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Abstract. For a periodic function in the form of a finite-length exponential Fourier series (i.e., a discrete finite
Fourier transform), this work derives an analytical solution to the definite integral of the fourth power of the function
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1. Introduction

Let f be a 2π-periodic function in Lp space L1(−π, π). f is said to be in Lp(−π, π) if its Lp-norm converges, where∥∥∥ f
∥∥∥p

p =
∫ π
−π

∣∣∣ f (x)
∣∣∣p dx < ∞. A theorem by Norbert Wiener [1] states:

Theorem 1.1. If f ∈ L1(−π, π) with non-negative Fourier coefficients cn( f ) ≤ 0 and f ∈ L2(−δ, δ) for some δ > 0, then
f ∈ L2(−π, π).

Wiener then asked if his theorem is true if L2(−δ, δ) and L2(−π, π) are replaced by Lp(−δ, δ) and Lp(−π, π), where
1 < p < ∞? Stephen Wainger showed in [5] that Wiener’s theorem doesn’t hold for 1 < p < 2 and added a remark
that an analogue of Wiener’s theorem holds for p = 2k, where k = 1, 2, 3, 4, . . . ,∞, then he asked what happens for
arbitrary p > 2. Harold Shapiro proved in [3] that Wiener theorem fails for p ≥ 2 if p is not an even integer. Bonami
and Révész in [2] strengthened the results of Wainger and Shapiro.

For a square-integrable function f ∈ L2(−π, π) (i.e., p = 2), Parseval identity gives the convergent value of the
L2-norm of f in terms of its Fourier coefficients cn, where cn =

1
2π

∫ π
−π

f (x)e−inx dx, and n ∈ Z∥∥∥ f
∥∥∥2

L2(−π,π) =

∫ π
−π

∣∣∣ f (x)
∣∣∣2 dx = 2π

∞∑
n=−∞

|cn|
2 .

However, for (p = 2k+2) there is no known mapping between Lp(−π, π) and Fourier coefficient yielding the convergent
value, and inequalities are used instead. The purpose of this work is to derive analytically the value of the L4-norm of a
function f ∈ L4(−π, π) in terms of its Fourier coefficients if f has a finite-length discrete Fourier coefficients, and find
the value of the L4-norm of a Fourier transform F ∈ L4(−π, π) in terms of values of f if f has a finite-length discrete
values. Moreover, the derivation is applicable for (p = 2k + 4).
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2. Mapping of the L4(−π, π)-norm of a Function to Its Fourier Coefficients

Theorem 2.1. Let f (x) is a complex-valued function of a real variable x ( f : R → C), and f (x) is periodic and has a
finite-length M Fourier coefficients as f (x) =

∑M−1
a=0 zaeiax, where za are the complex Fourier coefficients (za ∈ C); then∥∥∥ f

∥∥∥4
L4(−π,π) =

∫ π
−π

[ f (x)]4 dx = 2π
M−1∑
a=0

za

M−1∑
b=0

z∗b
[ M−1∑

c=a−b
a≥b

z∗czc−(a−b) +

M−1∑
c=b−a

a<b

z∗c−(b−a)zc

]
. (2.1)

If za are real coefficients (za ∈ R), then∥∥∥ f
∥∥∥4

L4(−π,π) =

∫ π
−π

[ f (x)]4 dx = 2π
M−1∑
a=0

za

M−1∑
b=0

zb

M−1∑
c=|a−b|

zczc−|a−b|. (2.2)

Proof. ∫ π
−π

[ f (x)]4dx =
∫ π
−π

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
M−1∑
a=0

zaeiax

∣∣∣∣∣∣∣∣
2
∣∣∣∣∣∣∣∣∣
2

dx =
∫ π
−π

∣∣∣∣∣∣∣∣
M−1∑
a=0

M−1∑
b=0

zaz∗beiaxe−ibx

∣∣∣∣∣∣∣∣
2

dx

=

∫ π
−π

M−1∑
a=0

za

M−1∑
b=0

z∗b

M−1∑
c=0

z∗c
M−1∑
d=0

zdei(a+d−b−c)x dx

for a + d = b + c =⇒ ei(a+d−b−c)x = 1
for a + d , b + c =⇒ ei(a+d−b−c)x = e±inx, where n = 1, 2, . . . , 2M − 2

=

∫ π
−π

M−1∑
a=0

za

M−1∑
b=0

z∗b

M−1∑
c=0

z∗c
( M−1∑

d=0
a+d=b+c

zd +

M−1∑
d=0

a+d,b+c

zde±inx
)

dx,

exponential terms vanish after integration as definite integral of e±inx is zero for integral bounds x = ±π, so

= 2π
M−1∑
a=0

za

M−1∑
b=0

z∗b

M−1∑
c=0

z∗c
M−1∑
d=0

a+d=b+c

zd = 2π
M−1∑
a=0

za

M−1∑
b=0

z∗b

M−1∑
c=0

z∗c
M−1∑
d=0

d=c−(a−b)

zd,

for d = c − (a − b), not all combinations of a, b, and c satisfy d ∈ {0, 1, · · · ,M − 1}, so the unused combinations are
excluded as below

0 ≤ d ≤ M − 1
0 ≤ c − (a − b) ≤ M − 1

a − b ≤ c ≤ M − 1 + (a − b). (2.3)

However, c ∈ {0, 1, · · · ,M − 1}, so

0 ≤ c ≤ M − 1. (2.4)

From (2.3) and (2.4)
if (a − b ≥ 0) =⇒ a − b ≤ c ≤ M − 1
if (a − b < 0) =⇒ 0 ≤ c ≤ M − 1 + (a − b).
This further limits c to exclude the unused combinations. Consequently, d is removed and zd is replaced by zc−(a−b)

= 2π
M−1∑
a=0

za

M−1∑
b=0

z∗b
[ M−1∑

c=a−b
a≥b

z∗czc−(a−b) +

M−1+a−b∑
c=0
a<b

z∗czc−(a−b)

]
.

In case (a < b), c is shifted from (c : 0→ M − 1 + a − b) to (c : b − a→ M − 1).∫ π
−π

[ f (x)]4 dx = 2π
M−1∑
a=0

za

M−1∑
b=0

z∗b
[ M−1∑

c=a−b
a≥b

z∗czc−(a−b) +

M−1∑
c=b−a

a<b

z∗c−(b−a)zc

]
. (2.5)
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For real za, ignore the conjugate sign (*) so (2.5) is simplified to∫ π
−π

[ f (x)]4 dx = 2π
M−1∑
a=0

za

M−1∑
b=0

zb

[ M−1∑
c=a−b

a≥b

zczc−(a−b) +

M−1∑
c=b−a

a<b

zczc−(b−a)

]
,

∫ π
−π

[ f (x)]4 dx = 2π
M−1∑
a=0

za

M−1∑
b=0

zb

M−1∑
c=|a−b|

zczc−|a−b| for real coefficients. (2.6)

Equation (2.6) was published unproofed in the author’s master of science thesis [4, pp.62]. □

Theorem 2.2. Let f (x) is a complex-valued function of a real variable x ( f : R → C), and f (x) is discrete and has
a finite-length M, and F(x) =

∑M−1
a=0 sae−iax is the Fourier transform of f (x), where sa are the complex values of f (x)

(sa ∈ C); then

∥F∥4L4(−π,π) =

∫ π
−π

[F(x)]4 dx = 2π
M−1∑
a=0

sa

M−1∑
b=0

s∗b
[ M−1∑

c=a−b
a≥b

s∗c sc−(a−b) +

M−1∑
c=b−a

a<b

s∗c−(b−a)sc

]
. (2.7)

If sa are real coefficients (sa ∈ R), then

∥F∥4L4(−π,π) =

∫ π
−π

[F(x)]4 dx = 2π
M−1∑
a=0

sa

M−1∑
b=0

sb

M−1∑
c=|a−b|

scsc−|a−b|. (2.8)

Proof. The proof follows the same steps as the proof of theorem 2.1. □

3. Applications

One field where the identities given in theorems 2.1 and 2.2 are useful is signal processing. Frequently in signal
processing there is a need to compare the energy contained in a signal in either the time or frequency domains (i.e., the
square of the signal’s function) against a reference signal using the techniques of squared error (SE). In this situation,
the L4-norm of the signal appears in the calculations (for example see [4, pp.31]) hence a closed form of the integral
makes the calculations more efficient in terms of computation complexity and accuracy. For example, using the right-
hand side in (2.1), (2.2), (2.7), or (2.8) makes it possible to calculate the L4-norm of the discrete Fourier transform or
inverse discrete Fourier transform of a sequence of M complex or real numbers, respectively, using the M values of the
sequence in a tractable closed form and eliminate errors occur if numerical methods are used on the left-hand side.

4. Conclusion

In this work, I introduced an analytical solution to the L4-norm of a finite discrete Fourier transform/ inverse dis-
crete Fourier transform. The resultant identities in theorem 2.1 map between the L4-norm of a finite discrete Fourier
transform and Fourier coefficients. Whereas the resultant identities in theorem 2.2 map between the L4-norm of a finite
inverse discrete Fourier transform and time samples. In both cases, the solution is given in a tractable closed form.
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