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3Department of Mathematics, Faculty of Science, Ankara University, Ankara, Türkiye

*Corresponding author

Article Info

Keywords: Constant angle surface, De-
velopable ruled surface, Isophote curve,
Optic, Singularity, Spherical circle
2010 AMS: 53A04, 53A05, 53A35,
78A05, 78A10
Received: 14 December 2022
Accepted: 18 April 2023
Available online: 19 May 2023

Abstract

In this study, for the first time, a method is given for a developable ruled surface to be a
constant angle ruled surface. The general equations of constant angle surfaces have been
shown in the studies done so far. In this study, a new method is given on how to obtain a
constant angled surface when any constant direction is given in Minkowski 3−space.

1. Introduction

A constant angle surface is a surface whose tangent planes make a constant angle with a fixed vector field of space. In other
words, constant angle surfaces whose unit normal forms a constant angle with an assigned direction field in the Euclidean
3−space. This surface is a generalization of a helical curve. An interesting motivation to study helix surfaces or constant
angle surfaces arises from physics. The most basic known application areas of the constant angle surfaces are for light such as
crystal, liquid and shape from shading problems. In recent years, many authors have studied these special surfaces to take
advantage of their applications in mathematics and physics. Paolo and Scala discuss some properties of constant angel surfaces
in terms of the Hamilton-Jacobi equation. They investigate the properties of a constant angle surface when the direction field is
singular along a line or a point, [1]. Munteanu and Nistor obtain a classification for which the unit normal makes a constant
angle with a fixed vector direction being the tangent direction to R in Euclidean 3−space [2]. Many studies have been done
on constant angle surfaces and developable surfaces [3, 4]. In [5], the author investigates the constant angle ruled surfaces
generated by Frenet frame vectors. Recently the theory of constant angle surfaces is extended to other ambient spaces. For
example; in [6, 7], they study these surfaces in E3

1. Also, in [8]- [11], the authors extend the concept of constant angle surfaces
to a Lorentzian ambient space. Also, in product spaces S2×R [12, 13], in H2×R [14] and in Heisenberg group [15, 16].
On the other hand, an isophote curve is defined as the locus of the surface points whose normal vectors make a constant angle
with a given constant vector as seen in Figure 1.1. Therefore, we can say that the curves on the constant angle surface are
isophote curves. The isophote curve is a nice corollary to Lambert’s law of cosines in the optics branch of physics. This law
states that the illuminance intensity on a diffused surface is proportional to the cosine of the angle formed between the normal
vector of the surface and the light vector. So, we can say the geometric description of isophote curves on surfaces which are
the surface normal vectors in points of the curve make a constant angle with a fixed light direction [17]. In recent years, there
have been many applications of these curves in different branches. In [18], the authors developed a novel technique to detect
caries lesions using isophote concepts. Also, in [19], they present the implementation of a real-time eye detection method that
uses the properties of isophotes, to achieve robustness against changes in illumination, eye rotation and pupil size.
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Figure 1.1: An isophote on a surface

In this present paper, we investigate the spherical circles and constant angle surfaces in E3
1. The difference of the present paper

is a fixed angle surface is obtained with respect to any direction and some characterizations are given in three-dimensional
Minkowski space. This constant angle surface is the developable ruled surface whose direction is the spherical circle in
Minkowski space. Also, by the definition of isophote curves, the curves on this surface are isophote curves. These curves have
applications in many fields. At the beginning of these is optics, which is its application in physics. There are many studies that
bring together the optics branch of physics and the geometry branch of mathematics [20–24]. This study is one of them. Based
on that, we can say that when we beam from a light source in a constant direction, the intensity of the light will be the same at
every point on this constant angle surface. On the other hand, the singularity of the ruled surfaces has been studied by many
authors. We also investigate the singularity types of this special surface. Finally, as an application, we give some illustrated
examples which support the theory of the paper.

2. Preliminaries

Let E3
1 = (R3,〈,〉L) be Minkowski 3−space which is given with the Lorentzian metric as follows

〈,〉L = R3×R3→ R
(u,v) → 〈u,v〉L = u1v1 +u2v2−u3v3,

where u = (u1,u2,u3) and v = (v1,v2,v3) are general coordinates E3
1. In that case semi-Riemannian metric, an ordinary vector

u ∈ E3
1 so-called spacelike if 〈u,u〉L > 0 or u = 0, timelike if 〈u,u〉L < 0 and null (lightlike) if 〈u,u〉L = 0 but u 6= 0. The norm

of a vector u is given by ‖u‖L =
√
|〈u,u〉L| [25]. Considering the concept of the Lorentz cross product × : E3

1×E3
1→ E3

1. For
u,v ∈ E3

1 , the vector u× v is defined as

u× v = (u2v3−u3v2,u3v1−u1v3,u2v1−u1v2).

Definition 2.1 ( [25]). Let u and v be two vectors in Minkowski 3-space.

a. Let u and v be two time-like vectors. If these vectors span a vector subspace, there is a unique real number θ ≥ 0 such
that

〈u,v〉L = ‖u‖L ‖v‖L coshθ .

b. Let u and v be vectors. If these two space-like vectors span a vector subspace, there is a unique real number θ ≥ 0 such
that

〈u,v〉L = ‖u‖L ‖v‖L cosθ .

Definition 2.2 ( [25]). Let u and v be space-like and time-like vectors in E3
1, respectively. Then, there is a unique non-negative

real number θ ≥ 0 satisfying

〈u,v〉L = ‖u‖L ‖v‖L sinhθ .

Definition 2.3 ( [25]). Let u and v be in the same timecone of E3
1 . In this case, there is a unique non-negative real number

θ ≥ 0 as follows:

〈u,v〉L =−‖u‖L ‖v‖L coshθ .

Let timelike and spacelike curves be vectors with spacelike or timelike normal vectors, respectively. Such curves are called
Frenet curves. In this case, the Frenet equations are given by
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 T ′ (s)
N′ (s)
B′ (s)

=

 0 κ (s) 0
−δκ (s) 0 τ (s)

0 ετ (s) 0

 T (s)
N (s)
B(s)

 ,

where 〈T,T 〉L = ε and 〈N,N〉L = δ [27]. Let the position vector of the surface M in the standard form of Lorentz Minkowski
space E3

1 is

Φ(u,v) = (Φ1(u,v),Φ2(u,v),Φ3(u,v)) .

Definition 2.4 ( [28]). Surfaces formed by the movement of a line along a curve in space are called ruled surfaces. The
parameterization of the ruled surface for any two differentiable curves α and γ is

Φ(u,v) = α(v)+uγ(v)

where α(v) is called base curve of the ruled surface and γ(v) is a unit direction vector of an oriented line in E3
1.

Theorem 2.5 ( [29, 30]). Let M be a regular ruled surface with the parameterization Φ(u,v) = α(v)+uγ(v). If the Gaussian
curvature of the surface M is zero, the surface M is called a developable surface. Also, another characterization for developable
ruled surfaces is that det(α ′(v),γ(v),γ ′(v)) = 0.

Definition 2.6 ( [31]). For the surface Φ(u,v) = α(v)+uγ(v), line of striction is given by

ᾱ(v) = α(v)− 〈γ(v)× γ ′(v),γ(v)×α ′(v)〉
‖γ(v)× γ ′(v)‖2 γ(v).

3. Main Results

This section is based on the definition of a constant angle ruled surface in 3-dimensional Minkowski space. In this section,
constant angle ruled surfaces are studied with the help of any given direction and these surfaces are characterized. According
to the casual characters of the orthonormal vectors, the direction vectors of the constant angle ruled surface can be obtained in
different ways in the 3-dimensional Minkowski space.
Case 1. Let~e3 be a timelike vector. So, {~e1,~e2} are spacelike vectors. The Lorentz circle with the help of these orthonormal
vectors in this space is as follows

α(v) = coshθ(cosv~e1 + sinv~e2)+ sinhθ(~e1×~e2). (3.1)

Examining the casual character of the defined above curve α , provides

〈α,α〉= 1.

So, we can easily say that α is spacelike and α ∈ S2
1. We take the derivative of the equation (3.1) with respect to v

α
′
(v) = coshθ (−sinv~e1 + cosv~e2) . (3.2)

The norm of the equation (3.2) is ∥∥∥α
′
(v)
∥∥∥= coshθ .

Hence, the unit tangent vector of α(v) is obtained as follows

T (v) =
α
′
(v)∥∥α
′
(v)
∥∥ =−sinv~e1 + cosv~e2.

Examining the casual character of the tangent vector, we can see that it is a spacelike vector as

〈T,T 〉= 1.

If we cross product the spacelike curve α(v) and the spacelike tangent vector T (v), we get

S(v) = α(v)×T (v) =−sinhθ(cosv~e1 + sinv~e2)− coshθ~e3

and we obtain the casual character of S is a timelike vector as

〈S,S〉=−1.
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Thus, the Sabban frame {α(v),T (v),S(v)} is obtained on S2
1. If the necessary calculations are made, the derivative change of

the frame is found

d
dv

 α(v)
T (v)
S(v)

=

 0 coshθ 0
−coshθ 0 −sinhθ

0 −sinhθ 0

 α(v)
T (v)
S(v)

 .
In addition, the Darboux vector of the Lorenz circle α(v) is a vector that determines the constant direction as

ω = sinhθα(v)+ coshθS(v).

In fact, if the necessary calculations are made here, it is easily seen that

ω = (~e1×~e2) =−~e3.

Theorem 3.1. Let~e3 be timelike and {~e1,~e2} be spacelike vectors in 3−dimensional Minkowski space. The spacelike Lorentz
circle on S2

1 with the help of the orthonormal vectors in this space is

α(v) = coshθ(cosv~e1 + sinv~e2)+ sinhθ~e3, θ 6= 0.

The surface defined below is a spacelike ruled surface

Φ(u,v) → Φ(u,v) =
v∫
0
[ f (v)α(v)+g(v)α ′(v)]dv+uα(v) (3.3)

and S(v) = α(v)×T (v) is the timelike unit normal to ruled surface where f and g are the differentiable functions.

Proof. Considering the definition of ruled surfaces,
v∫
0

[
f (v)α(v)+g(v)α ′(v)

]
dv

is defined as the ruled surface directrix (also called the base curve) and the vector α(v) is defined as the direction vector of
the surface. So, we can easily see that the surface Φ(u,v) is a ruled surface in 3−dimensional Minkowski space. To find the
normal of the surface, we calculate the parameter curves of the surface

N =
Φu×Φv

‖Φu×Φv‖
.

If the derivatives of equation (3.3) are taken with respect to u and v, respectively, one immediately has

Φu = (coshθ cosv,coshθ sinv,sinhθ)

and

Φv = ( f (v)coshθ cosv− (g(v)+u)coshθ sinv, f (v)coshθ sinv+(g(v)+u)coshθ cosv, f (v)sinhθ).

If the following calculations are made to find the normal of the surface, we obtain

Φu×Φv = (−(g(v)+u)coshθ sinhθ cosv,−(g(v)+u)coshθ sinhθ sinv,−(g(v)+u)cosh2
θ)

and

‖Φu×Φv‖= (g(v)+u)coshθ .

Therefore, we can easily find the normal of the surface as follows:

N = (−sinhθ cosv,−sinhθ sinv,−coshθ). (3.4)

If necessary arrangements are made in equation (3.4), it can be seen that

N = −sinhθ (cosv~e1 + sinv~e2)− coshθ~e3,

N = S.

Thus, we can say that S(v) is the unit normal vector to the ruled surface Φ(u,v). If the casual character of the normal vector is
computed here, one has

〈N,N〉=−1.

Hence, the ruled surface Φ(u,v) is a spacelike surface.



82 Fundamental Journal of Mathematics and Applications

Corollary 3.2. Let ~e3 be timelike and {~e1,~e2} be spacelike vectors in 3−dimensional Minkowski space. Suppose that the
normal of the spacelike surface Φ(u,v) is N and ω = (~e1×~e2) =−~e3 is the axis of the constant direction. Then, the surface
Φ(u,v) is a spacelike constant angle ruled surface.

Proof. Let the normal of the spacelike surface Φ(u,v) be N and ω = (~e1×~e2) = −~e3 be the axis of the constant direction.
Considering equation (3.4) and ω axis of the constant direction, we can write that

〈N,ω〉=−coshθ = constant.

So, we can say that the surface Φ(u,v) is a spacelike constant angle ruled surface.

Corollary 3.3. The surface Φ(u,v) is a developable spacelike ruled surface.

Proof. If we restate the base curve of the surface Φ(u,v) as

ϕ =

v∫
0

[
f (v)α(v)+g(v)α ′(v)

]
dv,

and use the developable ruled surface condition, we obtain that

det
(

ϕ
′
(v),α(v),α ′(v)

)
= det

(
f (v)α(v)+g(v)α ′(v),α(v),α ′(v)

)
.

If necessary calculations are made, it can be easily seen that this determinant value is zero. So, we can say that Φ(u,v) is a
spacelike developable ruled surface.

Corollary 3.4. The line of striction of the spacelike surface Φ(u,v) is

ϕ̄ = ϕ +g(v)α(v)

where ϕ =
v∫
0
[ f (v)α(v)+g(v)α ′(v)]dv.

Proof. The line of striction of the surface is computed as follows

ϕ̄ = ϕ− 〈α(v)×α ′(v),α(v)×ϕ ′(v)〉
‖α(v)×α ′(v)‖2 α(v). (3.5)

If the necessary calculations are made in equation (3.5), we find

α(v)×α
′(v) =

(
−sinhθ coshθ cosv,−sinhθ coshθ sinv,cosh2

θ
)
,

α(v)×ϕ
′(v) =

(
−g(v)coshθ sinhθ cosv,−g(v)coshθ sinhθ sinv,g(v)cosh2

θ
)
.

If the above equations are substituted in equation (3.5), the line of striction is obtained as

ϕ̄ = ϕ +
g(v)cosh2

θ

cosh2
θ

α(v),

ϕ̄ = ϕ +g(v)α(v).

Corollary 3.5. Considering the theory in the study, we can say that when we are given any axis, we can create a constant
angle surface with the help of this axis. For example, we examine the problem of creating a constant angle ruled surface with
axis k =−~e3. To find the Lorentz circle α(v), the circle whose normal is k =−~e3 must be written. This is found by writing the
intersection curve of the light cone and the plane with −~e3 normal. Let the {~e1,~e2} be an orthonormal frame obtained in the
plane whose normal is −~e3. In this case, the intersection curve of the light cone and the plane is as follows

cosv~e1 + sinv~e2.

This curve is the Lorentz circle with radius r = coshθ given by

α(v) = coshθ cosv~e1 + coshθ sinv~e2 + sinhθ~e3.

The surface

Φ(u,v) =
v∫
0

[
f (v)α(v)+g(v)α ′(v)

]
dv+uα(v)
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obtained by this circle α(v) is a constant hyperbolic angle ruled surface with the axis k =−~e3. The normal to this surface is

N = (−sinhθ cosv,−sinhθ sinv,−coshθ)

and 〈N,~e3〉 = −coshθ . According to the state of the θ hyperbolic angle, the angle that the surface makes with the axis is
determined. Also, when the functions f and g are changed, they change on the constant angle surfaces.

Theorem 3.6. Let Φ : I×J→ E3, Φ(u,v) =
v∫
0
[ f (v)α(v)+g(v)α ′(v)]dv+uα(v) be a spacelike constant angle ruled surface

and f ,g : I→ R be smooth functions with

d
dv

 v∫
0

[
f (v)α(v)+g(v)α ′(v)

]
dv

= f (v)α(v)+g(v)α ′(v).

Also, let (u0,v0) ∈ I× J be a singular point of Φ(u,v) and put

x0 =

v∫
0

[
f (v0)α(v0)+g(v0)α

′(v0)
]

dv+u0α(v0) = Φ(u0,v0).

The germ of Φ(u,v) at x0 is locally diffeomorphic to C×R and SW. Also, the germ of Φ(u,v) at x0 isn’t locally diffeomorphic
to CCR.

Proof. Let Φ : I× J→ E3 be a spacelike constant angle ruled surface and f ,g : I→ R be smooth functions. Considering the
theory in [32, 33], we calculated that

det
(
α(v),α ′(v),α ′′(v)

)
= sinhθ cosh2

θ .

1. For θ 6= 0 (θ 6= π

2 ,π, . . .), det(α(v),α ′(v),α ′′(v)) 6= 0. Then,

a. Since u0 = g(v0) and f (v0) 6= g′(v0), the germ of Φ(u,v) at x0 is locally diffeomorphic to C×R.
b. Since u0 = g(v0), f (v0) = g′(v0) and f ′(v0) 6= g

′′
(v0) the germ of Φ(u,v) at x0 is locally diffeomorphic to SW .

2. For θ = 0
(
θ = π

2 ,π, . . .
)
, det(α(v),α ′(v),α ′′(v)) = 0. Then, although u0 = g(v0), f (v0) 6= g′(v0),

det
(

α(v),α ′(v),α(3)(v)
)
= 0. Hence, the germ of Φ(u,v) at x0 isn’t locally diffeomorphic to CCR.

Case 2. Let~e3 be a timelike vector and {~e1,~e2} be spacelike vectors. The Lorentz circle with the help of these orthonormal
vectors in this space is

α(v) = sinhθ(cosv~e1 + sinv~e2)+ coshθ(~e1×~e2). (3.6)

If we examine the casual character of the defined above curve α , we get

〈α,α〉=−1.

So, we can easily say that α is a timelike vector and α ∈ H2
0 . If we take the derivative of the equation (3.6) with respect to v,

we have

α
′
(v) = sinhθ(−sinv~e1 + cosv~e2). (3.7)

The norm of the equation (3.7) is ∥∥∥α
′
(v)
∥∥∥= sinhθ .

Thus, the unit tangent vector of α(v) is obtained as follows

T (v) =
α
′
(v)∥∥α
′
(v)
∥∥ =−sinv~e1 + cosv~e2.

Examining the casual character of the tangent vector, yields

〈T,T 〉= 1.
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Taking cross product the timelike curve α(v) and the spacelike tangent vector T (v), provides

S(v) = α(v)×T (v) = coshθ(cosv~e1 + sinv~e2)− sinhθ~e3

and we obtain the casual character of S is spacelike as

〈S,S〉= 1.

Hence, the Sabban frame {α(v),T (v),S(v)} is obtained on H2
0 . Moreover, the Darboux vector of the α(v) is the vector that

determines the constant direction as

ω = coshθα(v)+ sinhθS(v).

If the necessary calculations are made here, we can easily see the timelike Darboux vector as

〈ω,ω〉=−1.

With the same method as above, theorems and corollaries given in Case 1 can also be given for this case and other cases.

Case 3. Let~e3 and~e1 be a spacelike vectors and~e2 be timelike vector. With the help of these orthonormal vectors, we get the
Lorentz circle as

α(v) = cosθ(coshv~e1 + sinhv~e2)+ sinθ(~e1×~e2). (3.8)

Examining the casual character of the curve α , we get it as spacelike

〈α,α〉= 1.

Taking the derivative of the equation (3.8) with respect to v, gives

α
′
(v) = cosθ(sinhv~e1 + coshv~e2).

The unit tangent vector of α(v) is obtained

T (v) = sinhv~e1 + coshv~e2.

If we examine the casual character of the tangent vector, we have that it is a timelike vector. If we cross product the spacelike
curve α(v) and the timelike tangent vector T (v), one has

S(v) = sinθ(−coshv~e1 + sinhv~e2)− cosθ~e3

and we obtain the casual character of S vector is spacelike. Thus, the Sabban frame {α(v),T (v),S(v)} is obtained on S2
1. So,

from here we can say that if S and~e3 span the spacelike sub-vector space, there is a single non-negative real number θ ≥ 0
such that 〈S,~e3〉= cosθ .

Case 4. Let~e3 and~e2 be a spacelike vectors and~e1 be timelike vector. Then the Lorentz circle is

α(v) = cosθ(sinhv~e1 + coshv~e2)+ sinθ(~e1×~e2).

If we examine the casual character of the defined above α curve, we get it spacelike. The unit tangent vector of α(v) is
obtained as follows

T (v) = coshv~e1 + sinhv~e2.

If we cross product the spacelike curve α(v) and the timelike tangent vector T (v), we get

S(v) = sinθ(−sinhv~e1 + coshv~e2)− cosθ~e3

and we obtain the casual character of S vector is spacelike. Thus, the Sabban frame {α(v),T (v),S(v)} is obtained on S2
1. So,

from here we can say that if S and~e3 span the spacelike sub-vector space, there is a single non-negative real number θ ≥ 0
such that 〈S,~e3〉= cosθ .
Given any direction, the equations and figures of the associated constant angle surfaces are discussed in the examples below.
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Example 3.7. We consider the equation of the constant angle surface with the axis

k =~e3 =

(
1√
2
,

1√
2
,

2√
2

)
and draw its graph.

~e1 = (1,1,1) , ~e2 =

(
1√
2
,− 1√

2
,0
)
.

Note that~e3 is a timelike vector,~e1 is a spacelike vector, and~e2 is a spacelike vector and~e1,~e2,~e3 are the orthonormal vectors.
Then, for θ = ln2 the spherical circle α(v) is obtained as follows

α(v) =
(

5
4

cosv+
5

4
√

2
sinv− 3

4
√

2
,

5
4

cosv− 5
4
√

2
sinv− 3

4
√

2
,

5
4

cosv− 6
4
√

2

)
.

For the functions f (v) = sinv and g(v) = cosv, if the necessary calculations are made in equation (3.3), the equation of the
spacelike constant angle ruled surface can be easily written as

Φ(u,v) = (Φ1,Φ2,Φ3)

where

Φ1(u,v) =
5v+3cosv

4
√

2
+

5
4

ucosv+
5

4
√

2
usinv− 3

4
√

2
u,

Φ2(u,v) = −5v−3cosv
4
√

2
+

5
4

ucosv− 5
4
√

2
usinv− 3

4
√

2
u,

Φ3(u,v) =
3cosv
2
√

2
+

5
4

ucosv− 6
4
√

2
u.

If we calculate the singular points for this surface according to Theorem 3.6, we can write that

det
(
α(v),α ′(v),α ′′(v)

)
6= 0 for θ 6= 0

(
θ 6= π

2
,π, . . .

)
.

a. For f (v0) = sinv0, g′(v0) =−sinv0,

sinv0 6=−sinv0

and

v0 6= 0,π,2π,3π, . . . ,kπ for k ∈ Z.

Since u0 = g(v0), we can say that all points as (u0,v0) of Φ(u,v) satisfying the following condition are locally
diffeomorphic to C×R

u0 = cosv0 for v0 6= 0,π,2π,3π, . . . ,kπ for k ∈ Z.

b. For f ′(v) = cosv, g′(v) =−sinv, g
′′
(v) =−cosv,

f (v0) = sinv,

g′(v0) = −sinv.

From the equality of the above equations, we obtain that

v0 = 0,π,2π,3π, . . . ,kπ for k ∈ Z.

Considering the following equations,

f ′(v0) = cosv,

g
′′
(v0) = −cosv,

we have

f ′(v0) 6= g
′′
(v0) for v0 6=

π

2
,

3π

2
,

5π

2
, . . . ,

kπ

2
for k = 2n+1, n ∈ Z.

We obtain the other singular point as follows

u0 = g(v0) = g
(

kπ

2

)
= 0 for k = 2n+1, n ∈ Z.

So, the point Φ(u0,v0) = Φ
(
0, kπ

2

)
is locally diffeomorphic to SW. Also, according to Theorem 3.6, we know that the

germ of Φ(u,v) isn’t locally diffeomorphic to CCR. So, we give the figure of the spacelike constant angle ruled surface
in Figure 3.1 as,
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Figure 3.1: Spacelike constant angle ruled surface for ln2

Example 3.8. We consider the equation of the constant angle surface with the axis

k =~e3 =

(√
3

2
,

√
3

3
,

√
3

6

)

and

~e1 =

(
2√
131

,
3√
131

,
12√
131

)
, ~e2 =

(
− 7
√

3
2
√

131
,

17
√

3
3
√

131
,

5
√

3
6
√

131

)
.

Note that~e3 is a spacelike vector,~e1 is a timelike vector,~e2 is a spacelike vector and~e1,~e2,~e3 are the orthonormal vectors. In
this case, for θ = Π

4 the spherical circle α(v) is obtained as follows

α(v) =

(
2sinhv√

262
− 7
√

3coshv
2
√

262
+

√
3

2
√

2
,

3sinhv√
262

+
17
√

3coshv
3
√

262
+

√
3

3
√

2
,

12sinhv√
262

+
5
√

3coshv
6
√

262
+

√
3

6
√

2

)
.

For the functions f (v) = coshv and g(v) = sinhv, if the necessary calculations are made, the equation of the timelike constant
angle ruled surface can be written as

Φ(u,v) = (Φ1,Φ2,Φ3)

where

Φ1(u,v) =
1

524

(
2
√

262cosh2v+131
√

6sinhv−7

√
393
2

sinh2v

)
+

2usinhv√
262

− 7
√

3ucoshv
2
√

262
+

√
3u

2
√

2
,

Φ2(u,v) =
3cosh2v
2
√

262
+

sinhv√
6

+
17sinh2v

2
√

786
+

3usinhv√
262

+
17
√

3ucoshv
3
√

262
+

√
3u

3
√

2
,

Φ3(u,v) = 3

√
2

131
cosh2v+

sinhv
2
√

6
+

5sinh2v
4
√

786
+

12usinhv√
262

+
5
√

3ucoshv
6
√

262
+

√
3u

6
√

2
.

So, we give the figure of the timelike constant angle ruled surface for θ = Π

4 in Figure 3.2 as,



Fundamental Journal of Mathematics and Applications 87

Figure 3.2: Timelike constant angle ruled surface for θ = Π

4

4. Conclusion

In this paper, constant angle surfaces with respect to any direction are obtained and their characterizations are given in E3
1. The

constant angle surface mentioned here is the developable ruled surface whose direction is the spherical circle in Minkowski
space. It is also clear that the curves on this surface are isophote curves. This curve has many applications in physics, especially
optics. Finally, the topics discussed in this article are expressed with some illustrated examples to support the theory of the
article.
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[10] F. Güler, G. Şaffak, E. Kasap, Timelike constant angle surfaces in Minkowski space R3
1, Int. J. Contemp. Math. Sciences, 6(44) (2011), 2189-2200.



88 Fundamental Journal of Mathematics and Applications
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