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ABSTRACT This study examines discrete-time T system. We begin by listing the topological divisions of
the system’s fixed points. Then, we analytically demonstrate that a discrete T system sits at the foundation
of a Neimark Sacker(NS) bifurcation under specific parametric circumstances. With the use of the explicit
Flip-NS bifurcation criterion, we establish the flip-NS bifurcation’s reality. Center manifold theory is then used
to establish the direction of both bifurcations. We do numerical simulations to validate our theoretical findings.
Additionally, we employ the 0-1 test for chaos to demonstrate whether or not chaos exists in the system. In
order to stop the system’s chaotic trajectory, we ultimately employ a hybrid control method.
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INTRODUCTION

The nonlinear differential systems, including those in engineering,
economy, physics, biology, chemistry, and other domains, have
been explored from both theoretical and potential practical per-
spective. The feature of sensitivity to the beginning circumstances
is frequently seen in nonlinear systems (some authors consider
this property sufficient for a system to be chaotic). One of the first
examples of a 3-D continuous dynamical system using numeri-
cal simulations that illustrate the property of sensitivity to initial
conditions is the Lorenz system (Lorenz 1963).

The Rayleigh-Benard experiment is the Lorenz system’s phys-
ical implementation. A dynamical model for meteorology was
developed using the system, which was derived from the hydro-
dynamical Navier-Stokes equations. Scientists have looked into
numerous 3-D chaotic systems as a result of his classically inno-
vative work. After a decade, Rössler (1976) made the discovery
of a 3-D chaotic system that had been built up while studying a
chemical reaction. The discovery of numerous 3-D chaotic sys-
tems was made possible by these classical pioneering works on
chaotic systems. Attempting to convert the Lorenz system from
a stable to a chaotic condition (concept known as anticontrol of
chaos), Lü et al. (2002) and Ueta and Chen (2000) constructed new
critical chaotic systems by anti-control technique in Lorenz system
(Lorenz 1963) which were known as Lü system and Chen’s system
respectively.
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Qualitative analyses of these empirical works found many dy-
namical properties including local bifurcations, chaotic, periodic,
quasi-periodic orbits and route to chaos. They also obtained super-
critical and sub-critical bifurcations conditions around positive
equilibrium. In Sachdev and Sarathy (1994), a nonlinear system
resulting from a nuclear spin generator is explored and contrasted
with the Lorenz system. The T system, which Tigan (Tigan 2005) ex-
plored, is a novel chaotic system deriving from the Lorenz system.
The system T exhibits a more complicated dynamics than the Lü
system because it offers greater flexibility in selecting the system’s
parameters. To improve the chaotic system’s complexity and the
accuracy of the weak signal detection, a novel 3-D chaotic system
studied (Luo et al. 2020). A 3-D jerk system dynamics examined in
(Kengne et al. 2016), which can be utilized as an analog simulator
for experiments made in a lab. This work investigated several
dramatic and uncommon bifurcation situations, such as those with
multiple attractors, symmetry-recovering crises, and basins of at-
traction for a variety of coexisting attractors. These applications
provide justification for the creation of new chaotic systems. Nu-
merous fields, ranging from ecology (Tang and Chen 2003) and
physics (El Naschie 2003), encounter nonlinear dynamics.

We recall some applications of such systems in biological sys-
tems, secure communication, information processing (see, for ex-
ample, (Babloyantz et al. 1985; Chen and Dong 1998; Chen 1999;
Pecora and Carroll 1991; Rabinovich and Abarbanel 1998; Yang
and Chua 1997)). A numerous number of scholars have been given
attention and investigated extensively system’s bifurcation in con-
tinuous dynamical system, but a little works have been studied in
system’s bifurcations in discrete dynamical system. However, a
lot of exploratory works have been suggested that discrete-time
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models are more suitable compared to differential equation model
as discrete-time model reveal rich chaotic dynamics and give effec-
tive computational models for numerical simulations (Chakraborty
et al. 2020; Li and He 2019; Liu and Li 2021; Rana 2019b,a; Zhao
2021; Liu and Li 2021; Zhang et al. 2022; Fei et al. 2021; Singh and
Deolia 2021). These studies investigated unexpected characteris-
tics, such as the occurrence of (flip-NS) bifurcations and chaotic
events, using either numerical methods or center manifold theory
applications. In fact, these studies solely focused on 2-D discrete
systems.

A limited number of contributions have recently been made
to the study of the dynamics of 3-D discrete systems (Khan and
Javaid 2021; Abdelaziz et al. 2020; Din and Ishaque 2019; Feng et al.
2021; Hu et al. 2014; Ishaque et al. 2019; Qin et al. 2016; Khan et al.
2021; Xin et al. 2010). For example, a discrete-time SIR epidemic
models discussed in (Abdelaziz et al. 2020; Khan et al. 2021; Hu et al.
2014), in (Xin et al. 2010) the authors investigated discrete financial
system and in (Qin et al. 2016), the authors studied discrete chaotic
system.

The explicit Flip-NS bifurcation criterion, center manifold
theory, and bifurcation theory were all used by the researchers in
these works to focus their efforts on figuring out the direction
and stability of Flip and NS bifurcation. The studies in (Khan
and Javaid 2021; Din and Ishaque 2019; Ishaque et al. 2019)
investigated discrete population models. In (Feng et al. 2021), the
authors explored NS bifurcation for discrete food chain model.
For the existence of flip and NS bifurcations, these research solely
employed the explicit (Flip-NS bifurcaton) criteria and numerical
simulations. In nonlinear field research, the chaos theory has
recently attracted a lot of attention.

In light of the aforementioned research projects, we express our
interest in studying at 3-D T system (Tigan 2005):

ẋ = a(y − x)
ẏ = (c − a)x − axz
ż = xy − bz

(1)

In system (1), x, y, z ∈ R are the state variables with parameters
a, b, c ∈ R and a ̸= 0. The parameters a, b, c ∈ R+ in the system
represent the Prandal number, the Rayleigh number, and some
physical proportions of the region under study and for more de-
scription of these parameters we refer (Sparrow 2012). Diverse
perspectives were used to study the T system: dynamics (Jiang et al.
2010), chaos control (Yong and Zhen-Ya 2008), anti-synchronization
(Vaidyanathan and Rajagopal 2011). Secure communications might
benefit from the system (1) (Li et al. 2009; Sundarapandian 2011).
The T system undergoes a Hopf bifurcation and possesses a strange
chaotic attractor (Jiang et al. 2010).

A continuous-time differential equation can be discretized in
a variety of ways, but the fourth-order Runge-Kutta approach
and the forward Euler scheme are the most straightforward. The
discrete systems’ features can change significantly from those of
the original continuous ones since the forward Euler technique
uses first-order precision to solve approximation differential equa-
tion solutions. However, a big step size ensures low stability of
the selected Euler integrator, which means all of the impacts we
see may have nothing to do with the characteristics of the origi-
nal continuous system. This intentionally induced instability of
the finite-difference system is where the chaotic regimes mostly
develop. How the forward Euler scheme affects the capabilities

of continuous systems is something we are interested in. Our
present work is looking at a discrete-time system that is built on
the continuous-time 3D T system. Applying forward Euler scheme,
the discrete form of (1) is given by

x

y

z

 −→


x + δ(a(y − x))

y + δ((c − a)x − axz)

z + δ(xy − bz)

 (2)

We are motivated to investigate the T system in discrete form
because of the interest in studying it. The discrete T system differs
from the continuous one in both characteristics and structure,
according to analysis. The Flip and NS bifurcations play an
significant role for generation of critical chaotic dynamics in
discrete system and trigger a route to chaos. The objective of this
work is to analyze systematically the conditions for occurence of
flip and NS bifurcations by using an explicit Flip-NS bifurcation
criterion and to determine the stability and direction of both
bifurcations by the applications of bifurcation theory.

The structure of this study is as follows. The local stability re-
quirements of possible fixed points are examined in Section 2. In
Section 3, we theoretically examine whether the system (2) experi-
ences a Flip or NS bifurcation under a certain parametric condition.
To support the conclusions of our analytical work, we numerically
show system dynamics in Section 4 together with bifurcation di-
agrams, phase portraits, and MLEs. There is also a 0 − 1 chaotic
test method offered. In Section 5, we put a hybrid control tech-
nique into practice to stabilize the uncontrolled system’s chaos. We
provide a brief summary in Section 6.

LOCAL DYNAMICS

The fixed points of the system (2) are the solutions of the following
system of non-linear equations:

x = x + δ(a(y − x))
y = y + δ((c − a)x − axz)
z = z + δ(xy − bz)

(3)

By some algebraic computation, we obtain the following
lemma.

Lemma 1 (i) For any parameter values, the system (2) has only
one fixed point E0 = (0, 0, 0), (ii) if c > a, the system (2) has
three fixed points E0 = (0, 0, 0), and E± =

(
x±, y±, z±

)
=(

±
√

b
a (c − a),±

√
b
a (c − a), c−a

a

)
.

Given at fixed point E(x, y, z), the Jacobian matrix of the system
(2) and its characteristic equation are as follows

J(E) =


1 − aδ aδ 0

−(a − c + az)δ 1 −axδ

yδ xδ 1 − bδ

 = (jkl), k, l = 1, 2, 3

(4)
and

P(µ) := µ3 + ϑ2µ2 + ϑ1µ + ϑ0 = 0 (5)
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where,

ϑ2 = −tr(J),

ϑ1 =

∣∣∣∣∣∣∣
j11 j12

j21 j22

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

j22 j23

j32 j33

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

j11 j13

j31 j33

∣∣∣∣∣∣∣ ,

ϑ0 = − |J| .

We first provide the following lemma regarding the necessary
and sufficient criteria for stability around fixed point of system
(2) in order to study the nature of the system around fixed point
E(x, y, z).

Lemma 2 (Camouzis and Ladas 2007) Suppose that ϑ2, ϑ1, ϑ0 ∈
R.Then, the necessary and sufficient conditions for all roots µ of the
equation

µ3 + ϑ2µ2 + ϑ1µ + ϑ0 = 0

to satisfy |µ| < 1 are
|ϑ2 + ϑ0| < 1 + ϑ1, |ϑ2 − 3ϑ0| < 3 − ϑ1, and ϑ0

2 + ϑ1 − ϑ0ϑ2 <
1.

Now, the local dynamics of system (2) around fixed points E0
and E+ are as follows.

At E0, the Jacobian matrix J(E0) have eigenvalues µ1 = 1 −
bδ, µ2,3 = 1

2

(
2 − aδ ±

√
δ2(−3a2 + 4ac)

)
, where µ2,3 satisfy the

equation

µ2 − (2 − aδ)µ + (1 − aδ + (a2 − ac)δ2) = 0.

We obtain the topological classification of E0 presented in the
following Lemma.

Lemma 3 If c < a, the fixed point E0 is a
− sink if (i)− 3a2 + 4ac ≥ 0, δ < min

{
2
b , a−

√
−3a2+4ac
a2−ac

}
,

(ii)− 3a2 + 4ac < 0, δ < min
{

2
b , 1

a−c

}
,

− source if (iii)− 3a2 + 4ac ≥ 0, δ > max
{

2
b , a−

√
−3a2+4ac
a2−ac

}
,

(iv)− 3a2 + 4ac < 0, δ > max
{

2
b , 1

a−c

}
,

− non-hyperbolic if (v) − 3a2 + 4ac ≥ 0, δ = 2
b , or δ =

a±
√
−3a2+4ac
a2−ac ,

(vi)− 3a2 + 4ac < 0, δ = 1
a−c .

Let,

FBE0 =

{
(a, b, c, δ) : δ =

a ±
√
−3a2 + 4ac

a2 − ac
, δ ̸= 2

b
, −3a2 + 4ac ≥ 0

}

and

NSBE0 =

{
(a, b, c, δ) : δ =

1
a − c

,−3a2 + 4ac < 0
}

,

then system (2) encounters a flip (NS) bifurcation at E0 if pa-
rameters change in small vicinity of FBE0 (NSBE0 ).

At E+, we rewrite the equation (5) as

P(µ) := µ3 + κ2µ2 + κ1µ + κ0 = 0. (6)

where,

κ2 = −3 + δ(a + b),
κ1 = 3 − 2aδ + bδ(−2 + cδ),

κ0 = −1 − 2a2bδ3 + b(δ − cδ2) + a(δ + 2bcδ3)

(7)

Following is the Lemma for stability requirement of E+.

Lemma 4 The fixed point E+ of system (2) is locally asymptotically
stable if and only if the coefficients κ2, κ1, κ0 of (6) satisfy

|κ2 + κ0| < 1 + κ1, |κ2 − 3κ0| < 3 − κ1, and κ0
2 + κ1 − κ0κ2 <

1.

ANALYSIS OF BIFURCATIONS

This part will focus to recapitulate the conditions for stability and
direction of flip and NS bifurcations of system (2) around fixed
points E0 and E+ by using an explicit Flip-NS bifurcation criterion
without computing the eigenvalues of the respective system and
bifurcation theory (Kuznetsov 2013; Wen 2005; Yao 2012). We take
δ as bifurcation parameter, otherwise stated.

NS bifurcation around E0

Suppose that parameters (a, b, c, δ) ∈ NSBE0 , then the eigenvalues
of system (2) are

µ1 = 1 − bδ, µ2,3 = α ± iβ (8)

where α = 1 − aδ
2 and β = δ

√
3a2 − 4ac.

Let, δ = δNS = 1
a−c , then we have

|µ2,3(δNS)| =
√
(1 − aδNS + (a2 − ac)δ2

NS) = 1, µ1(δNS) = 1− b
a − c

(9)
and

d |µi(δ)|
dδ

|δ=δNS =
a
2
̸= 0, i = 2, 3 (10)

Moreover,
a

a − c
̸= 2, 3 (11)

implies that µk
2,3 ̸= 1, k = 1, 2, 3, 4. We write the system (2) as

X = A(δ)X + F (12)

where A(δ) = J(E0) and F = (0,−axzδ, xyδ)T with δ = δNS. It
is possible to express the system (12) as

Xn+1 = AXn +
1
2

B (Xn, Xn) +
1
6

C (Xn, Xn, Xn) + O
(

X4
n

)
where,

B(x, y) =


B1(x, y)

B2(x, y)

B3(x, y)

 and C(x, y, u) =


C1(x, y, u)

C2(x, y, u)

C3(x, y, u)


(13)

are the symmetric multi-linear functions of x, y, z, u ∈ R3 and
defined by

Bi(x, y) = ∑3
j,k=1

∂2 Fi(υ,δ)
∂υj∂υk

∣∣∣
υ=0

xjyk,
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Ci(x, y, u) = ∑3
j,k,l=1

∂3 Fi(υ,δ)
∂υj∂υk∂υl

∣∣∣
υ=0

xjykul .

In particular,

B(x, y) =


0

−ax3y1δ − ax1y3δ

x2y1δ + x1y2δ

 and C(x, y, u) =


0

0

0


(14)

Let ζ1, ζ2 ∈ C3 be two eigenvectors of A(δNS) and AT(δNS)
respectively such that

A (δNS) ζ1 = µ2 (δNS) ζ1, AT (δNS) ζ2 = µ3 (δNS) ζ2 (15)

then after some algebraic calculation, we obtain

ζ1 = (ϕ1 + iψ1, 1, 0)T and ζ2 = (ϕ2 + iψ2, 1, 0)T

with ϕ1 = aδ
2(a−c)δ , ψ1 =

−β
2(a−c)δ and ϕ2 = −aδ

2aδ , ψ2 =
−β
2aδ .

The standard inner product property ⟨ζ1, ζ2⟩ = ∑3
i=1 ζ1iζ2i is

applied to set the normalized vector ζ2 = ξζ2 so that ⟨ζ1, ζ2⟩ = 1
is obtained where ξ = ξ1 + iξ2 with

ξ1 =
ϕ1ϕ2+ψ1ψ2+1

(ϕ1ϕ2+ψ1ψ2+1)2+(ϕ2ψ1−ϕ1ψ2)2 ,

ξ2 =
ϕ2ψ1−ϕ1ψ2

(ϕ1ϕ2+ψ1ψ2+1)2+(ϕ2ψ1−ϕ1ψ2)2 .

Now, decomposing the vector X ∈ R3 as X = zζ1 + z̄ζ̄1 by
considering δ vary near to δNS and for z ∈ C. Obviously, z =
⟨ζ2, X⟩. So, we derive the transformed form of system (12) for |δ|
close to δNS as follows:

z 7−→ µ(δ)z + ĝ(z, z̄, δ) (16)

where µ(δ) = (1 + φ̂(δ))eiθ(δ) with φ̂ (δNS) = 0 and ĝ(z, z̄, δ) is
a smooth complex-valued function. Then we obtain

ĝ(z, z̄, δ) = ∑k+l≥2
1

k!l! ĝkl(δ)zk−l with ĝkl ∈ C, k, l =
0, 1, . . . .

The coefficients ĝkl are determined via multilinear symmetric
vector functions:

ĝ20 (δ) = ⟨ζ2, B(ζ1, ζ1)⟩, ĝ11 (δ) = ⟨ζ2, B(ζ1, ζ̄1)⟩,

ĝ02 (δ) = ⟨ζ2, B(ζ̄1, ζ̄1)⟩,

ĝ21 (δ) = ⟨ζ2, C(ζ1, ζ1, ζ̄1)⟩+ 2
〈

ζ2, B
(

ζ1, (In − A)−1 B(ζ1, ζ̄1)
)〉

+
〈

ζ2, B
(

ζ̄1,
(
µ2

2 In − A
)−1 B(ζ1, ζ1)

)〉
+ (1−2µ2)µ3

1−µ2
ĝ20 ĝ11

+ 2
1−µ2

|ĝ11|2 +
µ2

µ3
2−1 |ĝ02|2 .

(17)
with δ = δNS.

After some tedious calculation, we get

ĝ20 (δNS) = 0, ĝ11 (δNS) = 0, ĝ02 (δNS) = 0,

ĝ21 (δNS) =
−2aδNS

b(Φ2
4+Ψ2

4)
[(Φ3Φ4 + Ψ3Ψ4) + i (Φ4Ψ3 − Φ3Ψ4)]

(18)

where

Φ4 = −1 + α2 − β2 + bδ,

Ψ4 = 2αβ,

Φ3 = Φ1Φ2 − Ψ1Ψ2,

Ψ3 = Φ2Ψ1 + Φ1Ψ2,

Φ2 = ϕ1(−2 + 2α2 − 2β2 + 3bδ),

Ψ2 = 4ϕ1αβ − bψ1δ,

Φ1 = ϕ1ξ1 + ψ1ξ2,

Ψ1 = ψ1ξ1 − ϕ1ξ2.

Then using coefficient of the critical normal form

l1 (δNS) = Re
(

µ3 ĝ21
2

)
−Re

(
(1 − 2µ2) µ2

3
2 (1 − µ2)

ĝ20 ĝ11

)
− 1

2
|ĝ11|2 −

1
4
|ĝ02|2

(19)
we obtain l1 (δNS) =

−aδNS
b(Φ2

4+Ψ2
4)

(Φ6Φ4 + Ψ6Ψ4) where

Φ5 = αΦ1 + βΨ1,

Ψ5 = αΨ1 − βΦ1,

Φ6 = Φ2Φ5 − Ψ2Ψ5,

Ψ6 = Φ2Ψ5 + Φ5Ψ2.

The following theorem can be used in conjunction with the
preceding description to demonstrate the direction and stability of
the NS bifurcation.

Theorem 1 Suppose (11) holds and l1(δNS) ̸= 0, then NS bifurcation
emerges at fixed point E0(0, 0, 0) for system (2) if the δ changes its
value in small neighbourhood of NSBE0 . Additionally, there exists an
attractive (resp. repelling) smooth closed invariant curve bifurcate from
E+ if l1(δNS) < 0 (resp. l1(δNS) > 0) and the bifurcation is sub-
critical (resp. super-critical).

Bifurcation Analysis around E+

Flip Bifurcation: Existence condition To investigate the existence
of flip bifurcation, we will use Lemma in (Yao 2012).

Lemma 5 The flip bifurcation of system (2) takes place around fixed

point E+ =

(√
b
a (c − a),

√
b
a (c − a), c−a

a

)
at δ = δF if and only if

1 − κ1 + κ0(κ2 − κ0) > 0,
1 + κ1 − κ0(κ2 + κ0) > 0,
1 + κ2 + κ1 + κ0 > 0,
1 − κ2 + κ1 − κ0 = 0,
1 + κ0 > 0,
1 − κ0 > 0,

and ∑n
i=1(−1)n−i

ι
′
i

∑n
i=1(−1)n−i(n−i+1)ιi−1

=
κ
′
2−κ

′
1+κ

′
0

3−2κ2+κ1
̸= 0,

where κ2, κ1, κ0 are given as in (7) and κ
′

i =
dκi
dδ |δ=δF with
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δF = −c
3a2−3ac +

6a3+6a2(b−c)−6abc+bc2

3a(a−c)Γ1
+ Γ1

3ab(a−c) ,

Γ1 = 3
√
−54a4b2 + 99a3b2c + 9ab3c2 − b3c3 − 9a2b2c(b + 5c) + 3

√
3
√

Γ2),
Γ2 = −a2b3(a − c)2(8a5 + b2(b − 4c)c2 − 4a4(21b + 2c) +
12a3b(2b + 13c) + Γ3),
Γ3 = 2ab2c(−4b + 19c) + a2b(8b2 − 60bc − 71c2).

Define the set

FBE+
= {(a, b, c, δ) : δ = δF, a, b, c > 0}.

If system parameters value vary in a small vicinity of FBE+
,

one of the eigenvalue of (6) is µ3(δF) = −1 and other two are
|µ1,2(δF)| ̸= ±1, and then system (2) underlies a flip bifurcation
around E+.

Flip Bifurcation: Direction and Stability We choose parameter
(a, b, c, δ) ∈ FBE+

and let δ = δF, then the eigenvalues of J(E+)
are:

µ1(δF) = −1, |µi(δF)| ̸= ±1, i = 2, 3 (20)

Next, we set x̂ = x − x+, ŷ = y − y+, ẑ = z − z+, A(δF) =
J(E+) and transfer the fixed point E+ of system (2) to the origin.
Since symmetric multi-linear functions are not associated with
fixed point, the bi-linear and trilinear functions for flip bifurcation
will remain unchanged as in (14).

Consider two eigenvectors η1, η2 ∈ R3 of A for eigenvalue
µ1(δF) = −1 such that

A(δF)η1 = −η1, AT(δF)η2 = −η2, ⟨η2, η1⟩ = 1.

Then the coefficient of normal form is

l2 (δF) =
1
6
⟨η2, C(η1, η1, η1)⟩−

1
2

〈
η2, B

(
η1, (A − I)−1B(η1, η1)

)〉
(21)

In light of the aforementioned investigation, we provide the
following conclusion with regard to the stability and direction of
the flip bifurcation.

Theorem 2 Suppose (20) holds well and l2(δF) ̸= 0 for the fixed point
E+(x+, y+, z+). Then the system (2) encounters a flip bifurcation at
E+ if l2(δF) ̸= 0 and δ fluctuates its value in a limited proximity of
bifurcation point. Moreover, stable (resp., unstable) period-2 orbits split
off from E+ if l2(δF) is positive (resp., negative).

NS Bifurcation: Existence condition We will use the explicit
Flip-NS bifurcation criterion (Wen 2005; Yao 2012) for the existence
of NS bifurcation and the subsequent lemma will give the
necessary and sufficient parametric conditions for which system
(2) underlies NS bifurcation if bifurcation parameter δ passes its
critical value.

Lemma 6 The NS bifurcation of system (2) occurs around the fixed
point E+ at δ = δNS+

if and only if
1 − κ1 + κ0(κ2 − κ0) = 0,
1 + κ1 − κ0(κ2 + κ0) > 0,
1 + κ2 + κ1 + κ0 > 0,
1 − κ2 + κ1 − κ0 > 0,
d
dδ (1 − κ1 + κ0 (κ2 − κ0))δ=δNS+

̸= 0,

and cos
(

2π
l

)
̸= 1 − 1+κ2+κ1+κ0

2(1+κ0)
, l = 3, 4, 5, . . .

where κ2, κ1, κ0 are given as in (7) with

δNS+
= 1

48a2b(a−c)2

(
16abc(−a+c)−(8a2b(a−c)2(6a3+6a2(b−c)−6abc+bc2))

Λ1
− 8Λ1

)
,

Λ1 = 3
√

Λ2 + Λ3 + 3
√

3
√

Λ4),
Λ2 = −54a10b2 + 261a9b2c − 12a4b3c5 + a3b3c6 + 3a5b2c4(13b +
15c),
Λ3 = 18a7b2c2(2b + 27c)− 9a8b2c(b + 56c)− a6b2c3(55b + 234c),
Λ4 = −a8b3(a − c)8(8a5 + b2(b − 4c)c2 − 4a4(21b + 2c) +
12a3b(2b + 13c) + Λ5),
Λ5 = 2ab2c(−4b + 19c) + a2b(8b2 − 60bc − 71c2).

Set
NSBE+

= {(a, b, c, δ) : δ = δNS+
, a, b, c > 0},

and for parameter perturbation in a small neighborhood of NSBE+
,

two roots (eigenvalues) of (6) are complex conjugate having modu-
lus one and the magnitude of other root is not equal to one, then
the system (2) experiences NS bifurcation around E+.

NS Bifurcation: Direction and Stability This section will present
the direction of NS bifurcation. We choose the fixed point E+

of system (2) with arbitrary parameter (a, b, c, δ) ∈ NSBE+
. Let,

δ = δNS+
, then the matrix J(E+) has the eigenvalues satisfying∣∣µi(δNS+

)
∣∣ = 1, i = 2, 3 (22)

and µ1(δNS+
) ̸= 1.

For eigenvalues µ2(δNS+
) and µ3(δNS+

), let τ1, τ2 ∈ C3 be two
eigenvectors of A(δNS+

) and AT(δNS+
) respectively such that

A
(
δNS+

)
τ1 = µ2

(
δNS+

)
τ1, AT (δNS+

)
τ2 = µ3

(
δNS+

)
τ2,

⟨τ2, τ1⟩ = ∑3
i=1 τ2iτ1i = 1

(23)

The coefficient l3(δNS+
) calculated by (19) presents the direction

and stability of NS bifurcation which has been stated in the
following theorem.

Theorem 3 Suppose (22) holds and l3(δNS+
) ̸= 0 for the fixed point

E+. Then system (2) encounters NS bifurcation at E+ if the δ fluctuates
its value in a limited vicinity of NSBE+

. Moreover, if l3(δNS+
) <

0 (resp. l3(δNS+
) > 0), a singular invariant closed curve bifurcates

from E+ that is attracting (resp., repelling) and the bifurcation is sub-
critical (resp. super-critical).

NUMERICAL SIMULATIONS

Using numerical simulations with the aid of bifurcation diagrams,
phase portraits, and MLEs, we will confirm our theoretical conclu-
sions for the system (2) in this section. The presence of chaos has
been supported by the 0 − 1 test algorithm. For the investigations
of bifurcations, we will take different set of parameter values.

Example 1 We take parameter values a = 18, b = 12, c = 10 and
0.1 ≤ δ ≤ 0.1317. By calculation, we find a fixed point E0 = (0, 0, 0)
of system (2) and the bifurcation point is obtained as δNS = 0.125. The
Jacobian matrix J evaluated at E0 have eigenvalues µ1 = −0.5 and
µ2,3 = −0.125 ± 0.9921575i with |µ2,3| = 1.

Furthermore,

d |µi(δ)|
dδ

|δ=δNS =
a
2
= 9 ̸= 0, i = 2, 3,
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a
a − c

=
9
4
̸= 2, 3.

So, the criterion for the existence of NS bifurcation are fulfilled
with (a, b, c, δ) ∈ NSBE0 . This confirms the correctness of Lemma 3.
Therefore, a NS bifurcation occurs around fixed point E0 if δ crosses its
critical value δNS.

Let ζ1, ζ2 ∈ C3 be two complex eigenvectors of A(δNS) and
AT(δNS) corresponding to µ2,3, respectively. Therefore,

ζ1 ∼ (1.125 − 0.992157i, 1, 0)T , ζ2 ∼ (−0.5 − 0.440959i, 1, 0)T .

For ⟨ζ1, ζ2⟩ = 1, we can take normalized vector as ζ2 = γζ2 where,
γ = 0.5 + 0.566947i. Then

ζ1 ∼ (1.125 − 0.992157i, 1, 0)T , ζ2 ∼ (−0.503953i, 0.5 +
0.566947i, 0)T .

Also by (18) the Taylor coefficients are , ĝ20 = 0, ĝ11 = 0, ĝ02 =
0, ĝ21 = 0.421875 − 0.797269i.

From (19), we obtain the Lyapunov coefficient l2(δNS) =
−0.421875 < 0. As a result, the NS bifurcation is super-critical and the
Theorem 1 conditions are satisfied.

The NS bifurcation diagrams are displayed in Figure 1 (a) which
reveal that the condition of stability for the positive fixed point E0 occurs
when δ < δNS, loses its stability at δ = δNS and there appears an
attracting closed invariant curve when δ > δNS. The MLEs related
to Figure 1 (a) are shown in Figure 1 (b). The non stability of system
dynamics are justified with the sign of MLEs.

The phase portraits of system (2) that correspond to the bifurcation
diagram in Figure 1 (a) are plotted in Figure 2, explicitly illuminating the
mechanism by which an invariant smooth closed curve splits from a stable
fixed point E0 when δ varies close to its critical value. We noticed that
NS bifurcations occurs at δ = δNS (see in Figure 2(b)). When δ > δNS,
there appears an invariant closed curve and further increasing of δ, NS
bifurcation instigate a route to chaos.

Example 2 We take a = 5.2, b = 13.5, c = 6.5, 0.14 ≤ δ ≤ 0.1636.
We obtain E+ = (1.83712, 1.83712, 0.25) and bifurcation point δF =
0.1533. At δ = δF, the Jacobian matrix of system (2) takes the form

A(δF) =


0.202839 0.797161 0

0 1 −1.46448

0.28163 0.28163 −1.06955

 .

and the eigenvalues of A(δF) are µ1 = −1 and µ2,3 =
0.566644 ± 0.375479i with |µ2,3| = 0.679757. Moreover,

1 − κ1 + κ0 (κ2 − κ0) = 1.39612 > 0,
1 + κ1 − κ0 (κ2 + κ0) = 0.176862 > 0,
1 + κ2 + κ1 + κ0 = 0.657564 > 0,
1 − κ2 + κ1 − κ0 = 0,
1 + κ0 = 1.46207 > 0,
1 − κ0 = 0.53793 > 0,
and
κ′

2−κ′
1+κ′

0
3−2κ2+κ1

= 13.0463 ̸= 0

This shows that all requirements of Lemma 5 are validated with
(a, b, c, δ) ∈ FBE+

. Thus, the requirement for flip bifurcation’s existence
is confirmed and system (2) experience a flip bifurcation around E+ at
δ = δF.

Next, let the two eigenvectors of A(δF) corresponding to
µ1(δF) = −1, be η1, η2 ∈ R3 respectively. Then, we obtain

η1 ∼ (−0.364586, 0.550125, 0.7512923)T , η2 ∼
(−0.227729,−0.0461924, 0.972628)T .

To set ⟨η1, η2⟩ = 1, we can choose normalized vector as η2 = γζ2
where, γ = 1.26848. Therefore,

η1 ∼ (−0.364586, 0.550125, 0.751292)T , η2 ∼
(−0.288871,−0.0585943, 1.23376)T .

Then from (21), the Lyapunov coefficient l2(δF) = 0.0397406 > 0 is
obtained. This guarantees the appropriateness of Theorem 2.

The diagrams of bifurcation shown in Figure 3 (a) express the stability
of fixed point E+ when δ crosses bifurcation point. The MLEs and phase
portraits of system (2) associated with Figure 3 (a) are shown in Figure 3
(b) and Figure 4 respectively which explicitly illustrate the mechanism of
how period doublling phenomena leads to chaos.

Example 3 We choose 0.06 ≤ δ ≤ 0.11, a = 12, b = 12, c = 18. Then
we find a fixed point E+ = (2.44949, 2.44949, 0.5) of system (2) and the
bifurcation point is obtained as δNS+

= 0.0671545. The Jacobian matrix
is evaluated at E+ is

A(δNS) =


0.194146 0.805854 0

0 1 −1.97393

0.164494 0.164494 0.194146

 ,

and the eigenvalues of A(δNS) are µ1 = −0.16093 and µ2,3 =
0.77461 ± 0.632439i with |µ2,3| = 1.

Furthermore,
1 − κ1 + κ0 (κ2 − κ0) = 0,
1 + κ1 − κ0 (κ2 + κ0) = 1.9482 > 0,
1 + κ2 + κ1 + κ0 = 0.523323 > 0,
1 − κ2 + κ1 − κ0 = 2.97805 > 0,
d
dδ (1 − κ1 + κ0 (κ2 − κ0)) = −8.55995 ̸= 0
and
1 − 1+κ2+κ1+κ0

2(1+κ0)
= 0.77461.

From the resonance condition cos
(

2π
l

)
= 0.77461, we get

l = ±9.17659.

So, the criterion for the existence of NS bifurcation are fulfilled
with (a, b, c, δ) ∈ NSBE+

. This confirms the correctness of Lemma 6.
Therefore, a NS bifurcation occurs around fixed point E+ if δ crosses its
critical value δNS+

.

Let τ1, τ2 ∈ C3 be two complex eigenvectors of A(δNS) and
AT(δNS) corresponding to µ2,3, respectively. Therefore,

τ1 ∼ (0.449192 − 0.489412i, 0.70765, 0.0808016 −
0.226728i)T , τ2 ∼ (0.117028 + 0.127506i,−0.265599 +
0.28938i, 0.903196)T .

CHAOS Theory and Applications 95



(a) (b)

Figure 1 NS Bifurcation Diagram: in (a) (δ, x) plane, (b) MLEs, (x0, y0, z0) = (0.93, 0.93, 0.33).

(a) (b) (c)

(d) (e) (f)

Figure 2 Phase portrait for different values of δ connected to Figure 1 a. Red ∗ is the fixed point E+.
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(a) (b)

Figure 3 Flip Bifurcation Diagram: in (a) (δ, x) plane, (b) MLEs, (x0, y0, z0) = (0.93, 0.93, 0.33).

(a) (b) (c)

(d) (e) (f)

(d) (e) (f)

Figure 4 Phase portrait for different values of δ associated to Figure 3 a. Red ∗ is the fixed point E+.
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For ⟨τ1, τ2⟩ = 1, we can take normalized vector as τ2 = γτ2 where,
γ = −0.429971 − 1.80561i. Then

τ1 ∼ (0.449192 − 0.489412i, 0.70765, 0.0808016 −
0.226728i)T , τ2 ∼ (0.179908 − 0.266131i, 0.636707 +
0.355143i,−0.388348 − 1.63082i)T .

Also by (17) the Taylor coefficients are , ĝ20 = 0.216831 +
0.190042i, ĝ11 = −0.167694 + 0.153913i, ĝ02 =
−0.0967446 − 0.136271i, ĝ21 = 0.074238 − 0.170412i.

From (19), we obtain the Lyapunov coefficient l2(δNS) =
−0.094591 < 0. Therefore, the NS bifurcation is super-critical and the
requirements of Theorem 3 are established.

The NS bifurcation diagrams are displayed in Figure 5 (a) which
reveal that the condition of stability for the positive fixed point E+ occurs
when δ < δNS, loses its stability at δ = δNS+

and there appears an
attracting closed invariant curve when δ > δNS. The MLEs related
to Figure 5 (a) are shown in Figure 5 (b). The non stability of system
dynamics are justified with the sign of MLEs.

The phase portraits of system (2) corresponding to diagram of bifurca-
tion shown in Figure 5 (a) are plotted in Figure 6. This figure explicitly
illustrate the mechanism of how an invariant smooth closed curve bifur-
cates from stable fixed point E+ when δ changes near its critical value.
We noticed that NS bifurcations occurs at δ = δNS+

(see in Figure 6(b)).
When δ > δNS+

, there appears an invariant closed curve and further
increasing of δ, NS bifurcation instigate a route to chaos.

Example 4 Taking parameter values 11.63 ≤ a ≤ 14.5, 10 ≤ c ≤ 20.5,
b = 12, c = 18, δ = 0.1057, the two-dimensional parametric space
is depicted in Figure 7(a) which shows critical value curves of NS
bifurcation of system (2) in (a, c) plane and regions of stability. It may
help one to choose parameter values to see how do dynamics of the system
change its topological properties. Varying two parameters, multiple
bifurcation diagrams of system (2) are plotted in Figure 7(c) together
with the sign of MLEs presented in Figure 7(b). We notice that the
growth of parameter c delays NS bifurcation.

In particular, for c = 18 the NS bifurcation of system (2) takes place at
aNS+

= 13.999 around fixed point E+ = (1.85193, 1.85193, 0.285803).
The bifurcation diagram of system (2) with MLEs are plotted in Figure 8
(a,b). The Lyapunov coefficient l3(aNS+

) = −0.543329 < 0 results that
the NS bifurcation is super-critical. The phase portraits of system (2) in
Figure 9 reflect the break down of invariant closed curve, a period of 9, 11
orbits and attracting chaotic set.

0-1 test algorithm for chaos
The 0 − 1 test algorithm (Gottwald and Melbourne 2004; Xin and
Li 2013; Xin and Wu 2015) returns a real number K ∈ [0, 1] and a
graph in 2D new coordinates (u, v)-plane.

Let Φ̂(n) be finely sampled set of measurement data, where
n = 1, 2, 3, . . . , Ntot and Ntot is length of data. The test steps are as
follows.

Step 1: Take a random real number d ∈
(

π
5 , 4π

5

)
, and define

new coordinates (ud(n), vc(n))) as follows.

ud(n) = ∑n
j=1 Φ̂(j) cos(θ̂(j))

vd(n) = ∑n
j=1 Φ̂(j) sin(θ̂(j))

(24)

where

θ̂(j) = jd +
j

∑
i=1

Φ̂(j), j = 1, 2, 3, . . . , n

Step 2: Define the quantity SDd(n) called mean square displace-
ment as follows:

SDd(n) = lim
Ntot→∞

1
Ntot

Ntot

∑
j=1

(ud(j + n)− ud(j))2 +(vd(j + n)− vd(j))2 ,

(25)

n ∈
[

1,
Ntot
10

]
Step 3: Define the quantity MSDd(n) called modified mean

square displacement as follows:

MSDd(n) = SDd(n)−

 lim
Ntot→∞

1
Ntot

Ntot

∑
j=1

Φ̂(j)

2
1 − cos nc
1 − cos c

(26)

Step 4: Define the median value of correlation coefficient K as
follows:

K = median(κc) (27)

where

κc =
cov(Ω1, Ω2)√

var(Ω1)var(Ω2)
∈ [−1, 1]

witl vectors Ω1 = (1, 2, 3, . . . , ncut), Ω2 =
(MSDd(1), MSDd(2), MSDd(3), . . . , MSDd(ncut)), ncut =

round
(

Ntot
10

)
. For the vectors p, s of length nt, the covariance and

variance are defined as follows:

cov(p, s) = 1
nt

∑nt
j=1(p(j)− p̄)(s(j)− s̄)

p̄ = 1
nt

∑nt
j=1 p(j)

var(p) = cov(p, p)

Step 5: Use the test outputs’ interpretation as follows:
(i) K ≈ 0 suggests that the dynamics of observed data are regular
(i.e., periodic or quasi-periodic), whereas K ≈ 1 suggests that the
dynamics of recorded data are chaotic.
(ii) Bounded trajectories in the new coordinate system (p, s) denote
regular underlying dynamics, while Brownian-like (unbounded)
trajectories denote chaotic underlying dynamics.

Example 5 The chaotic dynamics ( see Figure 9 (a)) of the system (2)
are quantified with correlation coefficient value K = 0.97639 by 0 − 1
test for chaos and the plot in transformed coordinates (p, s) ( see Figure
10(b) ) showing Brownian-like trajectories. The diagram of correlation
coefficient value K is displayed in Figure 10(a) which guarantees that
decreasing the values of parameter a causes unstable system dynamics
for discrete T system.
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(a) (b)

Figure 5 NS Bifurcation diagram: in (a) (δ, x) plane, (b) MLEs, (x0, y0, z0) = (0.98, 0.98, 0.6).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6 Phase portrait for different values of δ corresponding to Figure 5 a. Red ∗ is the fixed point E+.
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(a) (b)

(c)

Figure 7 System Dynamics for two control parameters (a) Stability region in (a, c) plane (b) The projection of MLEs onto (a, c) plane (c) NS
bifurcation in (a, c, x) space for a ∈ [2.6, 7.5] and c = 3, 3.6, 4.2, 5.04, 6 ∈ [3, 6].

(a) (b)

Figure 8 NS Bifurcation diagram: in (a) (a, x) plane, (b) MLEs, (x0, y0, z0) = (1.95, 1.95, 1.2).

100 | Sarker Md. Sohel Rana CHAOS Theory and Applications



(a) (b) (c)

(d) (e) (f)

(g) (h) (g)

(g) (h) (g)

Figure 9 Phase portrait for different values of a corresponding to Figure 8 a. Red ∗ is the fixed point E+.
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(a) (b)

Figure 10 0 − 1 test for Chaos of system (2). (a) The curve of median of correlation coefficient in (K, δ) plane (b) Dynamics of system (2) in new
(p, s) plane.

CHAOS CONTROL

Hybrid control strategy (Yuan and Yang 2015) is applied to system
(2) to get the following controlled system


xn+1 = ρ (xn + δ (a(yn − xn))) + (1 − ρ) xn,

yn+1 = ρ (yn + δ ((c − a)xn − axnzn)) + (1 − ρ) yn,

zn+1 = ρ (zn + δ (xnyn − bzn)) + (1 − ρ) zn

(28)

For the controlled system (28), at fixed point E+ =(√
b
a (c − a),

√
b
a (c − a), c−a

a

)
,the zeroes of |µI − J(E+)| (eigen-

values of J ) satisfy the equation

µ3 + ε2µ2 + ε1µ + ε0 = 0. (29)

where,

ε2 = −3 + δρ(a + b),

ε1 = 3 − 2aδρ + bδρ(−2 + cδρ),

ε0 = −1 − 2a2bδ3ρ3 + bδρ(1 − cδρ) + a(δρ + 2bcδ3ρ3)

(30)

Lemma 7 If the fixed point E+ of the uncontrolled system (2) is unstable,
then it is a sink (stable) the controlled system (28), if the roots of (29) lie
inside open disk satisfying conditions in Lemma 2.

Example 6 To see the effectiveness of hybrid control strategy to
control chaotic (unstable) system dynamics, we fix b = 12, c =
18, δ = 0.1057 with a = 11.64 < aNS+

. The fixed point
E+(2.56061, 2.56061, 0.546392) of system (2) is then demonstrated to
be unstable (see Fig 8), however it is stable for the controlled system (28)
iff 0 < ρ < 0.596385. Taking ρ = 0.55, the unstable system dynamics
around E+ are eliminated showing that E+ is a sink for the controlled
system (28) which have been displayed in Figure 11 (a,b). Moreover,
for the choice of ρ = 0.7, the NS bifurcation moves to negative a-axis
and occurs at a = 12.5042 for this controlled system by hybrid control
strategy (see Figure 11 (c)).

(a)

(b)

(c)

Figure 11 Dynamics of controlled system (28), (a) Time history of
x (b) Phase diagram (c) NS bifurcation in (a, x)-plane for ρ = 0.7.
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CONCLUSION

We analysis discrete-time chaotic T system both qualitatively and
quantitively. The Hopf bifurcation of the T system occurs, and it
has an irregular chaotic attractor. We discover that the discrete T
system exhibits more varied dynamical behaviors than the continu-
ous system. Firstly, the conditions and directions of NS bifurcation
of system (2) around E0 are explicitly described by center mani-
fold theory. Then we find the criteria of happening Flip and NS
bifurcations of system (2) around fixed point E+.

In addition, we determine directions of these bifurcations. More
Specifically, NS bifurcation around E0 and Flip or NS bifurcation
around E+ take place of system (2) for small perturbation of bifur-
cation parameter δ or a. Both bifurcations change system dynamics
topologically and trigger a route to chaos. For the generation of NS
bifurcation, we find closed invariant curve, sudden break down
of closed curve, period −9,−11 orbits and chaotic attractors when
δ and/or a pass their threshold values. For the generation of flip
bifurcation, we observe the stable period −1 orbit becomes period
−2,−4,orbits, 4 closed curves, two-coexisting chaotic sets and nice
attracting chaotic set respectively for growth of δ.

Based on two dimensional parameteric space, we see how the
mechanism of NS bifurcation switch the behaviors of system and
advance or delay of occuring bifurcation when two parameters
vary simultaneously. Moreover, for all the cases chaoticity of sys-
tem dynamics are justified with sign of MLEs and 0 − 1 chaos
test. Finally, we are able to control and eliminate unstable system
trajectories by hybrid control strategy. For this system, it is open to
study the other properties like synchronization and co-dimension-
2 bifurcation. Studying how two factors affect the dynamics of the
discrete T system will be intriguing and difficult, but it is some-
thing to keep in mind for future study.
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