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Abstract. On the basis of non-relativistic theory in the distorted-wave approximation in three dimensions, a theory of from 

nuclei by nucleons of intermediate energies has been developed. On the baizing on this theory the differential cross sections 

of quasielastic knock-out reactions of protons with shells 1 p , 1 s   in the nucleus O16

and C12  have been calculated, which 

allows to determine the orbital momentum of the nucleons in the nucleus before scattering by the angular distribution of 

emitted protons. 

Keywords: Reaction A (p, 2p)B, distorted-wave approximation, O16

and C12  nuclei.   
 

 

1. INTRODUCTION  

Investigation of nucleon knock-out reactions at intermediate initial energies and the experiments, in 

which they were studied, confirmed the correctness of the model of direct knock-out particles from 

nucleus. Despite some successes in describing the mechanism of nuclear reactions, many questions still 

remain open. To some extent this is due to some unresolved issues from nuclear theory: the lack of 

reliable data on the intrans nuclear wave functions, two-body potentials and others. Serious problem is 

the parameterization of the distorted wave scattered nucleons [1]. 

The further investigation of the particles ejected by fast nucleons may give additional information about 

the wave functions of the ground state of nuclei and the distribution of nucleon moments of the in this 

state [2]. 

Based on the theory of direct interactions of nucleons with the surface protons and neutrons of the 

nucleus [3], using previously developed theory of the scattering of protons of intermediate energies in 

distorted-wave approximation [4,5], and getting the analytical form of expression of the differential 

cross section, we can receive more accurate information about the knocked-out nucleons before the 

reaction in the nucleus.  

Now consider the derivation of the formula determining the angular distribution of protons in the 

reaction of surface interaction of the incident neutrons on the nucleus of the target. 

We write the differential cross section for the reaction A (n, np) in the following form [6]:  
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Here,
fp , 

pp  are three-dimensional moments of the scattered neutrons and ejected protons, 
iE , 

fE

are the kinetic energies of the incident and scattered neutrons. The energy of the ejected protons pE  

and the separation energy of the least bound proton is ЕN. Finally, the recoil energy of the daughter 

nucleus is 
1A

2

R

R
M2

P
E



  which is determined by the momentum of the recoil nucleus (РR) and in its 

turn, is connected with the missing mass (MR) from the reaction, based on the law of conservation of 

energy:  

                            
2/122 ])[( RpfipAR PEEEmMM                                    (2) 

For the missing mass at that the relationship between the separation energy of the nucleons (ЕN) and 

mass of daughter nucleus (МA-1), known from the experiment is used:  

                 
1 ARN MME                                                          (3) 

 Consider the derivation of the formula determining the angular distribution of knocked out 

protons in the reaction of surface interaction of the incident neutron on the nucleus - A. We write for 

this case the wave function of the initial state An   of the system as follows:   

                            )r) pplmpnlA rr   (),()((1 ik
                                          (4) 

where pppr  ,,  are the polar coordinates of the proton in the nucleus A , r  are the coordinates of all 

other nucleons in the nucleus,  r  and 
ik  , respectively, the coordinate and wave vector of the incident 

neutron. Final state after the emission of a proton by the nucleus, corresponds to the core 1A , which 

wave function at large distances nucleons from the nucleus has the form  

                                 )()((1 ppA
f

) rrr kk  


,                                                   (5)   

  where fk  and  r   are  respectively, the wave vector and the coordinate of the scattered neutron and  

wave vector of the ejected proton. Potential )( prr   responsible for the direct interaction depicts 

the interaction of the incident neutron with a proton of the nucleus A , )( rr pU  is the potential of 

interaction of emitted proton with the nucleus of the balance, which is different from zero only on the 

"surface" of the nucleus, i.e. Rrr pn  . 

The matrix element of the nucleus transition is represented as  

  


  


 iWddf
if

T Rpppplmpnl
i

pp
pf

p )()()()()(
)(

)()()( .
)(

rrrrrr
k

rr
kk

rr    (6) 

 where 

                                     rrrrrr dUW ApAp )()()()( 11 



                                    (7) 



MIRABUTALYBOV 

S73 

The wave functions of the scattered neutrons, obtained in [2] from the solution of the nonrelativistic 

Schrodinger equation is written in the following form  

                                        
]i[
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) q ,r(rq 
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 )()( )()( rr kk                                    (8) 

where the distorting function depending on the distribution of nucleons in nuclei, is given in [7].  

Expressing the interaction potential )( prr  through the amplitude of nucleon-nucleon scattering fNN 

(q) presented in [7] for the transition matrix element of the nucleus we obtain: 
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(9) 

In order to simplify the calculation the wave function of the knocked-out proton is taken as a plane wave.  

To calculate the matrix element (9), we replacing the phase variables prru   after integration 

obtain:  
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Now, as shown in Fig. 1, we choose a coordinate system in which qOz , denoting )ˆˆcos( rq , 

}{rr . This will allow taking into account the loss of energy, to write momentum transferred by 

the incident nucleon to the nucleus of the target, as: 
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Fig.1. Momentum of incident ( ik
), trace ( fk

) and ejected particles (
jk

) in the three-dimensional coordinate system with 

momentum transfer fi kkq 
.  
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Scattering angle 21   and deflection angles of the incident ( 1 ) and the scattered particles )( 2  

respectively x-axis and the scattering angle of the ejected particles in three-dimensional coordinate 

system )ˆˆ(3 jikk  are related as follows:  
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We note at once that angles   and 3 are determined from the experiment.  

Applying the recursion formula derived in [7], simplifying the exponential factor in the amplitude of the 

process, we obtain:  
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Explicit expressions are given in functional 
1na  and 

2na  are presented in [7]. 

An explicit expression for
0U potential in the center of the  nucleus  as well as a ,

0b  options, depending 

on the distribution of nucleon density in nuclei, as well as  
2

0  parameter   (the slope of the diffraction 

cones), which is a part of the amplitude of  free NN – interactions, are presented in [7]. 

To calculate the integral of spherical functions included in (15) we use the plane wave expansion of 

spherical functions:  
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Considering the orthogonally of  which we obtain  
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here )( Rj pL kq   - Bessel function and  

                 
2

31

2 )cos(2
2 ppp kq  kqk-q .                                       (19) 

It is known that the experiments on the angular distribution of the reaction products of direct interaction 

provides insights about the properties of the energy levels of nuclei.  

Therefore, the expression (18) allows determining L  for the angular distribution of emitted protons. 

Finally, we pass to the calculation of integral (16) on  the potential of interaction of the ejected proton 

with the nucleons of the residual nucleus, the potential of the two partially interaction is taken into 

account in the asymptotic form due to one-pion exchange, which allows us to write  
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here 002.0081.02  cg   is the coupling constant, determining the value of the potential, 

obtained by analyzing the scattering  - meson on nucleons, reverse value of which  ,0


cm
k   

corresponds the radius of action of nuclear forces.  

To calculate the integral (20) the distribution of nucleons density in the ground state of the residual 

nucleus is chosen in the form of the Fermi - functions.  
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          Applying the method of pole calculating of integral [7], we get: 
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We examined the knock-out of protons from the nuclei by nucleons scattering the, interaction of (n, np)-

type. However the obtained results can be directly applied to the reactions (p, nn), (p, 2p) and (n, 2n) as 

well, because the Coulomb interaction is ignored.   

As direct interaction is essential at middle and high energies of nucleons, the influence of Coulomb 

interaction on the angular distribution is of little importance. Thus, the final expression of the differential 

cross section of quasielastic scattering of nucleons by nuclei is written as:  
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As in the future these reactions will be studied on light nuclei, it is desirable to give explicit expressions 

of radial wave functions of nucleons )(RLn  for 1s and 1р states in nuclei obtained from the solution 

of nonrelativistic Schrodinger equation for a spherically symmetric potential:  
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The proposed approach allows calculating the differential cross-section of nucleons knockout by protons 

with energy GeVТ р 1 , using the variation of the  parameterb , characterizing the thickness of the 

surface of nucleus. Results of specific calculations of the reactions A (p, 2p) in nucleus 16О   compared 

with the experimental data are shown in Fig. 2.  

The calculations are mainly carried out for different angles of emission of slow protons (


73;67;64;613  ) at a fixed angle of scattering of fast protons

4,13 . The figure shows the 

results only for the angle of departure of slow protons


613  . Analysis of the results shows that the 

scattering cross section of protons depends on the angles weakly. 

Nuclei of  O16
  and C12

 can emit protons from levels 1p  and 1s   so the differential cross section was 

calculated for every of these cases. In the experiment slow protons were recorded at energies   E = (60-

105) MeV (The agreement between theoretical and experimental cross sections at recording of fast 

protons take place namely at these energies of slow protons.) 

 

Fig.2.  Experimental (dots) and theoretical (solid line) differential cross sections of the reaction of quasielastic knockout of 

protons from sub shells 1p and 1s 16О nucleus at angles 
4,131  , 

613  . Dashed lines-the results of investigation 

[8], calculated with Hartri-Fock wave functions considering excitation of nucleus. 
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As it seen from fig.2 and 3, theoretical graphs obtained in presented article on knockout protons from 

level 1p, unlike the experimental, have only one maximum. Apparently, this is consequence of 

examination the absolute quasielastic proton knockout, so residual nucleus does not excite. However, 

the displacement of the maximum towards high energies is connected with not taking into account the 

distortion in the wave function of knocked out protons. 

 

 

Fig. 3. Experimental (dots) and theoretical (solid line) differential cross sections of the reaction of quasielastic knockout of 

protons from sub shells 1p and 1s 12C nucleus at angles 
4,131  , 

613  . Dashed lines-the results of investigation 

[8], calculated with Hartri-Fock wave functions considering excitation of nucleus. 

 

The theoretical curves, calculated in distorted-wave impulse approach, where for the nucleus nucleons 

Hartri-Fock wave functions were used, are presented for comparison on fig. The authors of reference 

[8] considered the excitation of the residual nucleus, as well. 

On the of abovementioned theory the calculated differential cross sections of the reaction on quasielastic 

proton knock out from sub shells 1p and 1s in nuclei 16О and 12С allow to define orbital momentums of 

these nucleons in nuclei before scattering by angular distribution of emitted protons. 

So, concluding, we may confirm that similar derivations are convenient for the practical use with 

analytical wave functions of nucleus. 

From the analysis of the obtained data it follows that the reaction of the knock out requires more accurate 

revision inter nucleus wave functions, in particular, more exact accounting of excitation the residual 

nucleus and distortions in the wave functions of knocked out from nuclei nucleons. 
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