nu\text{-}\mathfrak{T}_{\mathfrak{a}}\text{-}closure \ \textit{operators}, \ \textit{respectively}. \ \textit{Then,} \ \mathfrak{g}\text{-}\mathrm{I}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{a},\nu} : \nu \in I^{0}_{3}\right\} \ \textit{and} \ \mathfrak{g}\text{-}\mathrm{C}\left[\mathfrak{T}_{\mathfrak{a}}\right] \stackrel{\mathrm{def}}{=} \left\{\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a},\nu} : \nu \in I^{0}_{3}\right\} \ \textit{are the classes of all} \ \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{a}}\text{-}interior \ \textit{and} \ \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{a}}\text{-}closure \ \textit{operators}, \ \textit{respectively}. \end{array}$

Definition 2.6 (\mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -Vector Operator [19]). In a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$, the two-valued map

$$g\text{-}\mathbf{Ic}_{\mathfrak{a},\nu}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$$

$$(\mathscr{R}_{\mathfrak{a}},\mathscr{S}_{\mathfrak{a}}) \longmapsto (\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{a},\nu}(\mathscr{R}_{\mathfrak{a}}), \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a},\nu}(\mathscr{S}_{\mathfrak{a}}))$$

$$(2.9)$$

is called a \mathfrak{g} - ν - $\mathfrak{T}_{\mathfrak{a}}$ -vector operator. Then, \mathfrak{g} -IC $[\mathfrak{T}_{\mathfrak{a}}] \stackrel{\mathrm{def}}{=} \{ \mathfrak{g}$ -Ic $_{\mathfrak{a},\nu} = (\mathfrak{g}$ -Int $_{\mathfrak{a},\nu},\mathfrak{g}$ -Cl $_{\mathfrak{a},\nu}) : \nu \in I_3^0 \}$ is the class of all \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -vector operators.

 $\begin{array}{lll} \textbf{Remark.} & \textit{For every } \nu \in I_3^0, \ \mathfrak{g}\textbf{-Ic}_{\mathfrak{a},\nu} = \mathbf{ic}_{\mathfrak{a}} \stackrel{\mathrm{def}}{=} \left(\mathrm{int}_{\mathfrak{a}}, \mathrm{cl}_{\mathfrak{a}} \right) \ \textit{if based on } O \left[\mathfrak{T}_{\mathfrak{a}} \right] \times K \left[\mathfrak{T}_{\mathfrak{a}} \right]. \\ & \textit{Then,} \quad \begin{array}{ll} \mathbf{ic}_{\mathfrak{a}} : & \mathscr{P} \left(\Omega \right) \times \mathscr{P} \left(\Omega \right) & \longrightarrow \mathscr{P} \left(\Omega \right) \times \mathscr{P} \left(\Omega \right) \\ & \left(\mathscr{R}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}} \right) & \longmapsto \left(\mathrm{int}_{\mathfrak{a}} \left(\mathscr{R}_{\mathfrak{a}} \right), \mathrm{cl}_{\mathfrak{a}} \left(\mathscr{S}_{\mathfrak{a}} \right) \right) \end{array} \quad \textit{is a $\mathfrak{T}_{\mathfrak{a}}$-vector operator} \\ & \textit{in a $\mathcal{T}_{\mathfrak{a}}$-space $\mathfrak{T}_{\mathfrak{a}} = \left(\Omega, \mathscr{T}_{\mathfrak{a}} \right). } \end{array}$

2.2. Sufficient Preliminaries. The notions of $\mathfrak{T}_{\mathfrak{a}}$ -sets having $\mathfrak{P}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{P}_{\mathfrak{a}}$ -properties and $\mathfrak{Q}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{a}}$ -properties in $\mathscr{T}_{\mathfrak{a}}$ -spaces are now presented.

Definition 2.7 (Complement \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -Operator). Let $\mathfrak{T}_{\mathfrak{a}}=(\Omega, \mathscr{T}_{\mathfrak{a}})$ be a $\mathscr{T}_{\mathfrak{a}}$ -space. Then, the one-valued map

$$\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{a},\mathscr{R}_{\mathfrak{a}}}:\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$$

$$\mathscr{S}_{\mathfrak{a}} \longmapsto \mathfrak{C}_{\mathscr{R}_{\mathfrak{a}}}(\mathscr{S}_{\mathfrak{a}}),$$

$$(2.10)$$

where $\mathbb{C}_{\mathscr{R}_{\mathfrak{a}}}:\mathscr{P}(\Omega)\longrightarrow\mathscr{P}(\Omega)$ denotes the relative complement of its operand with respect to $\mathscr{R}_{\mathfrak{a}}\in\mathfrak{g}\text{-S}\left[\mathfrak{T}_{\mathfrak{a}}\right]$, is called a natural complement $\mathfrak{g}\text{-T}_{\mathfrak{a}}$ -operator on $\mathscr{P}(\Omega)$.

For clarity, $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{a},\mathscr{R}_{\mathfrak{a}}}=\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{a}}$ whenever $\mathscr{R}_{\mathfrak{a}}=\Omega$ and $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g},\mathscr{R}_{\mathfrak{g}}}=\mathrm{Op}_{\mathfrak{g},\mathscr{R}_{\mathfrak{g}}}$ (natural complement $\mathfrak{T}_{\mathfrak{a}}$ -operator) whenever $\mathscr{R}_{\mathfrak{a}}\in\mathrm{S}\left[\mathfrak{T}_{\mathfrak{a}}\right]$.

Definition 2.8 (Symmetric Difference \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -Operator). Let $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$ be a $\mathscr{T}_{\mathfrak{a}}$ -space. Then, the one-valued map

$$\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{a}}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \quad (2.11)$$

$$(\mathscr{R}_{\mathfrak{a}}, \mathscr{S}_{\mathfrak{a}}) \& \longmapsto \& \ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{a}}_{\mathscr{R}_{\mathfrak{a}}}(\mathscr{S}_{\mathfrak{a}}) \cup \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{a}}_{\mathscr{L}_{\mathfrak{a}}}(\mathscr{R}_{\mathfrak{a}})$$

is called the symmetric difference \mathfrak{g} - $\mathfrak{T}_{\mathfrak{a}}$ -operator on $\mathscr{P}(\Omega)$.

If $\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{a}}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is based on $\mathrm{Op}_{\mathfrak{a},\mathscr{R}_{\mathfrak{g}}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, the concept of symmetric difference $\mathfrak{T}_{\mathfrak{a}}\text{-}operator\ \mathrm{Sd}_{\mathfrak{a}}: \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ presents itself.

Definition 2.9 (\mathfrak{g} - ν - $\mathfrak{P}_{\mathfrak{a}}$ -Property). A $\mathfrak{T}_{\mathfrak{a}}$ -set $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ in a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$ is said to have \mathfrak{g} - ν - $\mathfrak{P}_{\mathfrak{a}}$ -property in $\mathfrak{T}_{\mathfrak{a}}$ if and only if it belongs to:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{P}\left[\mathfrak{T}_{\mathfrak{a}}\right]\stackrel{\mathrm{def}}{=}\left\{\mathscr{S}_{\mathfrak{a}}:\ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{a},\nu}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a},\nu}\left(\mathscr{S}_{\mathfrak{a}}\right)\longleftrightarrow\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a},\nu}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{a},\nu}\left(\mathscr{S}_{\mathfrak{a}}\right)\right\},\ \ (2.12)$$

called the class of all $\mathfrak{T}_{\mathfrak{g}}$ -sets having \mathfrak{g} - ν - $\mathfrak{P}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$.

Then, $P[\mathfrak{T}_{\mathfrak{a}}] \& \stackrel{\mathrm{def}}{=} \& \{\mathscr{S}_{\mathfrak{a}} : \operatorname{int}_{\mathfrak{a}} \circ \operatorname{cl}_{\mathfrak{a}} (\mathscr{S}_{\mathfrak{a}}) \longleftrightarrow \operatorname{cl}_{\mathfrak{a}} \circ \operatorname{int}_{\mathfrak{a}} (\mathscr{S}_{\mathfrak{a}}) \}$ is the class of all $\mathfrak{T}_{\mathfrak{a}}$ -sets having $\mathfrak{P}_{\mathfrak{a}}$ -property in $\mathfrak{T}_{\mathfrak{a}}$. By $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}$ -P $[\mathfrak{T}_{\mathfrak{a}}] \stackrel{\mathrm{def}}{=} \bigcup_{\nu \in I_{\mathfrak{a}}^{0}} \mathfrak{g}$ - ν -P $[\mathfrak{T}_{\mathfrak{a}}]$ is meant a $\mathfrak{T}_{\mathfrak{a}}$ -set having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{a}}$ -property in $\mathfrak{T}_{\mathfrak{a}}$.

Definition 2.10 (\mathfrak{g} - ν - $\mathfrak{Q}_{\mathfrak{a}}$ -Property). A $\mathfrak{T}_{\mathfrak{a}}$ -set $\mathscr{S}_{\mathfrak{a}} \subset \mathfrak{T}_{\mathfrak{a}}$ in a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}} = (\Omega, \mathscr{T}_{\mathfrak{a}})$ is said to have \mathfrak{g} - ν - $\mathfrak{Q}_{\mathfrak{a}}$ -property in $\mathfrak{T}_{\mathfrak{a}}$ if and only if it belongs to:

$$\mathfrak{g}\text{-}\nu\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right]\stackrel{\mathrm{def}}{=} \big\{\mathscr{S}_{\mathfrak{a}}:\ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{a},\nu}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{a},\nu}:\mathscr{S}_{\mathfrak{a}}\longmapsto\emptyset\big\},\tag{2.13}$$

called the class of all $\mathfrak{T}_{\mathfrak{a}}\text{-set}$ having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{a}}\text{-property}$ in $\mathfrak{T}_{\mathfrak{a}}.$

Then, $\operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{a}}\right]\&\stackrel{\operatorname{def}}{=}\&\left\{\mathscr{S}_{\mathfrak{a}}:\operatorname{int}_{\mathfrak{a}}\circ\operatorname{cl}_{\mathfrak{a}}:\mathscr{S}_{\mathfrak{a}}\longmapsto\emptyset\right\}$ is the class of all $\mathfrak{T}_{\mathfrak{a}}$ -sets having $\mathfrak{Q}_{\mathfrak{a}}$ -property in $\mathfrak{T}_{\mathfrak{a}}$. By $\mathscr{S}_{\mathfrak{a}}\in\mathfrak{g}$ -Nd $\left[\mathfrak{T}_{\mathfrak{a}}\right]\stackrel{\operatorname{def}}{=}\bigcup_{\nu\in I_{3}^{0}}\mathfrak{g}$ - ν -Nd $\left[\mathfrak{T}_{\mathfrak{a}}\right]$ is meant a $\mathfrak{T}_{\mathfrak{a}}$ -set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{a}}$ -property in $\mathfrak{T}_{\mathfrak{a}}$.

3. Main Results

The main results relative to the commutativity of the $\mathfrak{g-T_g}$ -closure and $\mathfrak{g-T_g}$ -interior operators, and $\mathfrak{T_g}$ -sets having $\mathfrak{g-P_g}$, $\mathfrak{g-Q_g}$ -properties in $\mathscr{T_g}$ -spaces are presented.

Lemma 3.1. If $\mathfrak{g}\text{-}\mathbf{Ic}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{IC}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a given pair of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -operators $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}$, $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the natural complement $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -operator of its components in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$(\forall \mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)) \left[\left(\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right) \right. \\ \left. \wedge \left(\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \longleftrightarrow \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right) \right]. \quad (3.1)$$

Proof. Let $\mathfrak{g}\text{-Ic}_{\mathfrak{g}} \in \mathfrak{g}\text{-IC}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a given and, let $\mathfrak{g}\text{-Op}_{\mathfrak{g}}: \mathscr{P}\left(\Omega\right) \longrightarrow \mathscr{P}\left(\Omega\right)$ be the natural complement $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-operator}$ of its components in a $\mathscr{T}_{\mathfrak{g}}\text{-space}\ \mathfrak{T}_{\mathfrak{g}}=\left(\Omega,\mathscr{T}_{\mathfrak{g}}\right)$. Then, for a $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}\left(\Omega\right)$ taken arbitrarily, it follows that

$$\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}:\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\ \longmapsto\ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\bigg(\bigcup_{\mathscr{O}_{\mathfrak{g}}\in\mathrm{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}}\left[\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})\right]}\mathscr{O}_{\mathfrak{g}}\bigg);$$

$$\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}:\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\ \longmapsto\ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\bigg(\bigcap_{\mathscr{K}_{\mathfrak{g}}\in\mathrm{C}^{\sup}_{\mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]}\left[\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})\right]}\mathscr{K}_{\mathfrak{g}}\bigg).$$

 $\begin{array}{l} \text{Let } \left\{ \mathscr{O}_{\mathfrak{g},\nu} : \ (\forall \nu \in I_{\infty}^*) \left[\mathscr{O}_{\mathfrak{g},\nu} \subseteq \mathscr{S}_{\mathfrak{g}} \right] \right\} \text{ and } \left\{ \mathscr{K}_{\mathfrak{g},\nu} : \ (\forall \nu \in I_{\infty}^*) \left[\mathscr{K}_{\mathfrak{g},\nu} \supseteq \mathscr{S}_{\mathfrak{g}} \right] \right\} \text{ stand} \\ \text{for } C^{\text{sub}}_{\mathfrak{g}-\mathcal{O}[\mathfrak{T}_{\mathfrak{g}}]} \left[\mathscr{S}_{\mathfrak{g}} \right] \subseteq \mathfrak{g}\text{-O} \left[\mathfrak{T}_{\mathfrak{g}} \right] \text{ and } C^{\text{sup}}_{\mathfrak{g}-\mathcal{K}[\mathfrak{T}_{\mathfrak{g}}]} \left[\mathscr{S}_{\mathfrak{g}} \right] \subseteq \mathfrak{g}\text{-K} \left[\mathfrak{T}_{\mathfrak{g}} \right], \text{ respectively. Then,} \end{array}$

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\bigg(\bigcup_{\mathscr{O}_{\mathfrak{g}}\in\mathrm{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]}[\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})]}\mathscr{O}_{\mathfrak{g}}\bigg) &=& \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\bigg(\bigcup_{\nu\in I_{\infty}^{*}}\left(\mathscr{O}_{\mathfrak{g},\nu}\subseteq\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\bigg)\\ &=& \mathsf{C}_{\Omega}\bigg(\bigcup_{\nu\in I_{\infty}^{*}}\left(\mathsf{C}_{\Omega}\left(\mathscr{O}_{\mathfrak{g},\nu}\right)\supseteq\mathsf{C}_{\Omega}\left(\mathsf{C}_{\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right)\\ &=& \bigcap_{\nu\in I_{\infty}^{*}}\left(\mathsf{C}_{\Omega}\left(\mathscr{O}_{\mathfrak{g},\nu}\right)\supseteq\mathsf{C}_{\Omega}\left(\mathsf{C}_{\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right)\\ &=& \bigcap_{\nu\in I_{\infty}^{*}}\left(\mathsf{C}_{\Omega}\left(\mathscr{O}_{\mathfrak{g},\nu}\right)\supseteq\mathsf{C}_{\Omega}\left(\mathsf{C}_{\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right)\\ &=& \mathsf{G}\text{-}\mathrm{Op}_{\mathfrak{g}}\bigg(\bigcup_{\nu\in I_{\infty}^{*}}\left(\mathscr{O}_{\mathfrak{g},\nu}\subseteq\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\bigg)\\ &=& \mathsf{C}_{\Omega}\bigg(\bigcap_{\nu\in I_{\infty}^{*}}\left(\mathscr{K}_{\mathfrak{g},\nu}\supseteq\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\bigg)\\ &=& \bigcup_{\nu\in I_{\infty}^{*}}\left(\mathsf{C}_{\Omega}\left(\mathscr{K}_{\mathfrak{g},\nu}\right)\subseteq\mathsf{C}_{\Omega}\left(\mathsf{C}_{\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right)\\ &=& \bigcup_{\emptyset_{\mathfrak{g}}\in\mathsf{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{F}_{\mathfrak{g}})}[\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{F}_{\mathfrak{g}})]}\\ &=& \bigcup_{\emptyset_{\mathfrak{g}}\in\mathsf{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{F}_{\mathfrak{g}})}[\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{F}_{\mathfrak{g}})]}$$

Since $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$ is arbitrary, it follows that, for every $\mathscr{S}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$, the relations

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right), \\ \\ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{q}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longleftrightarrow & \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{q}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{q}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{q}}\left(\mathscr{S}_{\mathfrak{g}}\right) \end{array}$$

hold. The proof of the lemma is complete.

Theorem 3.2. A $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ is said to have \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$ if and only if:

$$\mathscr{S}_{\mathfrak{q}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{q}}\right] \longleftrightarrow \mathfrak{g}\text{-Op}_{\mathfrak{q}}\left(\mathscr{S}_{\mathfrak{q}}\right) \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{q}}\right].$$
 (3.2)

Proof. Necessity. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P} [\mathfrak{T}_{\mathfrak{g}}]$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$ -property in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}: & \quad \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \longmapsto \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\ & = & \quad \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\ & = & \quad \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\ & = & \quad \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\ & = & \quad \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \\ & = & \quad \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}$$

Thus, it follows that

$$\operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g}}\circ\operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g}}\left(\operatorname{\mathfrak{g}\text{-}Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right)\longleftrightarrow\operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g}}\circ\operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g}}\left(\operatorname{\mathfrak{g}\text{-}Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right),$$

and hence, $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})\in\mathfrak{g}\text{-}\mathrm{P}\,[\mathfrak{T}_{\mathfrak{g}}]$. The condition of the theorem is, therefore, necessary.

Sufficiency. Conversely, suppose $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$. Set $\mathscr{R}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$. Then,

$$\mathscr{S}_{\mathfrak{g}} \, \longleftrightarrow \, \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{q}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{q}} \left(\mathscr{S}_{\mathfrak{g}}\right) \, \longleftrightarrow \, \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{q}} \left(\mathscr{R}_{\mathfrak{g}}\right).$$

But $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and it in turn implies $\mathfrak{g}\text{-Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Hence, it follows that $\mathfrak{g}\text{-Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The condition of the theorem is, therefore, sufficient.

Proposition 3.3. If $\mathscr{S}_{\mathfrak{q}} \subset \mathfrak{T}_{\mathfrak{q}}$ be a $\mathfrak{T}_{\mathfrak{q}}$ -set in a $\mathscr{T}_{\mathfrak{q}}$ -space $\mathfrak{T}_{\mathfrak{q}} = (\Omega, \mathscr{T}_{\mathfrak{q}})$, then:

$$\begin{array}{l} -\text{ I. } \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right], \\ -\text{ II. } \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \end{array}$$

Proof. I. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -P $[\mathfrak{T}_{\mathfrak{g}}]$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$ -property in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \big(\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \big) &= \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}$$

Hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ implies $\mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The proof of ITEM I. of the proposition is complete.

II. Suppose $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P} [\mathfrak{T}_{\mathfrak{g}}]$ in $\mathfrak{T}_{\mathfrak{g}}$. Then,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \big(\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \big) &= \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, (\mathscr{S}_{\mathfrak{g}}) \\ &\longleftrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{$$

Hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g}}]$ implies $\mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g}}]$. The proof of ITEM II. of the proposition is complete.

Theorem 3.4. If $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set of a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ such that $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g}}]$ or $\mathfrak{g}\text{-Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g}}]$ in $\mathfrak{T}_{\mathfrak{g}}$, then $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g}}]$.

Proof. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ such that $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ or $\mathfrak{g}\text{-Op}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ in $\mathfrak{T}_{\mathfrak{g}}$. Then:

Case I. Suppose $\mathscr{I}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ in $\mathfrak{T}_{\mathfrak{g}}$. Then, for every $\mathfrak{g}\text{-}\mathbf{Ic}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{IC}\,[\mathfrak{T}_{\mathfrak{g}}]$, it follows that $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} : \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. But $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) \supseteq \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}})$ and consequently, $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} : \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. Since $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}\text{-space}$, it follows, furthermore, that $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} : \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. Therefore, $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) = \emptyset = \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}})$ and, hence, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{P}\,[\mathfrak{T}_{\mathfrak{g}}]$.

CASE II. Suppose $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ in $\mathfrak{T}_{\mathfrak{g}}$. Then, by virtue of the above case, $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{P}\,[\mathfrak{T}_{\mathfrak{g}}]$ and by virtue of the fact that $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{P}\,[\mathfrak{T}_{\mathfrak{g}}]$ is equivalent to $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{P}\,[\mathfrak{T}_{\mathfrak{g}}]$, it results that $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ implies $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{P}\,[\mathfrak{T}_{\mathfrak{g}}]$. The proof of the theorem is complete.

Theorem 3.5. Let $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g},\Gamma}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a $\mathscr{T}_{\mathfrak{g}}$ -subspace $\mathfrak{T}_{\mathfrak{g},\Gamma} = (\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma})$ of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathscr{T}_{\mathfrak{g},\Omega})$, where $\mathscr{T}_{\mathfrak{g},\Gamma} : \mathscr{P}(\Gamma) \longmapsto \mathscr{T}_{\mathfrak{g},\Gamma} = \{\mathscr{O}_{\mathfrak{g}} \cap \Gamma : \mathscr{O}_{\mathfrak{g}} \in \mathscr{T}_{\mathfrak{g},\Omega}\}$. Then:

$$\begin{array}{l} -\text{ I. } \Gamma \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right] \text{ implies } \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right), \\ -\text{ II. } \Gamma \in \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right] \text{ implies } \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right). \end{array}$$

Proof. Let $\mathscr{S}_{\mathfrak{g}} \subseteq \mathfrak{T}_{\mathfrak{g},\Gamma}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a $\mathscr{T}_{\mathfrak{g}}$ -subspace $\mathfrak{T}_{\mathfrak{g},\Gamma} = (\Gamma, \mathscr{T}_{\mathfrak{g},\Gamma})$ of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g},\Omega} = (\Omega, \mathscr{T}_{\mathfrak{g},\Omega})$ and let $(\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Lambda},\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Lambda}) \in \mathfrak{g}\text{-}\mathrm{I}\,[\mathfrak{T}_{\mathfrak{g},\Lambda}] \times \mathfrak{g}\text{-}\mathrm{C}\,[\mathfrak{T}_{\mathfrak{g},\Lambda}]$ be a pair of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -interior and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -closure operators $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Lambda}$, $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Lambda} : \mathscr{P}(\Lambda) \longrightarrow \mathscr{P}(\Lambda)$, respectively, where $\Lambda \in \{\Omega,\Gamma\}$. Then:

I. Suppose $\Gamma \in \mathfrak{g}\text{-O}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]$ in $\mathfrak{T}_{\mathfrak{g},\Omega}$. Then,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}:\mathscr{S}_{\mathfrak{g}} &\longmapsto \bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathcal{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}O\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]}[\mathscr{S}_{\mathfrak{g}}]}\mathscr{O}_{\mathfrak{g}} \\ &= \bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathcal{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}O\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]}[\Gamma\cap\mathscr{S}_{\mathfrak{g}}]}\mathscr{O}_{\mathfrak{g}} \\ &\subseteq \bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathcal{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}O\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]}[\Gamma]}\mathscr{O}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}\left(\Gamma\right) = \Gamma. \end{split}$$

Thus, $\Gamma \cap \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$. On the other hand,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Gamma}:\mathscr{S}_{\mathfrak{g}} &\longmapsto \bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathcal{C}^{\mathrm{sub}}_{\mathfrak{g}\cdot\mathcal{O}\left[\mathfrak{T}_{\mathfrak{g},\Gamma}\right]}[\mathscr{S}_{\mathfrak{g}}]} \mathscr{O}_{\mathfrak{g}} \\ &\longleftrightarrow \bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathcal{C}^{\mathrm{sub}}_{\mathfrak{g}\cdot\mathcal{O}\left[\mathfrak{T}_{\mathfrak{g},\Gamma}\right]}[\mathscr{S}_{\mathfrak{g}}]} (\mathscr{O}_{\mathfrak{g}}\cap\Gamma) \\ &\longleftrightarrow \bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathcal{C}^{\mathrm{sub}}_{\mathfrak{g}\cdot\mathcal{O}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]}[\mathscr{S}_{\mathfrak{g}}]} (\mathscr{O}_{\mathfrak{g}}\cap\Gamma) \\ &\longleftrightarrow \Gamma\cap\left(\bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathcal{C}^{\mathrm{sub}}_{\mathfrak{g}\cdot\mathcal{O}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]}[\mathscr{S}_{\mathfrak{g}}]} \mathscr{O}_{\mathfrak{g}}\right) = \Gamma\cap\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right). \end{split}$$

But $\Gamma \cap \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and hence, $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$.

II. Suppose $\Gamma \in \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]$ in $\mathfrak{T}_{\mathfrak{g},\Omega}$. Then,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega}:\mathscr{S}_{\mathfrak{g}} &\longmapsto \bigcap_{\mathscr{K}_{\mathfrak{g}}\in\mathrm{C}^{\sup}_{\mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]}[\mathscr{S}_{\mathfrak{g}}]} \mathscr{K}_{\mathfrak{g}} \\ &\subseteq \bigcap_{\mathscr{K}_{\mathfrak{g}}\in\mathrm{C}^{\sup}_{\mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]}[\Gamma]} \mathscr{K}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega}\left(\Gamma\right) = \Gamma. \end{split}$$

Consequently, $\Gamma \cap \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$. On the other hand,

$$\begin{split} \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g},\Gamma}:\mathscr{S}_{\mathfrak{g}} &\longmapsto \bigcap_{\mathscr{K}_{\mathfrak{g}}\in C^{\sup}_{\mathfrak{g}\text{-}K}\left[\mathfrak{T}_{\mathfrak{g},\Gamma}\right]}\mathscr{K}_{\mathfrak{g}} \\ &\longleftrightarrow \bigcap_{\mathscr{K}_{\mathfrak{g}}\in C^{\sup}_{\mathfrak{g}\text{-}K}\left[\mathfrak{T}_{\mathfrak{g},\Gamma}\right]}(\mathscr{K}_{\mathfrak{g}}\cap\Gamma) \\ &\longleftrightarrow \bigcap_{\mathscr{K}_{\mathfrak{g}}\in C^{\sup}_{\mathfrak{g}\text{-}K}\left[\mathfrak{T}_{\mathfrak{g},\Gamma}\right]}(\mathscr{K}_{\mathfrak{g}}\cap\Gamma) \\ &\longleftrightarrow \Gamma\cap \left(\bigcap_{\mathscr{K}_{\mathfrak{g}}\in C^{\sup}_{\mathfrak{g}\text{-}K}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right]}\mathscr{K}_{\mathfrak{g}}\right) = \Gamma\cap \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right). \end{split}$$

But $\Gamma \cap \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$ and hence, $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Gamma}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega}\left(\mathscr{S}_{\mathfrak{g}}\right)$. The proof of the theorem is complete.

Theorem 3.6. Let $\mathcal{Q}_{\mathfrak{g}} \in \mathfrak{g}\text{-}O\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}\text{-}K\left[\mathfrak{T}_{\mathfrak{g}}\right]$ be a $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open-closed set and let $(\mathscr{S}_{\mathfrak{g},\alpha},\mathscr{S}_{\mathfrak{g},\beta}) \subseteq \mathfrak{T}_{\mathfrak{g}} \times \mathfrak{T}_{\mathfrak{g}}$ be a pair of $\mathfrak{T}_{\mathfrak{g}}$ -sets in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega,\mathscr{T}_{\mathfrak{g}})$. If $(\mathscr{S}_{\mathfrak{g},\alpha},\mathscr{S}_{\mathfrak{g},\beta}) \subseteq (\mathcal{Q}_{\mathfrak{g}},\mathfrak{g}\text{-}Op_{\mathfrak{g}}(\mathcal{Q}_{\mathfrak{g}}))$, then:

$$\left(\forall\,\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\in\mathfrak{g}\text{-}\mathrm{I}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)\left[\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\bigcup_{\sigma=\alpha,\beta}\mathscr{S}_{\mathfrak{g},\sigma}\right)=\bigcup_{\sigma=\alpha,\beta}\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},\sigma}\right)\right].\tag{3.3}$$

 $\begin{array}{l} \textit{Proof.} \ \, \text{Let} \,\, \mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}\text{-O} \, [\mathfrak{T}_{\mathfrak{g}}] \cap \mathfrak{g}\text{-K} \, [\mathfrak{T}_{\mathfrak{g}}] \,\, \text{be a \mathfrak{g}-$\mathfrak{T}_{\mathfrak{g}}$-open-closed set, let } (\mathscr{S}_{\mathfrak{g},\alpha},\mathscr{S}_{\mathfrak{g},\beta}) \subseteq \\ \mathfrak{T}_{\mathfrak{g}} \times \mathfrak{T}_{\mathfrak{g}} \,\, \text{be a pair of $\mathfrak{T}_{\mathfrak{g}}$-sets in a $\mathscr{T}_{\mathfrak{g}}$-space $\mathfrak{T}_{\mathfrak{g}} = (\Omega,\mathscr{T}_{\mathfrak{g}})$ and, suppose } (\mathscr{S}_{\mathfrak{g},\alpha},\mathscr{S}_{\mathfrak{g},\beta}) \subseteq \\ \big(\mathscr{Q}_{\mathfrak{g}},\mathfrak{g}\text{-Op}_{\mathfrak{g}} \,\, (\mathscr{Q}_{\mathfrak{g}})\big). \,\, \text{Then, for every } \mathscr{S}_{\mathfrak{g}} \in \{\mathscr{S}_{\mathfrak{g},\alpha},\mathscr{S}_{\mathfrak{g},\beta}\}, \end{array}$

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}:\mathscr{S}_{\mathfrak{g}} &\longmapsto \bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}[\mathscr{S}_{\mathfrak{g}}]} \mathscr{O}_{\mathfrak{g}} \\ &\subseteq \bigcup_{\mathscr{O}_{\mathfrak{g}}\in \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]}[\mathscr{S}_{\mathfrak{g},\alpha}\cup\mathscr{S}_{\mathfrak{g},\beta}]} \mathscr{O}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \Big(\bigcup_{\sigma=\alpha,\beta}\mathscr{S}_{\mathfrak{g},\sigma}\Big). \end{split}$$

Consequently, $\mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\bigcup_{\sigma=\alpha,\beta}\mathscr{S}_{\mathfrak{g},\sigma}\right)\supseteq\bigcup_{\sigma=\alpha,\beta}\mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},\sigma}\right).$ Set $\hat{\mathscr{S}}_{\mathfrak{g},\alpha}=\mathscr{S}_{\mathfrak{g},\alpha}\cap\mathscr{Q}_{\mathfrak{g}}$ and $\hat{\mathscr{S}}_{\mathfrak{g},\beta}=\mathscr{S}_{\mathfrak{g},\beta}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right).$ Then, since $(\mathscr{S}_{\mathfrak{g},\alpha},\mathscr{S}_{\mathfrak{g},\beta})\subseteq\left(\mathscr{Q}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$, it

follows that

$$\begin{split} \mathbf{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]} \big[\bigcup_{\sigma = \alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma} \big] &= \mathbf{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]} \big[\bigcup_{\sigma = \alpha, \beta} \hat{\mathscr{S}}_{\mathfrak{g}, \sigma} \big] \\ &= \left\{ \mathscr{O}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{O} \left[\mathfrak{T}_{\mathfrak{g}} \right] \colon \, \mathscr{O}_{\mathfrak{g}} \subseteq \bigcup_{\sigma = \alpha, \beta} \hat{\mathscr{S}}_{\mathfrak{g}, \sigma} \right\} \\ &= \left\{ \mathscr{O}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{O} \left[\mathfrak{T}_{\mathfrak{g}} \right] \colon \, \bigvee_{\sigma = \alpha, \beta} \left(\mathscr{O}_{\mathfrak{g}} \subseteq \hat{\mathscr{S}}_{\mathfrak{g}, \sigma} \right) \right\} \\ &= \bigcup_{\sigma = \alpha, \beta} \left\{ \mathscr{O}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{O} \left[\mathfrak{T}_{\mathfrak{g}} \right] \colon \, \mathscr{O}_{\mathfrak{g}} \subseteq \hat{\mathscr{S}}_{\mathfrak{g}, \sigma} \right\} \\ &= \bigcup_{\sigma = \alpha, \beta} \mathbf{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]} \left[\hat{\mathscr{S}}_{\mathfrak{g}, \sigma} \right] = \bigcup_{\sigma = \alpha, \beta} \mathbf{C}^{\mathrm{sub}}_{\mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]} \left[\mathscr{S}_{\mathfrak{g}, \sigma} \right]. \end{split}$$

Therefore, $C^{\text{sub}}_{\mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}]}[\bigcup_{\sigma=\alpha,\beta}\mathscr{S}_{\mathfrak{g},\sigma}] = \bigcup_{\sigma=\alpha,\beta} C^{\text{sub}}_{\mathfrak{g}\text{-}O[\mathfrak{T}_{\mathfrak{g}}]}[\mathscr{S}_{\mathfrak{g},\sigma}]$, as a consequence of the condition $(\mathscr{S}_{\mathfrak{g},\alpha},\mathscr{S}_{\mathfrak{g},\beta}) \subseteq (\mathscr{Q}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}}))$. Taking this fact into account, it follows, moreover, that

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} : \bigcup_{\sigma = \alpha, \beta} \mathscr{S}_{\mathfrak{g}, \sigma} &\longmapsto \bigcup_{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g} - \mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]} [\mathscr{S}_{\mathfrak{g}, \alpha} \cup \mathscr{S}_{\mathfrak{g}, \beta}]} \mathscr{O}_{\mathfrak{g}} \\ &\subseteq \bigcup_{\mathscr{O}_{\mathfrak{g}} \in \bigcup_{\sigma = \alpha, \beta} \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g} - \mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]} [\mathscr{S}_{\mathfrak{g}, \sigma}]} \mathscr{O}_{\mathfrak{g}} \\ &\subseteq \bigcup_{\sigma = \alpha, \beta} \left(\bigcup_{\mathscr{O}_{\mathfrak{g}} \in \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g} - \mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]} [\mathscr{S}_{\mathfrak{g}, \sigma}]} \mathscr{O}_{\mathfrak{g}} \right) = \bigcup_{\sigma = \alpha, \beta} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}, \sigma} \right). \end{split}$$

Hence, $\mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\bigcup_{\sigma=\alpha,\beta}\mathscr{S}_{\mathfrak{g},\sigma}\right)\subseteq\bigcup_{\sigma=\alpha,\beta}\mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},\sigma}\right)$. The proof of the theorem is complete. \Box

 $\begin{array}{llll} \textbf{Theorem 3.7.} & Let \ \mathfrak{T}_{\mathfrak{g},\Gamma} \ = \ (\Gamma,\mathcal{T}_{\mathfrak{g},\Gamma}) \ be \ a \ \mathcal{T}_{\mathfrak{g}}\text{-subspace of a } \mathcal{T}_{\mathfrak{g}}\text{-space } \mathfrak{T}_{\mathfrak{g},\Omega} \ = \ (\Omega,\mathcal{T}_{\mathfrak{g},\Omega}), \ where \ \mathcal{T}_{\mathfrak{g},\Gamma} \ : \ \mathscr{P}(\Gamma) \ \longmapsto \ \mathcal{T}_{\mathfrak{g},\Gamma} \ = \ \big\{\mathscr{O}_{\mathfrak{g}} \cap \Gamma \ : \ \mathscr{O}_{\mathfrak{g}} \ \in \ \mathcal{T}_{\mathfrak{g},\Omega}\big\}. \ If \ \Gamma \in \mathfrak{g}\text{-O}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right] \cap \mathfrak{g}\text{-K}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right] \ and \ \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g},\Omega}\right], \ then \ \mathscr{S}_{\mathfrak{g}} \cap \Gamma \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g},\Gamma}\right]. \end{array}$

Proof. Let $\mathfrak{T}_{\mathfrak{g},\Gamma}=(\Gamma,\mathscr{T}_{\mathfrak{g},\Gamma})$ be a $\mathscr{T}_{\mathfrak{g}}$ -subspace of a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g},\Omega}=(\Omega,\mathscr{T}_{\mathfrak{g},\Omega})$ and, suppose $\Gamma\in\mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g},\Omega}]\cap\mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g},\Omega}]$ and $\mathscr{S}_{\mathfrak{g}}\in\mathfrak{g}$ -Nd $[\mathfrak{T}_{\mathfrak{g},\Omega}]$. Then, since $\Gamma\in\mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g},\Omega}]\cap\mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g},\Omega}]$ implies \mathfrak{g} -Int $_{\mathfrak{g},\Gamma}(\mathscr{S}_{\mathfrak{g}})=\mathfrak{g}$ -Int $_{\mathfrak{g},\Omega}(\mathscr{S}_{\mathfrak{g}})$ and \mathfrak{g} -Cl $_{\mathfrak{g},\Gamma}(\mathscr{S}_{\mathfrak{g}})=\mathfrak{g}$ -Cl $_{\mathfrak{g},\Omega}(\mathscr{S}_{\mathfrak{g}})$, it follows that

$$\begin{array}{rcl} \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g},\Gamma} \circ \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g},\Gamma} : \mathscr{S}_{\mathfrak{g}} \cap \Gamma &\longmapsto & \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g},\Omega} \circ \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g},\Omega} \left(\mathscr{S}_{\mathfrak{g}} \cap \Gamma \right) \\ &\subseteq & \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g},\Omega} \circ \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g},\Omega} \left(\mathscr{S}_{\mathfrak{g}} \right). \end{array}$$

Since $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g},\Omega}]$, it follows, moreover, that $\mathfrak{g}\text{-Int}_{\mathfrak{g},\Omega} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Omega} : \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$. Consequently, $\mathfrak{g}\text{-Int}_{\mathfrak{g},\Gamma} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\Gamma} : \mathscr{S}_{\mathfrak{g}} \cap \Gamma \longmapsto \emptyset$ and hence, $\mathscr{S}_{\mathfrak{g}} \cap \Gamma \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g},\Gamma}]$. The proof of the theorem is complete.

Theorem 3.8. In order that a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ satisfies the condition $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -P $[\mathfrak{T}_{\mathfrak{g}}]$, it is necessary and sufficient that there exist a

 $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}open\text{-}closed\ set\ \mathscr{Q}_{\mathfrak{g}}\in\mathfrak{g}\text{-}O\left[\mathfrak{T}_{\mathfrak{g}}\right]\cap\mathfrak{g}\text{-}K\left[\mathfrak{T}_{\mathfrak{g}}\right]\ and\ a\ \mathfrak{T}_{\mathfrak{g}}\text{-}set\ \mathscr{R}_{\mathfrak{g}}\in\mathfrak{g}\text{-}Nd\left[\mathfrak{T}_{\mathfrak{g}}\right]\ having\ \mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}\text{-}property\ such\ that\ it\ be\ expressible\ as:}$

$$\mathscr{S}_{\mathfrak{g}} = (\mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}) \cup (\mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}}). \tag{3.4}$$

Proof. Sufficiency. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and let there exist $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}\text{-O}[\mathfrak{T}_{\mathfrak{g}}] \cap \mathfrak{g}\text{-K}[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g}}]$ such that the relation $\mathscr{S}_{\mathfrak{g}} = (\mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}) \cup (\mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}})$ holds. Clearly, $(\mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}}) \subseteq (\mathscr{Q}_{\mathfrak{g}}, \mathfrak{g}\text{-Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}}))$, implying

$$\begin{array}{lcl} \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g}\mathrm{-O}[\mathfrak{T}_{\mathfrak{g}}]} \big[(\mathcal{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}) \cup (\mathscr{R}_{\mathfrak{g}} - \mathcal{Q}_{\mathfrak{g}}) \big] & = & \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g}\mathrm{-O}[\mathfrak{T}_{\mathfrak{g}}]} \big[\mathcal{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}} \big] \\ & \cup & \mathrm{C}^{\mathrm{sub}}_{\mathfrak{g}\mathrm{-O}[\mathfrak{T}_{\mathfrak{g}}]} \big[\mathscr{R}_{\mathfrak{g}} - \mathcal{Q}_{\mathfrak{g}} \big]. \end{array}$$

Set $\mathscr{S}_{\mathfrak{g},(q,r)} = \mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g},(r,q)} = \mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}}$. Then, $\mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q,r)} \cup \mathscr{S}_{\mathfrak{g},(r,q)}\right) = \mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right) \cup \mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right)$. Since $\left(\mathscr{S}_{\mathfrak{g},(q,r)},\mathscr{S}_{\mathfrak{g},(r,q)}\right) \subseteq \left(\mathscr{Q}_{\mathfrak{g}},\mathfrak{g}\text{-Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right)$ and $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}\text{-O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}\text{-K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, it follows that

$$\begin{array}{lcl} \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right) & = & \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right), \\ \\ \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right) & = & \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right), \\ \\ \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right) & = & \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g},\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right), \\ \\ \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right) & = & \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g},\mathfrak{g}\text{-}\operatorname{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right). \end{array}$$

Consequently,

Thus, it follows that

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) &=& \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right) \\ &\cup & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right). \end{split}$$

Similarly,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}: \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & \longmapsto & \bigcap_{\mathscr{K}_{\mathfrak{g}}\in \mathrm{C}^{\sup}_{\mathfrak{g}^{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]}\left[\mathfrak{g}^{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right]} \mathscr{K}_{\mathfrak{g}} \\ & = & \bigcap_{\mathscr{K}_{\mathfrak{g}}\in \mathrm{C}^{\sup}_{\mathfrak{g}^{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]}\left[\mathfrak{g}^{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right)\cup\mathfrak{g}^{-}\mathrm{Int}_{\mathfrak{g},\mathfrak{g}^{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right)\right]} \\ & = & \left(\bigcap_{\mathscr{K}_{\mathfrak{g}}\in \mathrm{C}^{\sup}_{\mathfrak{g}^{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]}\left[\mathfrak{g}^{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right)\right]} \mathscr{K}_{\mathfrak{g}}\right) \\ & \cup & \left(\bigcap_{\mathscr{K}_{\mathfrak{g}}\in \mathrm{C}^{\sup}_{\mathfrak{g}^{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]}\left[\mathfrak{g}^{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right)\right]} \\ & = & \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right)\cup\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathfrak{g}^{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right)\right) \\ & = & \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right) \\ & = & \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right) \\ & = & \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathfrak{g}^{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathfrak{g}^{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right). \end{array}$$

Hence, it results that

$$\begin{array}{lcl} \operatorname{\mathfrak{g}-Cl}_{\mathfrak{g}}\circ\operatorname{\mathfrak{g}-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) & = & \operatorname{\mathfrak{g}-Cl}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\circ\operatorname{\mathfrak{g}-Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{S}_{\mathfrak{g},(q,r)}\right) \\ & \cup & \operatorname{\mathfrak{g}-Cl}_{\mathfrak{g},\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})}\circ\operatorname{\mathfrak{g}-Int}_{\mathfrak{g},\mathfrak{g}-\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})}\left(\mathscr{S}_{\mathfrak{g},(r,q)}\right). \end{array}$$

By virtue of the relation $(\mathscr{S}_{\mathfrak{g},(q,r)},\mathscr{S}_{\mathfrak{g},(r,q)})\subseteq (\mathscr{Q}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}}))$, it is plain that $\mathscr{S}_{\mathfrak{g},(q,r)}=\mathscr{Q}_{\mathfrak{g}}-\mathscr{Q}_{\mathfrak{g}}\cap\mathscr{R}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g},(r,q)}=\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})\cap\mathscr{R}_{\mathfrak{g}}$. Since $\mathscr{Q}_{\mathfrak{g}}\in\mathfrak{g}\text{-}\mathrm{O}[\mathfrak{T}_{\mathfrak{g}}]\cap\mathfrak{g}$ - \mathfrak{g} -K $[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathscr{R}_{\mathfrak{g}}\in\mathfrak{g}\text{-}\mathrm{Nd}[\mathfrak{T}_{\mathfrak{g}}]$, it follows that $\mathscr{Q}_{\mathfrak{g}}\cap\mathscr{R}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property in $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})\cap\mathscr{R}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property in $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})$. But $\mathscr{S}_{\mathfrak{g},(q,r)}=\mathfrak{C}_{\mathscr{Q}_{\mathfrak{g}}}(\mathscr{R}_{\mathfrak{g}})$ and $\mathscr{R}_{\mathfrak{g}}\in\mathfrak{g}\text{-}\mathrm{Nd}[\mathfrak{T}_{\mathfrak{g}}]$. Consequently, $\mathscr{R}_{\mathfrak{g}}$ has $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property in $\mathscr{Q}_{\mathfrak{g}}$ and hence,

$$\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\big(\mathscr{S}_{\mathfrak{g},(q,r)}\big)=\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\big(\mathscr{S}_{\mathfrak{g},(q,r)}\big).$$

On the other hand, the statement that $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\cap\mathscr{R}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property in $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)$ implies that $\mathscr{S}_{\mathfrak{g},(r,q)}$ has $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property in $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)$ and therefore,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})} \Big(\mathscr{S}_{\mathfrak{g},(r,q)}\Big) \\ &= \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})} \Big(\mathscr{S}_{\mathfrak{g},(r,q)}\Big). \end{split}$$

When all the foregoing set-theoretic expressions are taken into account, it results that

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) &=& \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}} \left(\mathscr{S}_{\mathfrak{g},(q,r)} \right) \\ & \cup & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})} \left(\mathscr{S}_{\mathfrak{g},(r,q)} \right) \\ &=& \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}} \left(\mathscr{S}_{\mathfrak{g},(q,r)} \right) \\ & \cup & \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}})} \left(\mathscr{S}_{\mathfrak{g},(r,q)} \right) \\ &=& \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right). \end{split}$$

Hence, $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. The condition of the theorem is, therefore, sufficient.

Necessity. Conversely, suppose that $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Then, $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Set $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathscr{Q}_{\mathfrak{g}} = \mathfrak{g}\text{-Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)$. Then, $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}\text{-O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}\text{-K}\left[\mathfrak{T}_{\mathfrak{g}}\right]$, meaning that $\mathscr{Q}_{\mathfrak{g}}$ is a $\mathfrak{g}\text{-T}_{\mathfrak{g}}$ -open-closed set in $\mathfrak{T}_{\mathfrak{g}}$. Set $\mathscr{S}_{\mathfrak{g},(s,q)} = \mathscr{S}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g},(q,s)} = \mathscr{Q}_{\mathfrak{g}} - \mathscr{S}_{\mathfrak{g}}$. Then,

$$\begin{split} & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g},(s,q)} \right) & \subseteq & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) = \mathscr{Q}_{\mathfrak{g}}; \\ & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g},(s,q)} \right) & \subseteq & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{Q}_{\mathfrak{g}} \right) \right) = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{Q}_{\mathfrak{g}} \right). \end{aligned}$$

But $\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op_{\mathfrak{g}} ($\mathscr{Q}_{\mathfrak{g}}$) = \emptyset and consequently, \mathfrak{g} -Int_{\mathfrak{g}} $\circ \mathfrak{g}$ -Cl_{\mathfrak{g}}: $\mathscr{S}_{\mathfrak{g},(s,q)} \longmapsto \emptyset$, meaning that $\mathscr{Q}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -set having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ -property in $\mathscr{S}_{\mathfrak{g}}$. On the other hand,

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g},(q,s)} \right) & \subseteq & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{Q}_{\mathfrak{g}} \right) = \mathscr{Q}_{\mathfrak{g}}; \\ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g},(q,s)} \right) & \subseteq & \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \right) \\ & = & \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \\ & = & \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{Q}_{\mathfrak{g}} \right). \end{split}$$

Since $\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}$ -Op_{\mathfrak{g}} ($\mathscr{Q}_{\mathfrak{g}}$) = \emptyset it follows, consequently, that \mathfrak{g} -Int_{\mathfrak{g}} $\circ \mathfrak{g}$ -Cl_{\mathfrak{g}}: $\mathscr{S}_{\mathfrak{g},(q,s)} \longmapsto \emptyset$, meaning that $\mathscr{S}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -set having \mathfrak{g} -Q_{\mathfrak{g}}-property in $\mathscr{Q}_{\mathfrak{g}}$. Set $\mathscr{R}_{\mathfrak{g}} = \mathscr{S}_{\mathfrak{g},(q,s)} \cup \mathscr{S}_{\mathfrak{g},(s,q)}$. Then,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}:\mathscr{R}_{\mathfrak{g}}&\longmapsto&\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g},(q,s)}\cup\mathscr{S}_{\mathfrak{g},(s,q)}\big)\\ &=&\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g},(q,s)}\big)\cup\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\big(\mathscr{S}_{\mathfrak{g},(s,q)}\big)\\ &=&\emptyset\cup\emptyset=\emptyset, \end{array}$$

implying that $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$. Having evidenced the existence of a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open-closed set $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}] \cap \mathfrak{g}\text{-K}\,[\mathfrak{T}_{\mathfrak{g}}]$ and a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ -property, it only remains to show that $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ is expressible as $\mathscr{S}_{\mathfrak{g}} = (\mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}) \cup (\mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}})$.

Observe that

$$\begin{split} \mathscr{S}_{\mathfrak{g},(q,r)} \cup \mathscr{S}_{\mathfrak{g},(r,q)} \\ &= \left\{ \mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \right\} \cup \left\{ \mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \right\} \\ &= \left\{ \mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left[\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cup \left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right) \right] \right\} \\ &\cup \left\{ \left[\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cup \left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right) \right] \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \right\} \\ &= \left\{ \mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right) \right\} \\ &\cup \left\{ \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cup \mathscr{S}_{\mathfrak{g}}\right\} \cap \left(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathscr{Q}_{\mathfrak{g}}\right) \right\} \\ &= \left\{ \left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \cap \left(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathscr{Q}_{\mathfrak{g}}\right) \right\} \cup \left\{ \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \right\} \\ &= \left\{ \left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \cap \left(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathscr{Q}_{\mathfrak{g}}\right) \right\} \cup \left\{ \mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \right\} \\ &= \left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \cup \left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}\right)\right). \end{split}$$

But since $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) = \mathscr{Q}_{\mathfrak{g}} = \mathfrak{g}\text{-Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})$ and the latter in turn implies $\mathfrak{g}\text{-Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Int}_{\mathfrak{g}} (\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}}) = \mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}} (\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}))$, it follows that $\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}} = \mathscr{S}_{\mathfrak{g}}$ and $\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}}) = \emptyset$. Consequently, $\mathscr{S}_{\mathfrak{g},(q,r)} \cup \mathscr{S}_{\mathfrak{g},(r,q)} = \mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}} \cup (\mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}})$ and hence, $\mathscr{S}_{\mathfrak{g}} = (\mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}) \cup (\mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}})$. The condition of the theorem is, therefore, necessary. \square

Observe that $\mathscr{S}_{\mathfrak{g}} = (\mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}) \cup (\mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}}) = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}(\mathscr{R}_{\mathfrak{g}}) \cup \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g},\mathscr{R}_{\mathfrak{g}}}(\mathscr{Q}_{\mathfrak{g}}) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}})$. Thus, an immediate consequence of the above theorem is the following corollary.

Corollary 3.9. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -P $[\mathfrak{T}_{\mathfrak{g}}]$ if and only if:

$$\left(\exists \mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)\left(\exists \mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)\left[\mathscr{S}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}\right)\right].$$

$$(3.5)$$

Proposition 3.10. If $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property, then $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) \neq \Omega$:

$$\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \neq \Omega.$$
 (3.6)

Proof. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, since $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}$ -space, it follows that $\Omega \in \mathfrak{g}\text{-O}\,[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-K}\,[\mathfrak{T}_{\mathfrak{g}}]$. Consequently, $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\,(\Omega) = \Omega$. But, $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ implies $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) = \emptyset$. Thus, $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) = \emptyset \neq \Omega = \mathfrak{g}\text{-Int}_{\mathfrak{g}}\,(\Omega)$, implying $\mathfrak{g}\text{-Cl}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) \neq \Omega$. The proof of the proposition is complete.

Proposition 3.11. If $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and $\mathfrak{T}_{\mathfrak{g}}$ be \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -connected, then:

$$\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longleftrightarrow \left(\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \vee \left(\mathfrak{g}\text{-Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right). \tag{3.7}$$

Proof. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$ and $\mathfrak{T}_{\mathfrak{g}}$ be \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -connected. Suppose $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}$ -P $[\mathfrak{T}_{\mathfrak{g}}]$. Then, there exist a \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open-closed set $\mathscr{Q}_{\mathfrak{g}} \in \mathfrak{g}$ -O $[\mathfrak{T}_{\mathfrak{g}}] \cap \mathfrak{g}$ -K $[\mathfrak{T}_{\mathfrak{g}}]$ and a $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}$ -Nd $[\mathfrak{T}_{\mathfrak{g}}]$ having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ -property such that $\mathscr{S}_{\mathfrak{g}}$ be expressible as $\mathscr{S}_{\mathfrak{g}} = (\mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}) \cup (\mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}})$. Since the strong $\mathscr{T}_{\mathfrak{g}}$ -space

 $\mathfrak{T}_{\mathfrak{g}}$ is \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -connected, the only \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -open-closed set are the improper $\mathfrak{T}_{\mathfrak{g}}$ -sets \emptyset , $\Omega \subset \mathfrak{T}_{\mathfrak{a}}$. Consequently,

$$\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-}\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longleftrightarrow \left(\mathscr{Q}_{\mathfrak{g}} \in \{\emptyset,\Omega\}\right) \left[\mathscr{S}_{\mathfrak{g}} = \left(\mathscr{Q}_{\mathfrak{g}} - \mathscr{R}_{\mathfrak{g}}\right) \cup \left(\mathscr{R}_{\mathfrak{g}} - \mathscr{Q}_{\mathfrak{g}}\right)\right].$$

Case i. Suppose $\mathscr{Q}_{\mathfrak{g}}=\emptyset$. Then $\mathscr{S}_{\mathfrak{g}}=(\emptyset-\mathscr{R}_{\mathfrak{g}})\cup(\mathscr{R}_{\mathfrak{g}}-\emptyset)$. But $\emptyset-\mathscr{R}_{\mathfrak{g}}=\emptyset$ and

$$\begin{split} \mathscr{R}_{\mathfrak{g}} - \emptyset &= \mathscr{R}_{\mathfrak{g}}. \text{ Therefore, } \mathscr{S}_{\mathfrak{g}} = \emptyset \cup \mathscr{R}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}}. \text{ Thus, } \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]. \\ \text{CASE II. Suppose } \mathscr{Q}_{\mathfrak{g}} &= \Omega. \text{ Then } \mathscr{S}_{\mathfrak{g}} = (\Omega - \mathscr{R}_{\mathfrak{g}}) \cup (\mathscr{R}_{\mathfrak{g}} - \Omega). \text{ But } \Omega - \mathscr{R}_{\mathfrak{g}} = (\Omega - \mathscr{R}_{\mathfrak{g}}) \cup (\Omega - \Omega). \end{split}$$
$$\begin{split} &\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \text{ and } \mathscr{R}_{\mathfrak{g}} - \Omega = \emptyset. \text{ Consequently, } \mathscr{S}_{\mathfrak{g}} = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \emptyset = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \text{ and } \\ &\operatorname{therefore, } \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) = \mathscr{R}_{\mathfrak{g}}. \text{ Hence, } \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \end{split}$$
The proof of the proposition is complete.

 $\mathbf{Lemma\ 3.12.}\ If (\mathscr{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] \times \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big] \times \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big]\ be\ a\ triple\ of\ \mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}sets$ and $\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{a}}:\mathscr{P}\left(\Omega\right)\times\mathscr{P}\left(\Omega\right)\longrightarrow\mathscr{P}\left(\Omega\right)$ be the symmetric difference $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}operator$ in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then:

$$\begin{array}{l} -\text{ I. } \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathcal{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}\big) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}}\mathcal{Q}_{\mathfrak{g}}\big) \in \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big], \\ -\text{ II. } \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathcal{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}\big),\mathscr{S}_{\mathfrak{g}}\big) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathscr{Q}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}\big)\big) \in \mathfrak{g}\text{-}\mathrm{S}\big[\mathfrak{T}_{\mathfrak{g}}\big], \\ -\text{ III. } \mathcal{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}\big) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}},\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\big). \end{array}$$

Proof. Let $(\mathcal{Q}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}, \mathcal{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$ and, let $\mathfrak{g}\text{-Sd}_{\mathfrak{g}} : \mathscr{P}(\Omega) \times \mathfrak{g}$ $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ be the symmetric difference \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -operator in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$ = $(\Omega, \mathscr{T}_{\mathfrak{g}})$. The proof that $\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}}\mathscr{Q}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}]$ holds for any $(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}$ \mathfrak{g} -S[$\mathfrak{T}_{\mathfrak{q}}$] is first supplied. It is evident that

$$\begin{array}{lcl} \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}} \right) & = & \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}}} \left(\mathscr{R}_{\mathfrak{g}} \right) \cup \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}} \left(\mathscr{Q}_{\mathfrak{g}} \right) \\ & = & \left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}} \right) \right) \cup \left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{Q}_{\mathfrak{g}} \right) \right) \subseteq \mathscr{Q}_{\mathfrak{g}} \cup \mathscr{R}_{\mathfrak{g}}, \end{array}$$

implying $\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathcal{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}})\subseteq \mathcal{Q}_{\mathfrak{g}}\cup \mathscr{R}_{\mathfrak{g}}$. Since $\mathcal{Q}_{\mathfrak{g}}\cup \mathscr{R}_{\mathfrak{g}}\in \mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}]$, it follows that $\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{q}}(\mathcal{Q}_{\mathfrak{q}},\mathcal{R}_{\mathfrak{q}}) \in \mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{q}}]$. Items I., II. and III. are now proved.

I. Since the order of the operands under the ∪-operation does not change, it follows that

$$\begin{array}{lcl} \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}\right) & = & \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g},\mathscr{R}_{\mathfrak{g}}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \\ & = & \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g},\mathscr{R}_{\mathfrak{g}}}\left(\mathscr{Q}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g},\mathscr{Q}_{\mathfrak{g}}}\left(\mathscr{R}_{\mathfrak{g}}\right) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}},\mathscr{Q}_{\mathfrak{g}}\right). \end{array}$$

Hence, $\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathcal{Q}_{\mathfrak{g}},\mathcal{R}_{\mathfrak{g}}) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathcal{R}_{\mathfrak{g}},\mathcal{Q}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}].$

II. For any $(\mathscr{S}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}] \times \mathfrak{g}\text{-S}[\mathfrak{T}_{\mathfrak{g}}]$, it is plain that $\mathfrak{g}\text{-Op}_{\mathfrak{g},\mathscr{R}_{\mathfrak{g}}}(\mathscr{S}_{\mathfrak{g}}) =$ $\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}).$ Therefore,

$$\begin{array}{lll} \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathcal{Q}_{\mathfrak{g}},\mathcal{R}_{\mathfrak{g}}\big),\mathcal{S}_{\mathfrak{g}}\big) & = & \big\{\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\,\big(\mathcal{Q}_{\mathfrak{g}},\mathcal{R}_{\mathfrak{g}}\big)\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\,\big(\mathcal{S}_{\mathfrak{g}}\big)\big\} \\ & \cup & \big\{\mathcal{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\big(\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathcal{Q}_{\mathfrak{g}},\mathcal{R}_{\mathfrak{g}}\big)\big)\big\} \\ & = & \big\{\mathcal{Q}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\,\big(\mathcal{R}_{\mathfrak{g}}\big)\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\,\big(\mathcal{S}_{\mathfrak{g}}\big)\big\} \\ & \cup & \big\{\mathcal{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\,\big(\mathcal{Q}_{\mathfrak{g}}\big)\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\,\big(\mathcal{S}_{\mathfrak{g}}\big)\big\} \\ & \cup & \big\{\mathcal{S}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\,\big(\mathcal{Q}_{\mathfrak{g}}\big)\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\,\big(\mathcal{R}_{\mathfrak{g}}\big)\big\} \\ & \cup & \big\{\mathcal{S}_{\mathfrak{g}}\cap\mathcal{Q}_{\mathfrak{g}}\cap\mathcal{R}_{\mathfrak{g}}\big\}\,. \end{array}$$

$$\begin{split} \text{If } \mathrm{P}\left(\mathcal{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) &\stackrel{\mathrm{def}}{=} \mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g}}\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right), \text{ then} \\ \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right), \mathscr{S}_{\mathfrak{g}}\right) &= \mathrm{P}\left(\mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \cup \mathrm{P}\left(\mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\right) \\ & \cup \mathrm{P}\left(\mathscr{S}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}}, \mathscr{R}_{\mathfrak{g}}\right) \cup \left(\mathscr{S}_{\mathfrak{g}} \cap \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}\right). \end{split}$$

Since
$$\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathcal{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}),\mathscr{S}_{\mathfrak{g}}) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathcal{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}}))$$
, it follows that
$$\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathcal{Q}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}})) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}} = \mathcal{Q}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathcal{Q}_{\mathfrak{g}} = \mathscr{R}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}} = \mathscr{S}_{\mathfrak{g}}))$$

$$= P(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}},\mathscr{Q}_{\mathfrak{g}}) \cup P(\mathscr{S}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}},\mathscr{Q}_{\mathfrak{g}})$$

$$\cup P(\mathscr{Q}_{\mathfrak{g}},\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) \cup (\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}).$$

But by virtue of the associativity and distributive properties of the \cap, \cup -operations, the relations $P\left(\mathcal{Q}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}, \mathcal{S}_{\mathfrak{g}}\right) = P\left(\mathcal{Q}_{\mathfrak{g}}, \mathcal{S}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}\right), \ P\left(\mathcal{R}_{\mathfrak{g}}, \mathcal{Q}_{\mathfrak{g}}, \mathcal{S}_{\mathfrak{g}}\right) = P\left(\mathcal{R}_{\mathfrak{g}}, \mathcal{S}_{\mathfrak{g}}, \mathcal{Q}_{\mathfrak{g}}\right), \ P\left(\mathcal{R}_{\mathfrak{g}}, \mathcal{Q}_{\mathfrak{g}}, \mathcal{S}_{\mathfrak{g}}\right) = P\left(\mathcal{R}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}, \mathcal{Q}_{\mathfrak{g}}\right), \ P\left(\mathcal{R}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}\right) = P\left(\mathcal{R}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}\right), \ P\left(\mathcal{R}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}, \mathcal{R}_{\mathfrak{g}}\right) = \mathcal{R}_{\mathfrak{g}} + \mathcal{R}_{\mathfrak{g}} +$

III. Since the relation $\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g},\mathscr{R}_{\mathfrak{g}}}(\mathscr{S}_{\mathfrak{g}})=\mathscr{R}_{\mathfrak{g}}\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}) \text{ holds for any } (\mathscr{S}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}})\in\mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{q}}]\times\mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{q}}], \text{ it results that}$

$$\begin{split} \mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}}, \mathscr{S}_{\mathfrak{g}}\big) &= \mathscr{Q}_{\mathfrak{g}} \cap \big(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}} \left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}, \mathscr{S}_{\mathfrak{g}}} \left(\mathscr{R}_{\mathfrak{g}}\right)\big) \\ &= \left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}, \mathscr{R}_{\mathfrak{g}}} \left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cup \left(\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}, \mathscr{S}_{\mathfrak{g}}} \left(\mathscr{R}_{\mathfrak{g}}\right)\right) \\ &= \left(\mathscr{Q}_{\mathfrak{g}} \cap \left(\mathscr{R}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right)\right)\right) \cup \left(\mathscr{Q}_{\mathfrak{g}} \cap \left(\mathscr{S}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}}\right)\right)\right) \\ &= \left(\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}}\right)\right) \cup \left(\left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g}}\right)\right) \\ &= \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}} \left(\mathscr{S}_{\mathfrak{g}}\right) \cup \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}} \left(\mathscr{R}_{\mathfrak{g}}\right) \\ &= \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \left(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}\right). \end{split}$$

Hence, $\mathscr{Q}_{\mathfrak{g}} \cap \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathscr{R}_{\mathfrak{g}},\mathscr{S}_{\mathfrak{g}}) = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}(\mathscr{Q}_{\mathfrak{g}} \cap \mathscr{R}_{\mathfrak{g}}, \mathscr{Q}_{\mathfrak{g}} \cap \mathscr{S}_{\mathfrak{g}}) \in \mathfrak{g}\text{-}\mathrm{S}[\mathfrak{T}_{\mathfrak{g}}].$ The proof of the lemma is complete.

Theorem 3.13. If $\mathscr{S}_{\mathfrak{g},1}$, $\mathscr{S}_{\mathfrak{g},2}$, ..., $\mathscr{S}_{\mathfrak{g},\sigma} \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g}}]$ are $\sigma \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets having $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then $\bigcap_{\nu \in I_{\mathfrak{T}}^*} \mathscr{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g}}]$.

Proof. Let $\mathscr{G}_{\mathfrak{g},1}, \mathscr{S}_{\mathfrak{g},2}, \ldots, \mathscr{S}_{\mathfrak{g},\sigma} \in \mathfrak{g}\text{-P}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ be $\sigma \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets having $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, since $\mathscr{S}_{\mathfrak{g},1}, \mathscr{S}_{\mathfrak{g},2}, \ldots, \mathscr{S}_{\mathfrak{g},\sigma} \in \mathfrak{g}\text{-P}\big[\mathfrak{T}_{\mathfrak{g}}\big]$, there exist $\sigma \geq 1$ $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open-closed sets $\mathscr{Q}_{\mathfrak{g},1}, \mathscr{Q}_{\mathfrak{g},2}, \ldots, \mathscr{Q}_{\mathfrak{g},\sigma} \in \mathfrak{g}\text{-O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \cap \mathfrak{g}\text{-K}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ and $\sigma \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets $\mathscr{R}_{\mathfrak{g},1}, \mathscr{R}_{\mathfrak{g},2}, \ldots, \mathscr{R}_{\mathfrak{g},\sigma} \in \mathfrak{g}\text{-Nd}\big[\mathfrak{T}_{\mathfrak{g}}\big]$ having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property such that

$$\begin{split} \mathscr{S}_{\mathfrak{g},1} &= \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathscr{Q}_{\mathfrak{g},1},\mathscr{R}_{\mathfrak{g},1}\big), \\ \mathscr{S}_{\mathfrak{g},2} &= \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathscr{Q}_{\mathfrak{g},2},\mathscr{R}_{\mathfrak{g},2}\big), \ \ldots, \ \mathscr{S}_{\mathfrak{g},\sigma} = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\big(\mathscr{Q}_{\mathfrak{g},\sigma},\mathscr{R}_{\mathfrak{g},\sigma}\big). \end{split}$$

For an arbitrary pair $(\nu,\mu) \in I_{\sigma}^* \times I_{\sigma}^*$, set $\mathcal{Q}_{\mathfrak{g},(\nu,\mu)} = \mathcal{Q}_{\mathfrak{g},\nu} \cap \mathcal{Q}_{\mathfrak{g},\mu}$, $\mathcal{W}_{\mathfrak{g},(\nu,\mu)} = \mathcal{Q}_{\mathfrak{g},\nu} \cap \mathcal{R}_{\mathfrak{g},\mu}$, and $\mathcal{R}_{\mathfrak{g},(\nu,\mu)} = \mathcal{R}_{\mathfrak{g},\nu} \cap \mathcal{R}_{\mathfrak{g},\mu}$. Then,

$$\begin{split} \mathscr{S}_{\mathfrak{g},\nu} \cap \mathscr{S}_{\mathfrak{g},\mu} &= \mathscr{S}_{\mathfrak{g},\nu} \cap \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big(\mathscr{Q}_{\mathfrak{g},\mu},\mathscr{R}_{\mathfrak{g},\mu}\big) \\ &= \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big(\mathscr{S}_{\mathfrak{g},\nu} \cap \mathscr{Q}_{\mathfrak{g},\mu},\mathscr{S}_{\mathfrak{g},\nu} \cap \mathscr{R}_{\mathfrak{g},\mu}\big) \\ &= \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big[\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big(\mathscr{Q}_{\mathfrak{g},\nu},\mathscr{R}_{\mathfrak{g},\nu}\big) \cap \mathscr{Q}_{\mathfrak{g},\mu},\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big(\mathscr{Q}_{\mathfrak{g},\nu},\mathscr{R}_{\mathfrak{g},\nu}\big) \cap \mathscr{R}_{\mathfrak{g},\mu}\big] \\ &= \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big[\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big(\mathscr{Q}_{\mathfrak{g},(\nu,\mu)},\mathscr{W}_{\mathfrak{g},(\mu,\nu)}\big),\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big(\mathscr{W}_{\mathfrak{g},(\nu,\mu)},\mathscr{R}_{\mathfrak{g},(\nu,\mu)}\big)\big] \big] \\ &= \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big\{\mathscr{Q}_{\mathfrak{g},(\nu,\mu)},\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big[\mathscr{W}_{\mathfrak{g},(\mu,\nu)},\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}} \big(\mathscr{W}_{\mathfrak{g},(\nu,\mu)},\mathscr{R}_{\mathfrak{g},(\nu,\mu)}\big)\big] \big\}. \end{split}$$

 $\begin{array}{l} \operatorname{But}, \mathscr{R}_{\mathfrak{g},\nu}, \mathscr{R}_{\mathfrak{g},\mu} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ implies } \mathscr{R}_{\mathfrak{g},(\nu,\mu)} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right], \left(\mathscr{Q}_{\mathfrak{g},\nu},\mathscr{R}_{\mathfrak{g},\mu}\right) \in \left(\mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \\ \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \times \mathfrak{g}\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ implies } \mathscr{W}_{\mathfrak{g},(\nu,\mu)} \in \mathfrak{g}\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ and, } \mathscr{Q}_{\mathfrak{g},\nu}, \, \mathscr{Q}_{\mathfrak{g},\mu} \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ implies } \mathscr{Q}_{\mathfrak{g},(\nu,\mu)} \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \text{ Thus, } \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g},(\nu,\mu)},\mathscr{R}_{\mathfrak{g},(\nu,\mu)}\right) \in \mathfrak{g}\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right], \\ \mathfrak{g}\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right], \text{ implying } \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g},(\mu,\nu)},\mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{W}_{\mathfrak{g},(\nu,\mu)},\mathscr{R}_{\mathfrak{g},(\nu,\mu)}\right)\right) = \hat{\mathscr{R}}_{\mathfrak{g},(\nu,\mu)} \in \mathfrak{g}\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \\ \text{Therefore, } \mathscr{S}_{\mathfrak{g},\nu} \cap \mathscr{S}_{\mathfrak{g},\mu} = \mathfrak{g}\text{-}\mathrm{Sd}_{\mathfrak{g}}\left(\mathscr{Q}_{\mathfrak{g},(\nu,\mu)},\mathring{\mathscr{R}}_{\mathfrak{g},(\nu,\mu)}\right), \text{ where } \mathscr{Q}_{\mathfrak{g},(\nu,\mu)} \in \mathfrak{g}\text{-}\mathrm{O}\left[\mathfrak{T}_{\mathfrak{g}}\right] \cap \mathscr{S}_{\mathfrak{g}}. \end{array}$

 $\begin{array}{l} \mathfrak{g}\text{-}\mathrm{K}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ and } \hat{\mathscr{R}}_{\mathfrak{g},(\nu,\mu)} \in \mathfrak{g}\text{-}\mathrm{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right], \text{ and consequently, } \mathscr{S}_{\mathfrak{g},\nu} \cap \mathscr{S}_{\mathfrak{g},\mu} \in \mathfrak{g}\text{-}\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \text{ for any } (\nu,\mu) \in I_{\sigma}^{*} \times I_{\sigma}^{*}. \text{ Hence, } \bigcap_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-}\mathrm{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \text{ The proof of the theorem is complete.} \\ \Box$

Proposition 3.14. If $\{\mathscr{S}_{\mathfrak{g},\nu} \subset \mathfrak{T}_{\mathfrak{g}} : \nu \in I_{\sigma}^*\}$ be a collection of $\sigma \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets each of which having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$ -property in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then $\bigcup_{\nu \in I_{\sigma}^*} \mathscr{S}_{\mathfrak{g},\nu}$ has also \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$:

$$\bigwedge_{\nu \in I_{\sigma}^{*}} \left(\mathscr{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \right) \longrightarrow \bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \tag{3.8}$$

Proof. Let $\mathscr{G}_{\mathfrak{g},1}$, $\mathscr{S}_{\mathfrak{g},2}$, ..., $\mathscr{S}_{\mathfrak{g},\sigma} \in \mathfrak{g}$ -P [\$\mathbb{T}_{\mathbf{g}}\$] be $\sigma \geq 1$ \$\mathbf{T}_{\mathbf{g}}\$-sets having \$\mathbf{g}\$-\$\mathbf{P}_{\mathbf{g}}\$-property in a strong \$\mathscr{T}_{\mathbf{g}}\$-space \$\mathbf{T}_{\mathbf{g}}\$ = (\Omega, \mathscr{T}_{\mathbf{g}})\$. Then, since \$\mathscr{S}_{\mathbf{g}}\$ = \$\mathbf{g}\$-Op_{\mathbf{g}} \circ \mathbf{P}_{\mathbf{g}}\$-Op_{\mathbf{g}} \circ \mathbf{P}_{\mathbf{g}}\$.) for any \$\mathbf{T}\$-depth of the proposition is complete.

\[
\mathbf{T}_{\mathbf{g},\nu}\$-Op_{\mathbf{g}} (\mathbf{F}_{\mathbf{g},\nu}) \cap \mathbf{g}\$-Op_{\mathbf{g}} (\mathscr{S}_{\mathbf{g},\nu}) \cap \mathbf{g}\$-Op_{\mathbf{g}} (\mathscr{S}_{\mathbf{g},\nu}) \cap \mathbf{G}_{\mathbf{g},\nu}\$ But, g-Op_{\mathbf{g}} (\mathscr{S}_{\mathbf{g},\nu}), \mathbf{g}\$-Op_{\mathbf{g}} (\mathscr{S}_{\mathbf{g},\nu}) \cap \mathbf{G}\$-Op_{\mathbf{g}} (\mathbf{S}_{\mathbf{g},\nu}) \cap \mathbf{G}\$-Op_{\mathbf{g}} (\mathbf{S}_{\mathbf{g},\nu}) \cap \mathbf{G}\$-Op_{\mathbf{g}} (\mathbf{S}_{\mathbf{g},\nu}) \cap \mathbf{G}\$-Op_{\mathbf{g}} (\mathbf{S}_{\mathbf{g},\nu}) \cap \mathbf{G}\$-Op_

Theorem 3.15. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. If $\mathscr{S}_{\mathfrak{g}}$ has $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$, then it has also $\mathfrak{P}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$:

$$\left(\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}\right) \left[\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathscr{S}_{\mathfrak{g}} \in \mathbf{P}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right]. \tag{3.9}$$

Proof. Let $\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\,[\mathfrak{T}_{\mathfrak{g}}]$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Then, it satisfies the relation $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) \longleftrightarrow \mathfrak{g}\text{-Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}})$. Since $(\operatorname{int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}), \mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})) \subseteq (\mathfrak{g}\text{-Int}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}), \operatorname{cl}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}}))$, it follows that

$$\begin{split} & \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \supseteq \operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \subseteq \mathfrak{g}\text{-}\operatorname{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right), \\ & \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \subseteq \operatorname{cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\operatorname{Int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \supseteq \mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\operatorname{Int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right). \end{split}$$

Consequently,

$$\begin{split} \mathrm{int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \cap \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) &= \mathrm{int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \\ &= \mathrm{int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right) \cap \mathrm{cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g}} \right), \end{split}$$

implying $\operatorname{cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\operatorname{Int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) = \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}).$ But, $\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{g-Int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) \cap \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) = \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) = \operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}).$ Consequently, it results that $\operatorname{int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) = \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) = \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}})$, which, in turn, implies $\operatorname{cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\operatorname{Int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) = \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}),$ Therefore, $\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}),$ meaning that $\mathscr{S}_{\mathfrak{g}}$ has also $\mathfrak{P}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$. Hence, $\mathscr{S}_{\mathfrak{g}} \in \operatorname{P}[\mathfrak{T}_{\mathfrak{g}}].$ The proof of the theorem is complete.

Proposition 3.16. If $\{\mathscr{S}_{\mathfrak{g},\nu} \subset \mathfrak{T}_{\mathfrak{g}} : \nu \in I_{\sigma}^*\}$ be a collection of $\sigma \geq 1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets having \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ -property in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, then $\bigcup_{\nu \in I_{\sigma}^*} \mathscr{S}_{\mathfrak{g},\nu}$ has also \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$:

$$\bigwedge_{\nu \in I_{\sigma}^{*}} \left(\mathscr{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \right) \longrightarrow \bigcup_{\nu \in I_{\sigma}^{*}} \mathscr{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \tag{3.10}$$

Proof. Let $\left\{\mathscr{S}_{\mathfrak{g},\nu}\in\mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]:\ \nu\in I_{\sigma}^{*}\right\}$ be a collection of $\sigma\geq1$ $\mathfrak{T}_{\mathfrak{g}}$ -sets having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}=(\Omega,\mathscr{T}_{\mathfrak{g}})$. Suppose $\bigwedge_{\nu\in I_{\sigma}^{*}}\left(\mathscr{S}_{\mathfrak{g},\nu}\in\mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)$ implies $\bigcup_{\nu\in I_{\sigma}^{*}}\mathscr{S}_{\mathfrak{g},\nu}\in\mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is an untrue logical statement. Then, $\bigwedge_{\nu\in I_{\sigma}^{*}}\left(\mathscr{S}_{\mathfrak{g},\nu}\in\mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right)$ is true and $\mathfrak{g}\text{-Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-Cl}_{\mathfrak{g}}:\bigcup_{\nu\in I_{\sigma}^{*}}\mathscr{S}_{\mathfrak{g},\nu}\longmapsto\emptyset$ is untrue. Thus, to prove the proposition, it suffices to prove that $\bigcup_{\nu\in I_{\sigma}^{*}}\mathscr{S}_{\mathfrak{g},\nu}\notin\mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is a contradiction. For arbitrary $(\nu,\mu(\nu))\in I_{\sigma}^{*}\times I_{\sigma(\nu)}^{*}$ such that $I_{\sigma(\nu)}^{*}=I_{\sigma}^{*}\setminus\{\nu\}$, set $\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))}=\mathscr{S}_{\mathfrak{g},\nu}\cup\mathscr{S}_{\mathfrak{g},\mu(\nu)}$, where $\left\{\mathscr{S}_{\mathfrak{g},\nu},\mathscr{S}_{\mathfrak{g},\mu(\nu)}\right\}\subset\mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. Since $\mathfrak{g}\text{-Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))}\right)\subseteq\mathfrak{g}\text{-Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},\nu,\mu(\nu)}\right)$, it follows that

$$\begin{split} \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \Big(\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))}\Big) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, \Big(\mathscr{S}_{\mathfrak{g},\mu(\nu)}\Big) \\ &\subseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \Big(\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))}\Big) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \Big(\mathscr{S}_{\mathfrak{g},\mu(\nu)}\Big) \\ &= \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, \Big(\mathscr{S}_{\mathfrak{g},\nu}\Big) \cap \mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, \Big(\mathscr{S}_{\mathfrak{g},\mu(\nu)}\Big) \subseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \, \Big(\mathscr{S}_{\mathfrak{g},\nu}\Big) \,. \end{split}$$

Thus, for arbitrary $(\nu, \mu(\nu)) \in I_{\sigma}^* \times I_{\sigma(\nu)}^*$ such that $I_{\sigma(\nu)}^* = I_{\sigma}^* \setminus \{\nu\}$, it follows that

$$\begin{split} \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g}} \left[\operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g}} \circ \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))} \right) \cap \operatorname{\mathfrak{g}\text{-}Op}_{\mathfrak{g}} \circ \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g},\mu(\nu)} \right) \right] \\ & \subseteq \operatorname{\mathfrak{g}\text{-}Int}_{\mathfrak{g}} \circ \operatorname{\mathfrak{g}\text{-}Cl}_{\mathfrak{g}} \left(\mathscr{S}_{\mathfrak{g},\nu} \right) = \emptyset. \end{split}$$

Since $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}$ -space, it results that

$$\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))}\right)\cap\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},\mu(\nu)}\right)=\emptyset,$$

and therefore, $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))}) \subseteq \mathfrak{g}\text{-Cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g},\mu(\nu)})$. On the other hand, since $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))}) \in \mathfrak{g}\text{-O} [\mathfrak{T}_{\mathfrak{g}}]$, it follows that

$$\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))}\right)\subseteq\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g},\mu(\nu)}\right)=\emptyset,$$

Thus, $\mathscr{S}_{\mathfrak{g},(\nu,\mu(\nu))} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ holds for arbitrary $(\nu,\mu(\nu)) \in I_{\sigma}^* \times I_{\sigma(\nu)}^*$ such that $I_{\sigma(\nu)}^* = I_{\sigma}^* \setminus \{\nu\}$ and hence, $\bigcup_{\nu \in I_{\sigma}^*} \mathscr{S}_{\mathfrak{g},\nu} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$. The relation $\bigcup_{\nu \in I_{\sigma}^*} \mathscr{S}_{\mathfrak{g},\nu} \notin \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is therefore a contradiction. The proof of the proposition is complete. \square

Theorem 3.17. Let $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. If $\mathscr{S}_{\mathfrak{g}}$ is a $\mathfrak{T}_{\mathfrak{g}}$ -set having \mathfrak{g} - $\mathfrak{D}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$, then it has also $\mathfrak{Q}_{\mathfrak{g}}$ -property in $\mathfrak{T}_{\mathfrak{g}}$:

$$(\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}) \big[\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd} \, [\mathfrak{T}_{\mathfrak{g}}] \, \longleftarrow \, \mathscr{S}_{\mathfrak{g}} \in \operatorname{Nd} \, [\mathfrak{T}_{\mathfrak{g}}] \big]. \tag{3.11}$$

Proof. Let $\mathscr{G}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ be a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property in a strong $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$. Suppose $\mathscr{G}_{\mathfrak{g}} \in \operatorname{Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ implies $\mathscr{G}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ is an untrue logical statement. Then, $\mathscr{G}_{\mathfrak{g}} \in \operatorname{Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ is true and $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}} : \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$ is untrue. Thus, to prove the theorem, it suffices to prove that $\mathscr{S}_{\mathfrak{g}} \notin \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ is a contradiction. Since $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) \subseteq \mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})$, it follows that $\mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}}) \cap \mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}}\,(\mathscr{S}_{\mathfrak{g}})$. Consequently,

$$\mathrm{int}_{\mathfrak{g}}\big[\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\cap\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathrm{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\big]\subseteq\mathrm{int}_{\mathfrak{g}}\circ\mathrm{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right).$$

Since $\mathscr{S}_{\mathfrak{g}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ and $\mathfrak{T}_{\mathfrak{g}}$ is a strong $\mathscr{T}_{\mathfrak{g}}$ -space, it follows that $\operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} : \mathscr{S}_{\mathfrak{g}} \longmapsto \emptyset$ and therefore, \mathfrak{g} -Int $_{\mathfrak{g}} \circ \mathfrak{g}$ -Cl $_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) \cap \mathfrak{g}$ -Int $_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) = \emptyset$. Since \mathfrak{g} -Int $_{\mathfrak{g}} \circ \mathfrak{g}$ -Cl $_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}}) \subseteq \mathfrak{g}$ -Int $_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} (\mathscr{S}_{\mathfrak{g}})$, it results that

$$\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)\cap\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathrm{cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right)=\emptyset,$$

implying $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}:\mathscr{S}_{\mathfrak{g}}\longmapsto\emptyset$. Hence, $\mathscr{S}_{\mathfrak{g}}\in\mathfrak{g}\text{-}\mathrm{Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$. The relation $\mathscr{S}_{\mathfrak{g}}\notin\mathfrak{g}\text{-}\mathrm{Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ is therefore a contradiction. The proof of the theorem is complete. \square

The important remark given below ends the present section.

Remark. In a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, the converse of the following statements with respect to some $\mathfrak{T}_{\mathfrak{g}}$ -set $\mathscr{S}_{\mathfrak{g}} \subset \mathfrak{T}_{\mathfrak{g}}$ are in general untrue:

 $\begin{array}{l} -\text{ I. } \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right], \\ -\text{ II. } \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right], \\ -\text{ III. } \left(\mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \vee \left(\mathfrak{g}\text{-}\mathrm{Op}_{\mathfrak{g}}\left(\mathscr{S}_{\mathfrak{g}}\right) \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]\right) \longrightarrow \mathscr{S}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]. \end{array}$

Because, in the event that $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}}) = (\mathbb{R}, \mathscr{T}_{\mathfrak{g},\mathbb{R}}) = \mathfrak{T}_{\mathfrak{g},\mathbb{R}}$ and $\mathscr{S}_{\mathfrak{g}} = \mathbb{Q}$ (\mathbb{Q} and \mathbb{R} , respectively, denote the sets of rational and real numbers, where $\mathbb{R} \supset \mathbb{Q}$), the converse of ITEMS I.,II. and III., reading

 $\begin{array}{l} -\text{ IV. } \mathbb{Q} \in \mathfrak{g}\text{-P}\big[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}\big] \longleftarrow \mathfrak{g}\text{-Int}_{\mathfrak{g}}\left(\mathbb{Q}\right) \in \mathfrak{g}\text{-P}\big[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}\big], \\ -\text{ V. } \mathbb{Q} \in \mathfrak{g}\text{-P}\big[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}\big] \longleftarrow \mathfrak{g}\text{-Cl}_{\mathfrak{g}}\left(\mathbb{Q}\right) \in \mathfrak{g}\text{-P}\big[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}\big], \\ -\text{ VI. } \left(\mathbb{Q} \in \mathfrak{g}\text{-Nd}\big[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}\big]\right) \vee \left(\mathfrak{g}\text{-Op}_{\mathfrak{g}}\left(\mathbb{Q}\right) \in \mathfrak{g}\text{-Nd}\big[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}\big]\right) \longleftarrow \mathbb{Q} \in \mathfrak{g}\text{-P}\big[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}\big], \end{array}$

respectively, are all untrue. In fact, every $\mathcal{T}_{\mathfrak{g}}$ -open set $\mathcal{O}_{\mathfrak{g}} \in \mathcal{T}_{\mathfrak{g},\mathbb{R}}$ contains both points $\xi \in \mathbb{Q}$ and $\zeta \in \mathbb{R} \setminus \mathbb{Q}$. Consequently, there are no $\mathfrak{g} \cdot \mathfrak{T}_{\mathfrak{g}}$ -interior points of \mathbb{Q} . Therefore, $\mathfrak{g}\text{-Int}_{\mathfrak{g}}(\mathbb{Q}) = \emptyset$ and $\mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathbb{Q}) = \mathbb{R}$ and thus, $\mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}] \ni \mathbb{R} = \mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathbb{R}) = \mathfrak{g}\text{-Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathbb{Q}) \neq \mathfrak{g}\text{-Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-Int}_{\mathfrak{g}}(\mathbb{Q}) = \mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\emptyset) = \emptyset \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}];$ $(\mathbb{Q},\mathfrak{g}\text{-Op}_{\mathfrak{g}}(\mathbb{Q})) \notin \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}] \times \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}]$. In Items iv., v. and vi., the consequents $\mathbb{Q} \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}]$, $\mathbb{Q} \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}]$ and $(\mathbb{Q} \in \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}]) \vee (\mathfrak{g}\text{-Op}_{\mathfrak{g}}(\mathbb{Q}) \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}])$ are all untrue and on the other hand, their antecedents $\mathfrak{g}\text{-Int}_{\mathfrak{g}}(\mathbb{Q}) \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}]$ are all true. Consequently, Items iv., v. and vi. are all untrue statements and hence, the converse of Items i., ii. and iii. are untrue statements. In addition, since $(\mathbb{Q},\mathfrak{g}\text{-Op}_{\mathfrak{g}}(\mathbb{Q})) \notin \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}] \times \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g},\mathbb{R}}]$ it follows that, for some $\mathfrak{T}_{\mathfrak{g}}\text{-set}\,\mathscr{S}_{\mathfrak{g}}\subset \mathfrak{T}_{\mathfrak{g}}$, the condition $\mathfrak{g}\text{-Op}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})\in \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g}}]$ can be satisfied without the condition $\mathscr{S}_{\mathfrak{g}}\in \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g}}]$ being satisfied, though $\mathscr{O}_{\mathfrak{g}}\cap \mathfrak{g}\text{-Op}_{\mathfrak{g}}\circ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}(\mathscr{S}_{\mathfrak{g}})\neq\emptyset$ for every $\mathscr{O}_{\mathfrak{g}}\in \mathfrak{g}\text{-O}[\mathfrak{T}_{\mathfrak{g}}]$ is a consequence of $\mathscr{S}_{\mathfrak{g}}\in \mathfrak{g}\text{-Nd}[\mathfrak{T}_{\mathfrak{g}}]$.

4. Discussion

4.1. Categorical Classifications. Having adopted a categorical approach in the classifications of $\mathfrak{T}_{\mathfrak{a}}$ -sets with $\{\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{a}},\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{a}}\}$ -property, the twofold purposes here are, firstly, to establish the various relationships amongst the classes of $\mathfrak{T}_{\mathfrak{a}}$ -sets with $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{a}}$, $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{a}}$ -properties, $\mathfrak{a}\in\{\mathfrak{o},\mathfrak{g}\}$, in a $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, and secondly, to illustrate them through diagrams.

In a $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{g}}$, since $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}$ -P $[\mathfrak{T}_{\mathfrak{a}}]$ implies $\bigvee_{\nu \in I_3^0} \left(\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}$ - ν -P $[\mathfrak{T}_{\mathfrak{a}}] \right)$, it follows that, \mathfrak{g} - $\mathfrak{P}_{\mathfrak{a}} \longleftarrow \mathfrak{g}$ - ν - $\mathfrak{P}_{\mathfrak{a}}$ for each $\nu \in I_3^0$. Therefore, \mathfrak{g} -0- $\mathfrak{P}_{\mathfrak{a}} \longrightarrow \mathfrak{g}$ -1- $\mathfrak{P}_{\mathfrak{a}} \longrightarrow \mathfrak{g}$ -3- $\mathfrak{P}_{\mathfrak{a}} \longleftarrow \mathfrak{g}$ -2- $\mathfrak{P}_{\mathfrak{a}}$. But, \mathfrak{g} - ν - $\mathfrak{P}_{\mathfrak{g}} \longleftarrow \mathfrak{g}$ - ν - $\mathfrak{P}_{\mathfrak{g}}$ for each $\nu \in I_3^0$. Hence, Eq. (4.1) present itself which may well be called \mathfrak{g} - $\mathfrak{P}_{\mathfrak{a}}$ -property diagram.

In terms of the class $\{\mathfrak{g}\text{-}\nu\text{-}P\ [\mathfrak{T}_{\mathfrak{a}}]: \nu \in I_3^*\}$, Fig. 1 present itself which may well be called $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{a}}\text{-}class\ diagram$.

Figure 1. Relationships: $\mathfrak{g-P_a}$ -class diagram in the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$.

In $\mathfrak{T}_{\mathfrak{a}}$, since $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-}\mathrm{Q}[\mathfrak{T}_{\mathfrak{a}}]$ implies $\bigvee_{\nu \in I_3^0} \left(\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-}\nu\text{-}\mathrm{Q}[\mathfrak{T}_{\mathfrak{a}}] \right)$, it follows that, $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{a}} \longleftarrow \mathfrak{g}\text{-}\nu\text{-}\mathfrak{Q}_{\mathfrak{a}}$ for every $\nu \in I_3^0$. Therefore, $\mathfrak{g}\text{-}0\text{-}\mathfrak{Q}_{\mathfrak{a}} \longrightarrow \mathfrak{g}\text{-}1\text{-}\mathfrak{Q}_{\mathfrak{a}} \longrightarrow \mathfrak{g}\text{-}3\text{-}\mathfrak{Q}_{\mathfrak{a}} \longleftarrow \mathfrak{g}\text{-}2\text{-}\mathfrak{Q}_{\mathfrak{a}}$. But, $\mathfrak{g}\text{-}\nu\text{-}\mathfrak{Q}_{\mathfrak{o}} \longrightarrow \mathfrak{g}\text{-}\nu\text{-}\mathfrak{Q}_{\mathfrak{g}}$ for each $\nu \in I_3^0$. Thus, Eq. (4.2) present itself which may well be called $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{a}}\text{-}property\ diagram$.

In terms of the class $\{\mathfrak{g}-\nu\text{-Nd}\,[\mathfrak{T}_{\mathfrak{a}}]: \nu\in I_3^*\}$, Fig. 2 present itself which may well be called $\mathfrak{g}-\mathfrak{Q}_{\mathfrak{a}}$ -class diagram.

In $\mathfrak{T}_{\mathfrak{a}}$, since $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{a}}]$, $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-P}\,[\mathfrak{T}_{\mathfrak{a}}]$ and $\mathscr{S}_{\mathfrak{a}} \in \operatorname{Nd}\,[\mathfrak{T}_{\mathfrak{a}}]$ imply $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-P}\,[\mathfrak{T}_{\mathfrak{a}}]$, $\mathscr{S}_{\mathfrak{a}} \in \operatorname{P}\,[\mathfrak{T}_{\mathfrak{a}}]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{a}}]$, respectively, it follows that $\mathfrak{Q}_{\mathfrak{a}} \longrightarrow \mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{a}} \longrightarrow \mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{a}} \longrightarrow \mathfrak{P}_{\mathfrak{g}}$ in $\mathfrak{T}_{\mathfrak{g}}$. Finally, $\mathscr{S}_{\mathfrak{a}} \in \operatorname{Nd}\,[\mathfrak{T}_{\mathfrak{o}}]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ imply $\mathscr{S}_{\mathfrak{a}} \in \operatorname{Nd}\,[\mathfrak{T}_{\mathfrak{g}}]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-P}\,[\mathfrak{T}_{\mathfrak{g}}]$ imply $\mathscr{S}_{\mathfrak{a}} \in \operatorname{P}\,[\mathfrak{T}_{\mathfrak{o}}]$ and $\mathscr{S}_{\mathfrak{a}} \in \mathfrak{g}\text{-P}\,[\mathfrak{T}_{\mathfrak{o}}]$, respectively. Altogether, Eq. (4.3) present itself which may well be called $(\mathfrak{P}_{\mathfrak{a}},\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{a}};\mathfrak{Q}_{\mathfrak{a}},\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{a}})$ -properties diagram.

In terms of the class $\{ \operatorname{Nd} \left[\mathfrak{T}_{\mathfrak{a}} \right], \operatorname{P} \left[\mathfrak{T}_{\mathfrak{a}} \right], \mathfrak{g}\text{-Nd} \left[\mathfrak{T}_{\mathfrak{a}} \right], \mathfrak{g}\text{-P} \left[\mathfrak{T}_{\mathfrak{a}} \right] \}, \text{ Fig. 3 present itself which may well be called } (\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{a}}; \mathfrak{Q}_{\mathfrak{a}}, \mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{a}})\text{-}classes diagram.}$

As in our previous works [1, 2, 19, 20], the manner we have positioned the arrows in the \mathfrak{g} - $\mathfrak{P}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{a}}$, ($\mathfrak{P}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{P}_{\mathfrak{a}}$; $\mathfrak{Q}_{\mathfrak{a}}$, \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{a}}$)-properties diagrams (Eqs. (4.1),

Figure 2. Relationships: \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{a}}$ -property diagram in the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}}$.

FIGURE 3. Relationships: $(\mathfrak{P}_{\mathfrak{a}}, \mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{a}}; \mathfrak{Q}_{\mathfrak{a}}, \mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{a}})$ -classes diagram in the $\mathscr{T}_{\mathfrak{a}}$ -space $\mathfrak{T}_{\mathfrak{a}}$.

(4.2), (4.3)) and the $\mathfrak{g-P_a}$, $\mathfrak{g-Q_a}$, $(\mathfrak{P_a}, \mathfrak{g-P_a}; \mathfrak{Q_a}, \mathfrak{g-Q_a})$ -classes diagrams (Figs 1, 2, 3) is solely to stress that, in general, the implications in Eqs (4.1)–(4.3) and Figs 1–3 are irreversible.

4.2. A Nice Application. It is the purpose of this section to reveal through a nice application some characterizations on the commutativity of the \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -interior and \mathfrak{g} - $\mathfrak{T}_{\mathfrak{g}}$ -closure operators, and to give some other characterizations associated with $\mathfrak{T}_{\mathfrak{g}}$ -sets having \mathfrak{g} - $\mathfrak{P}_{\mathfrak{g}}$, \mathfrak{g} - $\mathfrak{Q}_{\mathfrak{g}}$ -properties in a $\mathscr{T}_{\mathfrak{g}}$ -space. Consider the $\mathscr{T}_{\mathfrak{g}}$ -space $\mathfrak{T}_{\mathfrak{g}} = (\Omega, \mathscr{T}_{\mathfrak{g}})$, where $\Omega = \{\zeta_{\nu} : \nu \in I_{\mathfrak{T}}^*\}$ and is topologized by the choice:

$$\mathscr{T}_{\mathfrak{g}}(\Omega) = \{\emptyset, \{\zeta_1\}, \{\zeta_1, \zeta_3, \zeta_5\}, \Omega\} = \{\mathscr{O}_{\mathfrak{g},1}, \mathscr{O}_{\mathfrak{g},2}, \mathscr{O}_{\mathfrak{g},3}, \mathscr{O}_{\mathfrak{g},4}\}; \tag{4.4}$$

$$\neg \mathscr{T}_{\mathfrak{g}}\left(\Omega\right) = \left\{\Omega, \left\{\zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right\}, \left\{\zeta_{2}, \zeta_{4}\right\}, \emptyset\right\} = \left\{\mathscr{K}_{\mathfrak{g}, 1}, \mathscr{K}_{\mathfrak{g}, 2}, \mathscr{K}_{\mathfrak{g}, 3}, \mathscr{K}_{\mathfrak{g}, 4}\right\}. (4.5)$$

For convenience of notation, let

$$\mathscr{P}(\Omega) = \left\{ \mathscr{R}_{\mathfrak{g},(\nu,\mu)} \in \mathscr{P}(\Omega) : (\nu,\mu) \in I^*_{\operatorname{card}(\mathscr{P}(\Omega))} \times I^0_{\operatorname{card}(\Omega)} \right\}, \tag{4.6}$$

where $\mathscr{R}_{\mathfrak{g},(\nu,\mu)} \in \mathscr{P}(\Omega)$ denotes a $\mathfrak{T}_{\mathfrak{g}}$ -set labeled $\nu \in I^*_{\mathrm{card}(\mathscr{P}(\Omega))}$ and containing $\mu \in I^0_{\mathrm{card}(\Omega)}$ elements. Then, $\mathscr{R}_{\mathfrak{g},(1,0)} = \emptyset$, ..., $\mathscr{R}_{\mathfrak{g},(\nu,\mu)} = \{\zeta_1,\zeta_2,\ldots,\zeta_\mu\}$, ..., $\mathscr{R}_{\mathfrak{g},(32,5)} = \Omega$.

For $\mathcal{R}_{\mathfrak{g}} \in \mathcal{P}(\Omega)$ such that card $(\mathcal{R}_{\mathfrak{g}}) \in \{0,5\}$, let $\mathcal{R}_{\mathfrak{g},(1,0)} = \emptyset$ and $\mathcal{R}_{\mathfrak{g},(32,5)} = \Omega$. For $\mathcal{R}_{\mathfrak{g}} \in \mathcal{P}(\Omega)$ such that card $(\mathcal{R}_{\mathfrak{g}}) \in \{1,4\}$, let $\mathcal{R}_{\mathfrak{g},(2,1)} = \{\zeta_1\}$, $\mathcal{R}_{\mathfrak{g},(3,1)} = \{\zeta_2\}$, $\mathcal{R}_{\mathfrak{g},(4,1)} = \{\zeta_3\}$, $\mathcal{R}_{\mathfrak{g},(5,1)} = \{\zeta_4\}$, and $\mathcal{R}_{\mathfrak{g},(6,1)} = \{\zeta_5\}$; $\mathcal{R}_{\mathfrak{g},(27,4)} = \{\zeta_1,\zeta_2,\zeta_3,\zeta_4\}$, $\mathcal{R}_{\mathfrak{g},(28,4)} = \{\zeta_2,\zeta_3,\zeta_4,\zeta_5\}$, $\mathcal{R}_{\mathfrak{g},(29,4)} = \{\zeta_1,\zeta_3,\zeta_4,\zeta_5\}$, $\mathcal{R}_{\mathfrak{g},(30,4)} = \{\zeta_1,\zeta_2,\zeta_3,\zeta_5\}$, and $\mathcal{R}_{\mathfrak{g},(31,4)} = \{\zeta_1,\zeta_2,\zeta_4,\zeta_5\}$. For $\mathcal{R}_{\mathfrak{g}} \in \mathcal{P}(\Omega)$ such that card $(\mathcal{R}_{\mathfrak{g}}) \in \{2,3\}$, let

 $\begin{array}{l} \mathscr{R}_{\mathfrak{g},(7,2)} &= \{\zeta_{1},\zeta_{2}\}, \,\, \mathscr{R}_{\mathfrak{g},(8,2)} &= \{\zeta_{1},\zeta_{3}\}, \,\, \mathscr{R}_{\mathfrak{g},(9,2)} &= \{\zeta_{1},\zeta_{4}\}, \,\, \mathscr{R}_{\mathfrak{g},(10,2)} &= \{\zeta_{1},\zeta_{5}\}, \\ \mathscr{R}_{\mathfrak{g},(11,2)} &= \{\zeta_{2},\zeta_{3}\}, \,\, \mathscr{R}_{\mathfrak{g},(12,2)} &= \{\zeta_{2},\zeta_{4}\}, \,\, \mathscr{R}_{\mathfrak{g},(13,2)} &= \{\zeta_{2},\zeta_{5}\}, \,\, \mathscr{R}_{\mathfrak{g},(14,2)} &= \{\zeta_{3},\zeta_{4}\}, \\ \mathscr{R}_{\mathfrak{g},(15,2)} &= \{\zeta_{3},\zeta_{5}\}, \,\, \text{and} \,\,\, \mathscr{R}_{\mathfrak{g},(16,2)} &= \{\zeta_{4},\zeta_{5}\}; \,\, \mathscr{R}_{\mathfrak{g},(17,3)} &= \{\zeta_{1},\zeta_{2},\zeta_{3}\}, \,\, \mathscr{R}_{\mathfrak{g},(18,3)} &= \{\zeta_{1},\zeta_{3},\zeta_{4}\}, \,\, \mathscr{R}_{\mathfrak{g},(19,3)} &= \{\zeta_{1},\zeta_{4},\zeta_{5}\}, \,\, \mathscr{R}_{\mathfrak{g},(20,3)} &= \{\zeta_{1},\zeta_{2},\zeta_{4}\}, \,\, \mathscr{R}_{\mathfrak{g},(21,3)} &= \{\zeta_{1},\zeta_{2},\zeta_{5}\}, \\ \mathscr{R}_{\mathfrak{g},(22,3)} &= \{\zeta_{1},\zeta_{3},\zeta_{5}\}, \,\, \mathscr{R}_{\mathfrak{g},(23,3)} &= \{\zeta_{2},\zeta_{3},\zeta_{4}\}, \,\, \mathscr{R}_{\mathfrak{g},(24,3)} &= \{\zeta_{2},\zeta_{3},\zeta_{5}\}, \,\, \mathscr{R}_{\mathfrak{g},(25,3)} &= \{\zeta_{3},\zeta_{4},\zeta_{5}\}, \,\, \text{and} \,\, \mathscr{R}_{\mathfrak{g},(26,3)} &= \{\zeta_{2},\zeta_{4},\zeta_{5}\}. \,\, \text{Then}, \end{array}$

$$\inf_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g},(\nu,\mu)} \right) \subseteq \mathfrak{g}\text{-}\operatorname{Int}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g},(\nu,\mu)} \right) = \mathscr{R}_{\mathfrak{g},(\nu,\mu)}$$

$$= \mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g},(\nu,\mu)} \right) \subseteq \operatorname{cl}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g},(\nu,\mu)} \right)$$

for every $(\nu, \mu) \in I^*_{\operatorname{card}(\mathscr{P}(\Omega))} \times I^0_{\operatorname{card}(\Omega)}$. Consequently,

$$\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu,\mu)}\right)=\mathscr{R}_{\mathfrak{g},(\nu,\mu)}=\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}\left(\mathscr{R}_{\mathfrak{g},(\nu,\mu)}\right) \tag{4.8}$$

for every $(\nu, \mu) \in I^*_{\operatorname{card}(\mathscr{P}(\Omega))} \times I^0_{\operatorname{card}(\Omega)}$. Introduce $J^*_{28} = I^*_1 \cup (I^*_7 \setminus I^*_2) \cup (I^*_{16} \setminus I^*_{10}) \cup (I^*_{26} \setminus I^*_{22}) \cup (I^*_{28} \setminus I^*_{27})$. Then,

$$\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g},(\nu,\mu)} \right) = \emptyset = \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g},(\nu,\mu)} \right),$$

$$\operatorname{cl}_{\mathfrak{g}} \circ \operatorname{int}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g},(\delta,\eta)} \right) = \Omega = \operatorname{int}_{\mathfrak{g}} \circ \operatorname{cl}_{\mathfrak{g}} \left(\mathscr{R}_{\mathfrak{g},(\delta,\eta)} \right)$$

$$(4.9)$$

From Eq. (4.8), it follows that $\mathfrak{g}\text{-Int}_{\mathfrak{g}}$, $\mathfrak{g}\text{-Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$, respectively, do commute. Thus, $\mathfrak{g}\text{-Cl}_{\mathfrak{g}}\circ\mathfrak{g}\text{-Int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is both coarser and finer (or, smaller and larger, weaker and stronger) than $\mathfrak{g}\text{-Int}_{\mathfrak{g}}\circ\mathfrak{g}\text{-Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$. Consequently, $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ for any $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$. Furthermore, it is easily checked from Eq. (4.8) that, $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longrightarrow \mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue if and only if $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is true and $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue.

From Eq. (4.9), both $\mathcal{R}_{\mathfrak{g},(\nu,\mu)} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ for every $(\nu,\mu) \in J_{28}^* \times I_4^0$ and $\mathcal{R}_{\mathfrak{g},(\delta,\eta)} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ for every $(\delta,\eta) \in \left(I_{\operatorname{card}(\mathcal{P}(\Omega))}^* \setminus J_{28}^*\right) \times I_{\operatorname{card}(\Omega)}^0$ are easily checked. Moreover, it results from Eqs (4.8), (4.9) that, $\mathcal{R}_{\mathfrak{g},(\nu,\mu)} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is true and $\mathcal{R}_{\mathfrak{g},(\nu,\mu)} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue for every $(\nu,\mu) \in \left(J_{28}^* \setminus I_1^*\right) \times I_4^0$. This confirms the statement that, $\mathcal{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right] \longleftarrow \mathcal{R}_{\mathfrak{g}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue if and only if $\mathcal{R}_{\mathfrak{g}} \in \operatorname{Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is true and $\mathcal{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-Nd}\left[\mathfrak{T}_{\mathfrak{g}}\right]$ is untrue. Observing that, for every $(\nu,\mu) \in J_{28}^* \times I_4^0$ and every $(\delta,\eta) \in \left(I_{\operatorname{card}(\mathcal{P}(\Omega))}^* \setminus J_{28}^*\right) \times I_{\operatorname{card}(\Omega)}^0$, the relations

$$\begin{split} \emptyset &= \mathrm{cl}_{\mathfrak{g}} \circ \mathrm{int}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}, (\nu, \mu)} \big) \subseteq \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}, (\nu, \mu)} \big) \\ &= \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}, (\nu, \mu)} \big) \supseteq \mathrm{int}_{\mathfrak{g}} \circ \mathrm{cl}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}, (\nu, \mu)} \big) = \emptyset, \\ \mathrm{int}_{\mathfrak{g}} \circ \mathrm{cl}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}, (\delta, \eta)} \big) = \Omega \supseteq \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}, (\delta, \eta)} \big) \\ &= \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}} \circ \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}, (\delta, \eta)} \big) \subseteq \Omega = \mathrm{cl}_{\mathfrak{g}} \circ \mathrm{int}_{\mathfrak{g}} \big(\mathscr{R}_{\mathfrak{g}, (\delta, \eta)} \big), \end{split}$$

respectively, hold, of which the first relation is the dual of the second, and conversely, it follows that the logical statement $\mathscr{R}_{\mathfrak{g}} \in \mathfrak{g}\text{-P}[\mathfrak{T}_{\mathfrak{g}}] \longrightarrow \mathscr{R}_{\mathfrak{g}} \in P[\mathfrak{T}_{\mathfrak{g}}]$ is satisfied for any $\mathscr{R}_{\mathfrak{g}} \in \mathscr{P}(\Omega)$.

5. Conclusion

In a recent paper (Cf. [19]), we defined and studied the essential properties of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -interior and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -closure operators in $\mathscr{T}_{\mathfrak{g}}$ -spaces. We showed in a $\mathscr{T}_{\mathfrak{g}}$ -space that $(\mathfrak{g}\text{-Int}_{\mathfrak{g}},\ \mathfrak{g}\text{-Cl}_{\mathfrak{g}}): \mathscr{P}(\Omega) \times \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega) \times \mathscr{P}(\Omega)$ is (Ω,\emptyset) -grounded, (expansive, non-expansive), (idempotent, idempotent) and (\cap, \cup) -additive. We also showed in a $\mathscr{T}_{\mathfrak{g}}$ -space that $\mathfrak{g}\text{-Int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is finer (or, larger, stronger)

than $\operatorname{int}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathfrak{g}\text{-}\operatorname{Cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ is coarser (or, smaller, weaker) than $\operatorname{cl}_{\mathfrak{g}}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$.

In this paper, we have studied in $\mathscr{T}_{\mathfrak{g}}$ -spaces the commutativity of $\mathfrak{g}\text{-Int}_{\mathfrak{g}}$, $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ and $\mathfrak{T}_{\mathfrak{g}}$ -sets having some $(\mathfrak{g}\text{-Int}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}})$ -based properties called $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$, $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -properties. We have shown that the $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -operators $\mathfrak{g}\text{-Int}_{\mathfrak{g}}$, $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g}}$: $\mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ are duals and $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property is preserved under their $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -operations. We have also shown that a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property is equivalent to the $\mathfrak{T}_{\mathfrak{g}}$ -set or its complement having $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property. The $\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}$ -property is preserved under the set-theoretic \cup -operations and $\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}}$ -property is preserved under the set-theoretic $\{\cup,\cap,\mathbb{C}\}$ -operations. Finally, a $\mathfrak{T}_{\mathfrak{g}}$ -set having $\{\mathfrak{g}\text{-}\mathfrak{P}_{\mathfrak{g}},\mathfrak{g}\text{-}\mathfrak{Q}_{\mathfrak{g}}\}$ -property also has $\{\mathfrak{P}_{\mathfrak{g}},\mathfrak{Q}_{\mathfrak{g}}\}$ -property.

An interestingly promising avenue for future research arises if the theorization of $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -interior and $\mathfrak{g}\text{-}\mathfrak{T}_{\mathfrak{g}}$ -closure operators of mixed categories in $\mathscr{T}_{\mathfrak{g}}$ -spaces be made a new subject of inquiry. For instance, for some pair $(\nu,\mu) \in I_3^0 \times I_3^0$ such that $\nu \neq \mu$, to study the $\mathfrak{g}\text{-}(\nu,\mu)\text{-}\mathfrak{T}_{\mathfrak{g}}$ -interior and $\mathfrak{g}\text{-}(\nu,\mu)\text{-}\mathfrak{T}_{\mathfrak{g}}$ -closure operators $\mathfrak{g}\text{-Int}_{\mathfrak{g},\nu\mu}$, $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu\mu}: \mathscr{P}(\Omega) \longrightarrow \mathscr{P}(\Omega)$ respectively, in $\mathscr{T}_{\mathfrak{g}}$ -spaces, where $\mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\nu\mu}: \mathscr{P}_{\mathfrak{g}} \longmapsto \mathfrak{g}\text{-}\mathrm{Int}_{\mathfrak{g},\nu\mu}(\mathscr{P}_{\mathfrak{g}})$ describes a type of collection of points interior in $\mathscr{F}_{\mathfrak{g}}$ and interiorness are characterized by $\mathfrak{g}\text{-}(\nu,\mu)\text{-}\mathfrak{T}_{\mathfrak{g}}$ -open sets belonging to the class $\left\{\mathscr{O}_{\mathfrak{g}} = \mathscr{O}_{\mathfrak{g},\nu} \cup \mathscr{O}_{\mathfrak{g},\mu}: (\mathscr{O}_{\mathfrak{g},\nu},\mathscr{O}_{\mathfrak{g},\mu}) \in \mathfrak{g}\text{-}\nu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big] \times \mathfrak{g}\text{-}\mu\text{-}\mathrm{O}\big[\mathfrak{T}_{\mathfrak{g}}\big]\right\}$; $\mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu\mu}: \mathscr{P}_{\mathfrak{g}} \mapsto \mathfrak{g}\text{-}\mathrm{Cl}_{\mathfrak{g},\nu\mu}(\mathscr{P}_{\mathfrak{g}})$ describes a type of collection of points close to $\mathscr{P}_{\mathfrak{g}}$ and closeness are characterized by $\mathfrak{g}\text{-}(\nu,\mu)\text{-}\mathfrak{T}_{\mathfrak{g}}\text{-}closed$ sets belonging to the class $\left\{\mathscr{K}_{\mathfrak{g}} = \mathscr{K}_{\mathfrak{g},\nu} \cap \mathscr{K}_{\mathfrak{g},\mu}: (\mathscr{K}_{\mathfrak{g},\nu},\mathscr{K}_{\mathfrak{g},\mu}) \in \mathfrak{g}\text{-}\nu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big] \times \mathfrak{g}\text{-}\mu\text{-}\mathrm{K}\big[\mathfrak{T}_{\mathfrak{g}}\big]\right\}$. Such a study is what we thought would be worth considering, and the discussion of this paper ends here.

Author Contributions. All authors contributed equally to this work. They all read and approved the last version of the manuscript.

Conflict of Interest. The authors declare no conflict of interest.

Acknowledgments. The authors would like to express their sincere thanks to Prof. (Dr.) Endre Makai, Jr. (Professor Emeritus of the Mathematical Institute of the Hungarian Academy of Sciences) for his valuable suggestions.

References

- M. I. Khodabocus and N.-U.-H. Sookia, Theory of Generalized Sets in Generalized Topological Spaces, Journal of New Theory 36 (2021) 18-38.
- [2] M. I. Khodabocus, A Generalized Topological Space endowed with Generalized Topologies, PhD Dissertation, University of Mauritius, Réduit, Mauritius (2020) 1-311 (i.-xxxvi.).
- [3] S. -M. Jung and D. Nam, Some Properties of Interior and Closure in General Topology, Mathematics (MDPI Journal) 7(624) (2019) 1-10.
- [4] Y. Lei and J. Zhang, Generalizing Topological Set Operators, Electronic Notes in Theoretical Science 345 (2019) 63-76.
- [5] A. Gupta and R. D. Sarma, A Note on some Generalized Closure and Interior Operators in a Topological Space, Math. Appl. 6 (2017) 11-20.
- [6] R. Rajendiran and M. Thamilselvan, Properties of g*s*-Closure, g*s*-Interior and g*s*-Derived Sets in Topological Spaces, Applied Mathematical Sciences 8(140) (2014) 6969–6978.
- [7] B. K. Tyagi and R. Choudhary, On Generalized Closure Operators in Generalized Topological Spaces, International Journal of Computer Applications 82(15) (2013) 1-5.
- [8] C. Cao and B. Wang and W. Wang, Generalized Topologies, Generalized Neighborhood Systems, and Generalized Interior Operators, Acta Math. Hungar. 132(4) (2011) 310-315.

- [9] V. Pankajam, On the Properties of δ-Interior and δ-Closure in Generalized Topological Spaces, International Journal for Research in Mathematical Archive 2(8) (2011) 1321-1332.
- [10] B. J. Gardner and M. Jackson, The Kuratowski Closure-Complement Theorem, New Zealand Journal of Mathematics 38 (2008) 9-44.
- [11] Á. Császár, Further Remarks on the Formula for γ-Interior, Acta Math. Hungar. 113(4) (2006) 325-332.
- [12] Á. Császár, On the γ-Interior and γ-Closure of a Set, Acta Math. Hungar. 80 (1998) 89-93.
- [13] H. Ogata, Operations on Topological Spaces and Associated Topology, Math. Japonica 36 (1991) 175-184.
- [14] I. Z. Kleiner, Closure and Boundary Operators in Topological Spaces, Ukr Math. J. 29 (1977) 295-296.
- [15] F. R. Harvey, The Derived Set Operator, The American Mathematical Monthly 70(10) (1963) 1085-1086.
- [16] D. H. Staley, On the Commutativity of the Boundary and Interior Operators in a Topological Space, The Ohio Journal of Science 68(2):84 (1968).
- [17] N. Levine, On the Commutativity of the Closure and Interior Operators in Topological Spaces, Amer. Math. Monthly 68(5) (1961) 474-477.
- [18] C. Kuratowski, Sur l'Opération Ā de l'Analyse Situs, Fund. Math. 3 (1922) 182-199.
- [19] M. I. Khodabocus and N. -Ul. -H. Sookia, Generalized Topological Operator Theory in Generalized Topological Spaces: Part I. Generalized Interior and Generalized Closure, Proceedings of International mathematical Sciences 5(1) (2023) 6-36.
- [20] M. I. Khodabocus and N. -U. -H. Sookia, *Theory of Generalized Separation Axioms in Generalized Topological Spaces*, Journal of Universal Mathematics **5**(1) (2022) 1-23.
- [21] Á. Császár, Generalized Open Sets in Generalized Topologies, Acta Math. Hungar. 106(1-2) (2005) 53-66.
- [22] V. Pavlović and A. S. Cvetković, On Generalized Topologies arising from Mappings, Vesnik 38(3) (2012) 553-565.
- [23] Á. Császár, Remarks on Quasi-Topologies, Acta Math. Hungar. 119(1-2) (2008) 197-200.

MOHAMMAD IRSHAD KHODABOCUS,

Department of Emerging Technologies, Faculty of Sustainable Development and Engineering, Université des Mascareignes, Rose Hill Campus, Mauritius, Phone: (+230) 460 9500 Orcid Number: 0000-0003-2252-4342

Email address: ikhodabocus@udm.ac.mu

Noor-UL-HACQ SOOKIA.

Department of Mathematics, Faculty of Science, University of Mauritius, Réduit, Mauritius, Phone: (+230) 403 7492 Orcid Number: 0000-0002-3155-0473

Email address: sookian@uom.ac.mu