http://communications.science.ankara.edu.tr
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 72, Number 4, Pages 1126-1140 (2023)
DOI:10.31801/cfsuasmas. 1230703
ISSN 1303-5991 E-ISSN 2618-6470
Research Article; Received: January 6, 2023; Accepted: September 16, 2023

SOME BOUNDS FOR THE k-GENERALIZED DIGAMMA FUNCTION

Hesham MOUSTAFA ${ }^{1}$, Mansour MAHMOUD ${ }^{2}$ and Ahmed TALAT ${ }^{3}$
${ }^{1}$ Mathematics Department, Mansoura University, Mansoura 35516, EGYPT
${ }^{2}$ Mathematics Department, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, SAUDI ARABIA
${ }^{3}$ Mathematics and Computer Sciences Department, Port Said University, Port Said, EGYPT

Abstract

We presented some monotonicity properties for the k-generalized digamma function $\psi_{k}(h)$ and we established some new bounds for $\psi_{k}^{(s)}(h), s \in$ $\mathbb{N} \cup\{0\}$, which refine recent results.

1. Introduction

The ordinary Gamma function is given by [1]:

$$
\Gamma(h)=\lim _{s \rightarrow \infty} \frac{s!s^{h-1}}{h(h+1)(h+2) \cdots(h+(s-1))}, \quad h>0
$$

was discovered by Euler when he generalized the factorial function to non integer values. The digamma function is the logarithmic derivative of the ordinary gamma function and is given by 1]:

$$
\psi(1+h)=-\gamma+\sum_{s=1}^{\infty} \frac{h}{s(h+s)}, \quad h>-1
$$

where $\gamma=\lim _{m \rightarrow \infty}\left(\sum_{s=1}^{m} \frac{1}{s}-\log m\right) \simeq 0.577$ is the Euler-Mascheroni constant. In 2006, Kirchhoff applied the polygamma functions in the field of physics [3] and many series involving polygamma functions appeared in Feynman calculations 8]. In 2021, Wilkins and Hromadka [16] use the digamma function, as well as new

[^0]variants of the digamma function, as a new family of basis functions in mesh-free numerical methods for solving partial differential equations. polygamma functions are used to approximate the values of many special functions and have many applications in physics, statistics and applied mathematics 14 .

Many mathematicians studied the completely monotonic (CM) of some functions including the digamma function to deduce some of its bounds. An infinitely differentiable function $L(h)$ on \mathbb{R}^{+}is CM if $(-1)^{s} L^{(s)}(h) \geq 0$ for $s \in \mathbb{N} \cup\{0\}$. A theorem 15, Theorem 12b] stated the sufficient condition for $L(h)$ being CM on \mathbb{R}^{+}as:

$$
L(h)=\int_{0}^{\infty} e^{-h y} d v(y)
$$

where $v(y)$ is non-decreasing and the integral converges for $h \in \mathbb{R}^{+}$.
In 2006, Muqattash and Yahdi 10 presented the following inequality:

$$
\begin{equation*}
\ln h<\psi(1+h)<\ln (1+h), \quad h \in \mathbb{R}^{+} \tag{1}
\end{equation*}
$$

In 2011, Batir 2] presented the following inequalities:

$$
\begin{array}{cl}
\ln \left(h^{2}+h+e^{-2 \gamma}\right) \leq 2 \psi(h+1)<\ln \left(h^{2}+h+\frac{1}{3}\right), & h \in[0, \infty) \\
\ln \left(\frac{2 h+2}{e^{\frac{2}{h+1}}-1}\right)<2 \psi(h+1) \leq \ln \left(\frac{2 h+\left(e^{2}-1\right) e^{-2 \gamma}}{e^{\frac{2}{1+h}}-1}\right), & h \in[0, \infty) \tag{3}
\end{array}
$$

and

$$
\begin{equation*}
\left(\frac{1+2 h}{2}\right) e^{-2 \psi(1+h)}<\psi^{\prime}(1+h)<\left(\frac{\pi^{2} e^{-2 \gamma}+6 h}{6}\right) e^{-2 \psi(h+1)}, \quad h \in(0, \infty) \tag{4}
\end{equation*}
$$

In 2014, Guo and Qi 5 refined the inequality (1) by

$$
\begin{equation*}
\ln (h+1 / 2)<\psi(1+h)<\ln \left(e^{-\gamma}+h\right), \quad h \in \mathbb{R}^{+} \tag{5}
\end{equation*}
$$

Diaz and Pariguan [4] presented the k-generalized gamma function as:

$$
\Gamma_{k}(h)=\lim _{s \rightarrow \infty} \frac{s!k^{s}(s k)^{\frac{h}{k}-1}}{h(k+h)(2 k+h) \cdots((s-1) k+h)}, \quad k, h \in \mathbb{R}^{+}
$$

Mansour 7] determined the Γ_{k} by a combination of some functional equations. The k-analogue of the digamma function is introduced by 11

$$
\psi_{k}(h)=\frac{-1}{k}(\gamma-\ln k)-1 / h-\sum_{s=1}^{\infty}\left(\frac{1}{s k+h}-\frac{1}{s k}\right), \quad k, h \in \mathbb{R}^{+}
$$

and it has the following relations for $h, k \in \mathbb{R}^{+}$and $s \in \mathbb{N} \cup\{0\}$

$$
\begin{equation*}
k \psi_{k}(h)-\psi\left(\frac{h}{k}\right)=\ln k, \quad \psi_{k}^{(s)}(k+h)=\frac{(-1)^{s} s!}{h^{s+1}}+\psi_{k}^{(s)}(h) \text { and } \psi_{k}^{\prime}(k)=\frac{\pi^{2}}{6 k^{2}} \tag{6}
\end{equation*}
$$

In 2018, Nantomah, Nisar and Gehlot 12 introduced the following integral formulas:

$$
\begin{equation*}
\psi_{k}(h)=\int_{0}^{\infty}\left(\frac{2 e^{-y}-e^{-k y}}{k y}-\frac{e^{-h y}}{1-e^{-k y}}\right) d y, \quad h, k>0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{k}^{(s)}(h)=(-1)^{s+1} \int_{0}^{\infty} y^{s}\left(\frac{e^{-h y}}{1-e^{-k y}}\right) d y, \quad h, k>0 ; s \in \mathbb{N} \tag{8}
\end{equation*}
$$

Yin, Huag, Song and Dou [19] deduced the following inequality:

$$
\begin{equation*}
0 \leq \psi_{k}^{\prime}(h)-\frac{1}{k h} \leq \frac{1}{h^{2}}, \quad h, k \in \mathbb{R}^{+} \tag{9}
\end{equation*}
$$

In 2020, Yildrim 17 deduced the following inequality:

$$
\begin{equation*}
-\frac{k}{12 h^{2}}<\psi_{k}(h+k)-\frac{1}{k} \ln h-\frac{1}{2 h}<0, \quad h, k \in \mathbb{R}^{+} . \tag{10}
\end{equation*}
$$

In 2021, Moustafa, Almuashi and Mahmoud (9] presented the following asymptotic formulas for $k>0$:

$$
\begin{equation*}
\psi_{k}(h) \sim \frac{1}{k} \ln h-\frac{1}{2 h}-\sum_{m=1}^{\infty} \frac{k^{2 m-1} B_{2 m}}{(2 m) h^{2 m}}, \quad h \rightarrow \infty \tag{11}
\end{equation*}
$$

and for $s \in \mathbb{N}$,
$\psi_{k}^{(s)}(h) \sim \frac{(-1)^{s-1}(s-1)!}{k h^{s}}-\frac{(-1)^{s} s!}{2 h^{s+1}}+(-1)^{s+1} \sum_{m=1}^{\infty} \frac{(s+2 m-1)!k^{2 m-1} B_{2 m}}{(2 m)!h^{2 m+s}}, h \rightarrow \infty$
and they also deduced the inequalities:
$\frac{1}{k} \ln h+\frac{1}{h}-\frac{k}{2} \psi_{k}^{\prime}(h)<\psi_{k}(k+h)<\frac{\ln h}{k}+1 / h-\frac{k}{2} \psi_{k}^{\prime}\left(\frac{k+3 h}{3}\right), \quad h, k>0$
where the upper bound of $\sqrt[13]{ }$ refines upper bound of 10 for all $h>\frac{k}{3}$, and for $s \in \mathbb{N}, \quad h, k \in \mathbb{R}^{+}$
$\frac{(s-1)!}{k h^{s}}+\frac{(-1)^{s} k}{2} \psi_{k}^{(s+1)}\left(h+\frac{k}{3}\right)<(-1)^{s+1} \psi_{k}^{(s)}(h)<\frac{(s-1)!}{k h^{s}}+\frac{(-1)^{s} k}{2} \psi_{k}^{(s+1)}(h)$.
Notes: All of the k-digamma function results allow us to make new conclusions about the classical digamma function or new proofs for some of its established conclusions when k tends to one, and likewise for the k-gamma function [6, 18, 20]. For extra information about Γ_{k} and ψ_{k} functions, see $[4,7,9,19$ and the related references therein.

We will introduce two CM functions involving $\psi_{k}(h)$ and $\psi_{k}^{\prime}(h)$ functions. Some new bounds for $\psi_{k}^{(s)}(h)$ functions $(s \in \mathbb{N} \cup\{0\})$ will be deduced, which generalize and refine some recent results. Also, we will study the monotonicity of two functions
containing the k-generalized digamma function and consequently, we will deduce some new best bounds for $\psi_{k}^{(s)}(h)$ functions $(s \in \mathbb{N} \cup\{0\})$.

2. Auxiliary Results

In 13], the following corollary was introduced:
Corollary 1. Assume that S is a function defined on $h>h_{0}, h_{0} \in \mathbb{R}$ with $\lim _{h \rightarrow \infty} S(h)=0$. Then for $\omega \in \mathbb{R}^{+}, S(h)>0$, if $S(h+\omega)<S(h)$ for $h>h_{0}$ and $S(h)<0$, if $S(h+\omega)>S(h)$ for $h>h_{0}$.

Using the monotonicity properties, we can conclude the following results:

Lemma 1.

$$
\begin{gather*}
\ln \left(\frac{h^{2}+3 h+3}{3}\right)<h, \quad \forall h \in \mathbb{R}^{+} \tag{15}\\
\ln \left(\frac{1}{e^{-\gamma}+h}+1\right)<\frac{1}{1+h}, \quad \forall h>\frac{e^{2 \gamma}-e^{\gamma}-1}{e^{\gamma}\left(2-e^{\gamma}\right)} \simeq 1.00313 \tag{16}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{2}{1+h}<\ln \left(\frac{2(1+h)}{h^{2}+h+e^{-2 \gamma}}+1\right), \quad \forall h>\frac{1}{\sqrt{e^{2 \gamma}\left(-3+e^{2 \gamma}\right)}}-1 \simeq 0.352938 \tag{17}
\end{equation*}
$$

Proof. Let the function $L(h)=\ln \left(\frac{h^{2}+3 h+3}{3}\right)-h$ and then $L^{\prime}(h)=\frac{-h(1+h)}{3+3 h+h^{2}}<0$ for all $h>0$ and then $L(h)$ is decreasing on $(0, \infty)$ with $\lim _{h \rightarrow 0^{+}} L_{k}(h)=0$ and then $L_{k}(h)<0$ for all $h>0$ which proves 15. Secondly, we let the function $C(h)=\ln \left(\frac{1}{e^{-\gamma}+h}+1\right)-\frac{1}{1+h}$. Then
$C^{\prime}(h)=\frac{1+e^{\gamma}-e^{2 \gamma}+e^{\gamma}\left(2-e^{\gamma}\right) h}{(1+h)^{2}\left(1+e^{\gamma} h\right)\left(1+e^{\gamma}(1+h)\right)}>0, h>h_{1}=\frac{-1-e^{\gamma}+e^{2 \gamma}}{e^{\gamma}\left(2-e^{\gamma}\right)} \simeq 1.00313$.
Then $C(h)$ is increasing on $\left(h_{1}, \infty\right)$ with $\lim _{h \rightarrow \infty} C(h)=0$ and this proves 16). By the same way, we obtain 17 .

Lemma 2. For $k \in \mathbb{R}^{+}$, we have

$$
\begin{equation*}
k \psi_{k}(k+h)<\gamma+\ln \left(\frac{3}{\pi^{2}}\right)+\ln (2 h+k), \quad \forall h>\frac{k}{2} \tag{18}
\end{equation*}
$$

Proof. Let the function $N_{k}(h)=\ln \left(\frac{3}{\pi^{2}}\right)+\gamma+\ln (2 h+k)-k \psi_{k}(k+h)$. Then $N_{k}^{\prime}(h)=\frac{2}{k+2 h}-k \psi_{k}^{\prime}(k+h)$ and by using (6), we obtain

$$
N_{k}^{\prime}(h)-N_{k}^{\prime}(k+h)=\frac{k^{3}}{(3 k+2 h)(k+2 h)(k+h)^{2}}>0, \quad h, k>0
$$

Using the asymptotic formula $\sqrt{12}$, we have $\lim _{h \rightarrow \infty} N_{k}^{\prime}(h)=0$ and then Corollary 1 gives us that $N_{k}^{\prime}(h)>0$ for $h>0$ and $k>0$. Then, we have $N_{k}(h)$ is increasing on \mathbb{R}^{+}and by using (6) again, we get $N_{k}(h)>N_{k}\left(\frac{k}{2}\right) \simeq 0.0430254>0$ for all $h>\frac{k}{2}$ and $k>0$.

Lemma 3. For $k>0$, we have

$$
\begin{equation*}
e^{k \psi_{k}(h+2 k)}<e^{k \psi_{k}(h+k)}+k, \quad \forall h>0 . \tag{19}
\end{equation*}
$$

Proof. Set the function $B_{k}(h)=e^{k \psi_{k}(h+2 k)}-e^{k \psi_{k}(h+k)}-k$. Then by using (6), we get

$$
\frac{B_{k}(h+k)-B_{k}(h)}{e^{k \psi_{k}(h+k)}}=e^{\frac{k}{h+k}+\frac{k}{h+2 k}}-2 e^{\frac{k}{h+k}}+1 \doteqdot D_{k}(h)
$$

Then

$$
\frac{(h+k)^{2}}{k e^{\frac{k}{h+k}}} D_{k}^{\prime}(h)=2-\frac{\left(5 k^{2}+6 k h+2 h^{2}\right) e^{\frac{k}{h+2 k}}}{(2 k+h)^{2}} \doteqdot f_{k}(h) .
$$

Then $f_{k}^{\prime}(h)=\frac{k^{3} e^{\frac{k}{h+2 k}}}{(2 k+h)^{4}}>0$ for all $h, k>0$ and hence $f_{k}(h)$ is increasing on \mathbb{R}^{+} with $\lim _{h \rightarrow \infty} f_{k}(h)=0$. Then $f_{k}(h)<0$ for $h, k>0$ and then $D_{k}(h)$ is decreasing on \mathbb{R}^{+}with $\lim _{h \rightarrow \infty} D_{k}(h)=0$. Then $B_{k}(h+k)-B_{k}(h)>0$ for $h, k>0$. Using the asymptotic formula $\sqrt{11}$, we have $\lim _{h \rightarrow \infty} B_{k}(h)=0$ and then Corollary 1 gives us that $B_{k}(h)<0$ for all $h, k>0$.

Lemma 4. For $k>0$, we have

$$
\begin{equation*}
e^{2 k \psi_{k}(h+2 k)}>e^{2 k \psi_{k}(h+k)}+2 k(h+k), \quad \forall h>0 . \tag{20}
\end{equation*}
$$

Proof. Set the function $m_{k}(h)=e^{2 k \psi_{k}(h+2 k)}-e^{2 k \psi_{k}(h+k)}-2 k(h+k)$. Then

$$
m_{k}(h+k)-m_{k}(h)=e^{2 k \psi_{k}(h+3 k)}-2 e^{2 k \psi_{k}(h+2 k)}+e^{2 k \psi_{k}(h+k)}-2 k^{2} \doteqdot t_{k}(h) .
$$

Then by using (6), we get

$$
\frac{t_{k}(h+k)-t_{k}(h)}{e^{2 k \psi_{k}(h+k)}}=e^{\frac{2 k}{h+k}+\frac{2 k}{h+2 k}+\frac{2 k}{h+3 k}}-3 e^{\frac{2 k}{h+k}+\frac{2 k}{h+2 k}}+3 e^{\frac{2 k}{h+k}}-1 \doteqdot s_{k}(h)
$$

Then

$$
\begin{aligned}
\frac{(h+k)^{2} s_{k}^{\prime}(h)}{2 k e^{\frac{2 k}{h+k}}} & =-\frac{\left(49 k^{4}+96 k^{3} h+72 k^{2} h^{2}+24 k h^{3}+3 h^{4}\right) e^{\frac{2 k}{h+2 k}+\frac{2 k}{h+3 k}}}{(2 k+h)^{2}(3 k+h)^{2}} \\
& +\frac{3\left(5 k^{2}+6 k h+2 h^{2}\right)}{(2 k+h)^{2} e^{\frac{-2 k}{h+2 k}}}-3 \doteqdot u_{k}(h)
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{(2 k+h)^{4} u_{k}^{\prime}(h)}{2 k\left(3 k^{2}+3 k h+h^{2}\right) e^{\frac{2 k}{h+2 k}}} & =\frac{379 k^{6}+959 k^{5} h+1049 k^{4} h^{2}+626 k^{3} h^{3}+213 k^{2} h^{4}}{\left(3 k^{2}+3 k h+h^{2}\right)(3 k+h)^{4} e^{\frac{-2 k}{h+3 k}}} \\
& +\frac{39 k h^{5}+3 h^{6}}{\left(3 k^{2}+3 k h+h^{2}\right)(3 k+h)^{4} e^{\frac{-2 k}{h+3 k}}-3 \doteqdot w_{k}(h)}
\end{aligned}
$$

Then
$w_{k}^{\prime}(h)=\frac{-2 k^{5}\left(129 k^{4}+240 k^{3} h+172 k^{2} h^{2}+56 k h^{3}+7 h^{4}\right) e^{\frac{2 k}{h+3 k}}}{(3 k+h)^{6}\left(3 k^{2}+3 k h+h^{2}\right)^{2}}<0, \quad h, k>0$ and hence $w_{k}(h)$ is decreasing on $(0, \infty)$ with $\lim _{h \rightarrow \infty} w_{k}(h)=0$. Then $w_{k}(h)>0$ for $h, k \in \mathbb{R}^{+}$and then $u_{k}(h)$ is increasing on \mathbb{R}^{+}with $\lim _{h \rightarrow \infty} u_{k}(h)=0$. Then $s_{k}(h)$ is decreasing on \mathbb{R}^{+}with $\lim _{h \rightarrow \infty} s_{k}(h)=0$. Then $t_{k}(h+k)-t_{k}(h)>0$ for $h, k \in \mathbb{R}^{+}$. Using the asymptotic formula 41 , we have $\lim _{h \rightarrow \infty} t_{k}(h)=0$ and then Corollary 1 gives us that $t_{k}(h)<0$ for all $h, k \in \mathbb{R}^{+}$. Then $m_{k}(h+k)-m_{k}(h)<0$ for $h, k \in \mathbb{R}^{+}$ with $\lim _{h \rightarrow \infty} m_{k}(h)=0$ and then $m_{k}(h)>0$ for all $h, k \in \mathbb{R}^{+}$.

3. Some CM Monotonic Functions

Theorem 1. Assume that $h, k>0$. Then the function

$$
U_{\beta, k}(h)=\psi_{k}^{\prime}(h)-\frac{2}{k h}+\frac{2}{k^{2}} \ln \left(1+\frac{\beta k}{h}\right)
$$

is $C M$ on \mathbb{R}^{+}if and only if $\beta \geq \frac{1}{2}$.
Proof.

$$
U_{\beta, k}^{\prime}(h)=\psi_{k}^{\prime \prime}(h)+\frac{2}{k h^{2}}+\frac{2}{k^{2}}\left(\frac{1}{h+\beta k}-\frac{1}{h}\right)
$$

and by using 8 and the identity $\frac{1}{h^{l}}=\frac{1}{(l-1)!} \int_{0}^{\infty} y^{l-1} e^{-h y} d y$ for $h>0$, (see 1 we have

$$
U_{\beta, k}^{\prime}(h)=\int_{0}^{\infty} \frac{2 e^{-h y}}{k^{2}\left(e^{k y}-1\right)} \phi_{k}(y) d y
$$

where

$$
\phi_{k}(y)=\left(e^{k y}-1\right)\left(e^{-\beta k y}-1\right)+k y\left(e^{k y}-1\right)-\frac{(k y)^{2}}{2} e^{k y} .
$$

Let $\beta \geq \frac{1}{2}$. Then

$$
\begin{aligned}
e^{\frac{k y}{2}} \phi_{k}(y) & \leq e^{k y}-e^{\frac{3 k y}{2}}+e^{\frac{k y}{2}}-1+k y\left(e^{\frac{3 k y}{2}}-e^{\frac{k y}{2}}\right)-1 / 2(k y)^{2} e^{\frac{3 k y}{2}} \\
& =\sum_{m=1}^{\infty} \frac{n(m)}{2^{m+2}(m+2)!}(k y)^{m+2}
\end{aligned}
$$

where

$$
\begin{aligned}
n(m) & =2^{m+2}-3^{m+2}+1+2(m+2)\left(3^{m+1}-1\right)-2(m+2)(m+1) 3^{m} \\
& =-2(m+2)\left((m-1) 2^{m}+1\right)-\sum_{s=1}^{m} \frac{(m+2)(m+1)(m-s)}{(m+2-s)}\binom{m}{s} 2^{m+1-s} \\
& <0
\end{aligned}
$$

and then $-U_{\beta, k}^{\prime}(h)$ is CM on \mathbb{R}^{+}and hence $U_{\beta, k}(h)$ is decreasing on \mathbb{R}^{+}. Using the asymptotic formula 412 , we have $\lim _{h \rightarrow \infty} U_{\beta, k}(h)=0$ and then $U_{\beta, k}(h)>0$. Then $U_{\beta, k}(h)$ is CM on \mathbb{R}^{+}for $\beta \geq \frac{1}{2}$. On the other side, if $U_{\beta, k}(h)$ is CM, then by using again the asymptotic formula 12 , we get $\lim _{h \rightarrow \infty} h U_{\beta, k}(h)=\frac{2 \beta-1}{k} \geq 0$ and hence $\beta \geq \frac{1}{2}$.

Theorem 2. Assume that $h, k>0$ and $\lambda \in \mathbb{R}$. Then the function

$$
F_{\lambda, k}(h)=\psi_{k}(h+k)-\frac{1}{k} \ln (h+\lambda k)
$$

is $C M$ on \mathbb{R}^{+}if and only if $\lambda \leq \frac{1}{2}$. Also, the function $-F_{\lambda, k}(h)$ is $C M$ on \mathbb{R}^{+}if $\lambda \geq 1$.

Proof.

$$
F_{\lambda, k}^{\prime}(h)=-\frac{1}{k(h+\lambda k)}+\psi_{k}^{\prime}(h+k)=\int_{0}^{\infty} \frac{e^{-h y}}{k\left(e^{k y}-1\right)} \varphi_{k}(y) d y
$$

where

$$
\varphi_{k}(y)=k y-e^{-\lambda k y}\left(e^{k y}-1\right)
$$

Let $\lambda \leq \frac{1}{2}$, then we obtain

$$
\begin{aligned}
e^{\frac{k y}{2}} \varphi_{k}(y) & \leq 1+k y e^{\frac{k y}{2}}-e^{k y} \\
& =-\sum_{l=2}^{\infty} \frac{\left(2^{l}-l-1\right)(k y)^{1+l}}{2^{l}(1+l)!} \\
& =-\sum_{l=2}^{\infty} \frac{\left(\sum_{s=2}^{l}\binom{l}{s}\right)(k y)^{1+l}}{2^{l}(1+l)!}<0
\end{aligned}
$$

and consequently, $-F_{\lambda, k}^{\prime}(h)$ is CM on \mathbb{R}^{+}for $\lambda \leq \frac{1}{2}$ and hence $F_{\lambda, k}(h)$ is decreasing on \mathbb{R}^{+}. Using the asymptotic formula 11, we obtain $\lim _{h \rightarrow \infty} F_{\lambda, k}(h)=0$ and then $F_{\lambda, k}(h)>0$. Hence $F_{\lambda, k}(h)$ is CM on \mathbb{R}^{+}for $\lambda \leq \frac{1}{2}$. On the other hand, if $F_{\lambda, k}(h)$ is CM, then by using again the asymptotic formula 11, we obtain $\lim _{h \rightarrow \infty} h F_{\lambda, k}(h)=$ $\frac{1}{2}-\lambda \geq 0$ and then $\lambda \leq \frac{1}{2}$. Now for $\lambda \geq 1$, we have $e^{k y} \varphi_{k}(y) \geq \sum_{l=1}^{\infty} \frac{l(k y)^{l+1}}{(l+1)!}>0$
and consequently, $F_{\lambda, k}^{\prime}(h)$ is CM on \mathbb{R}^{+}for $\lambda \geq 1$ and hence $F_{\lambda, k}(h)$ is increasing on \mathbb{R}^{+}with $\lim _{h \rightarrow \infty} F_{\lambda, k}(h)=0$ and then $F_{\lambda, k}(h)<0$. Then $-F_{\lambda, k}(h)$ is CM on \mathbb{R}^{+} for $\lambda \geq 1$.

4. Some Inequalities for the ψ_{k} and $\psi_{k}^{(s)}$ Functions

Let us mention some important consequences of Theorems 1 and 2 .
Corollary 2. Let $a \in(0, \infty)$. Then we have

$$
\begin{equation*}
\frac{1}{k h}-\frac{1}{k^{2}} \ln \left(\frac{a k+h}{h}\right)<\frac{\psi_{k}^{\prime}(h)}{2}, \quad k, h \in \mathbb{R}^{+} \tag{21}
\end{equation*}
$$

with the best possible constant $a=\frac{1}{2}$.
Proof. The inequality 21 at $a=\frac{1}{2}$ follows from $U_{\frac{1}{2}, k}(h)>0$ in Theorem 1 and the inequality 21 is equivalent that $h U_{a, k}(h)>0$ which yields $a \geq \frac{1}{2}$ as stated when we proved Theorem 1. Then $a=\frac{1}{2}$ is the best in 21, since the logarithmic function is strictly increasing on \mathbb{R}^{+}.
Remark 1. Using the identity $\ln (1+h)<h$ for all $h>-1$, (see [1]) yields the lower bound of (21) refines the lower bound of (9) for all $h, k>0$.
Corollary 3. Let $a \in(0, \infty)$ and $s=1,2,3, \cdots$. Then we have

$$
\begin{equation*}
\frac{2 s!}{k h^{s+1}}+\frac{2(s-1)!}{k^{2}}\left(\frac{1}{(h+a k)^{s}}-\frac{1}{h^{s}}\right)<(-1)^{s} \psi_{k}^{(s+1)}(h), \quad h, k \in(0, \infty) \tag{22}
\end{equation*}
$$

with the best possible constant $a=\frac{1}{2}$.
Proof. The inequality 22 at $a=\frac{1}{2}$ follows from $(-1)^{s} U_{\frac{1}{2}, k}^{(s)}(h)>0$ in Theorem 1 and the inequality 22 is equivalent that $h^{s+1}(-1)^{s} U_{a, k}^{(s)}(h)>0$. Using the asymptotic expansion 12), we have $\lim _{h \rightarrow \infty} h^{s+1}(-1)^{s} U_{a, k}^{(s)}(h)=\frac{s!}{k}(2 a-1) \geq 0$ and hence $a \geq \frac{1}{2}$. Using the decreasing property of the function $\frac{1}{h^{s}}$ on $(0, \infty)$ for $s=1,2,3, \cdots$, we deduce that $a=\frac{1}{2}$ is the best possible constant in 22 .
Corollary 4. Let $a \in[0, \infty)$. Then we have

$$
\begin{equation*}
\ln (h+a k)<k \psi_{k}(k+h)<\ln (k+h), \quad k, h \in \mathbb{R}^{+} \tag{23}
\end{equation*}
$$

with the best possible constant $a=\frac{1}{2}$.
Proof. The inequality (23) at $a=\frac{1}{2}$ is deduced from $F_{\frac{1}{2}, k}(h)>0$ and $F_{1, k}(h)<0$ in Theorem 2 The left-hand side of 23 is equivalent that $h F_{a, k}(h)>0$ and this gives $a \leq \frac{1}{2}$ as stated when we proved Theorem 2. Then $a=\frac{1}{2}$ is the best in (23).

Remark 2. - Letting $k=1$ and $a=0$ in (23), we obtain (1).

- Using (21), we deduce that the lower bound of (23) refines the lower bound of (13) for every $k, h \in \mathbb{R}^{+}$.
Corollary 5. Let $a \in[0, \infty)$ and $s=1,2,3, \cdots$. Then we have

$$
\begin{equation*}
\frac{s!}{h^{s+1}}+\frac{(s-1)!}{k(h+k)^{s}}<(-1)^{s+1} \psi_{k}^{(s)}(h)<\frac{s!}{h^{s+1}}+\frac{(s-1)!}{k(h+a k)^{s}}, \quad h, k \in(0, \infty) \tag{24}
\end{equation*}
$$

with the best possible constant $a=\frac{1}{2}$.
Proof. The inequality 24 at $a=\frac{1}{2}$ is deduced from $(-1)^{s} F_{\frac{1}{2}, k}^{(s)}(h)>0$ and $(-1)^{s} F_{1, k}^{(s)}(h)<0$ in Theorem 2. The right-hand side of 24 is equivalent that $h^{1+s}(-1)^{s} F_{a, k}^{(s)}(h)>0$. Using the asymptotic expansion 12, we have

$$
\lim _{h \rightarrow \infty} h^{s+1}(-1)^{s} F_{a, k}^{(s)}(h)=s!\left(\frac{1}{2}-a\right) \geq 0
$$

and hence $a \leq \frac{1}{2}$. Then $a=\frac{1}{2}$ is the best possible constant in 24 .
Remark 3. Using (22), we deduce that the upper bound of (24) refines the upper bound of (14) for every $s \in \mathbb{N}$ and $h, k>0$.
Lemma 5. For $k>0$, the function

$$
\begin{equation*}
T_{k}(h)=e^{k \psi_{k}(h+k)}-h \tag{25}
\end{equation*}
$$

is strictly decreasing convex on $(-k, \infty)$ with $\lim _{h \rightarrow \infty} T_{k}(h)=\frac{k}{2}$ and $\lim _{h \rightarrow 0} T_{k}(h)=$ $k e^{-\gamma}$.

Proof. Using (6), we have $\lim _{h \rightarrow 0} T_{k}(h)=k e^{-\gamma}$. Differentiating 25 yields

$$
T_{k}^{\prime}(h)=-1+k \psi_{k}^{\prime}(h+k) e^{k \psi_{k}(k+h)}
$$

and

$$
\frac{T_{k}^{\prime \prime}(h)}{k e^{k \psi_{k}(k+h)}}=k\left[\psi_{k}^{\prime}(k+h)\right]^{2}+\psi_{k}^{\prime \prime}(k+h) \doteqdot S_{k}(h) .
$$

Applying (6), we get

$$
\frac{(k+h)^{2}}{2 k}\left[S_{k}(k+h)-S_{k}(h)\right]=-\psi_{k}^{\prime}(k+h)-\frac{2 h^{2}+4 k h+2 k^{2}-1}{2(h+k)^{2}} \doteqdot Q_{k}(h) .
$$

Applying (6) again, we get

$$
Q_{k}(k+h)=Q_{k}(h)+\frac{A_{k}(k+h)}{2(k+h)^{2}(2 k+h)^{2}},
$$

where

$$
A_{k}(h)=k^{2}+2 k h+2 h^{2}>0, \quad h, k \in \mathbb{R}^{+}
$$

and then $Q_{k}(k+h)>Q_{k}(h)$ for all $h>-k$ and by using the asymptotic formula (12), we have $\lim _{h \rightarrow \infty} Q_{k}(h)=0$ and then Corollary 1 gives us $Q_{k}(h)<0$ for every $h>-k$. Consequently, we have $S_{k}(k+h)<S_{k}(h)$ for all $h>-k$ and by using the
asymptotic expansion 12, we have $\lim _{h \rightarrow \infty} S_{k}(h)=0$ and then $T_{k}^{\prime \prime}(h)>0$ for every $h>-k$. Then $T_{k}^{\prime}(h)$ is strictly increasing on $(-k, \infty)$. By using the asymptotic formulas (11) and (12), we have

$$
\lim _{h \rightarrow \infty} T_{k}^{\prime}(h)=0 \text { and } \lim _{h \rightarrow \infty} T_{k}(h)=k / 2
$$

Then $T_{k}^{\prime}(h)<\lim _{h \rightarrow \infty} T_{k}^{\prime}(h)=0$ and this finishes the proof.
And consequently, we have the following Corollary:
Corollary 6. Set a and b be positive real numbers. Then we have

$$
\begin{equation*}
\ln (h+a k)<k \psi_{k}(h+k)<\ln (h+b k), \quad h, k \in \mathbb{R}^{+} \tag{26}
\end{equation*}
$$

where $a=\frac{1}{2}$ and $b=\frac{1}{e^{\gamma}} \simeq 0.56$ being the best.
Remark 4. - Letting $k=1$ in (26), we obtain (5).

- The upper bound of (26) refines the upper bound of (23) for all $h, k>0$.

Lemma 6. For $h \geq 0$ and $k \in \mathbb{R}^{+}$,

$$
\begin{equation*}
\ln \left(\frac{c k}{e^{\frac{k}{k+h}}-1}\right) \leq k \psi_{k}(k+h)<\ln \left(\frac{d k}{e^{\frac{k}{k+h}}-1}\right) \tag{27}
\end{equation*}
$$

where the constants $c=e^{-\gamma}(e-1) \simeq 0.965$ and $d=1$ are the best possible.
Proof. Set

$$
f_{k}(h)=T_{k}(k+h)-T_{k}(h)=-k+e^{k \psi_{k}(k+h)}\left(e^{\frac{k}{k+h}}-1\right), \quad h \geq 0 \text { and } k>0
$$

Since $T_{k}^{\prime}(h)$ is strictly increasing on $(-k, \infty)$, then $f_{k}(h)$ is strictly increasing on $[0, \infty)$ and by using (6) and the asymptotic expansion (11), we get

$$
f_{k}(0)=-k+k e^{-\gamma}(e-1) \leq-k+e^{k \psi_{k}(k+h)}\left(e^{\frac{k}{k+h}}-1\right)<\lim _{h \rightarrow \infty} f_{k}(h)=0
$$

and this gives (27).
Remark 5. Using (16), we deduce that the upper bound of (27) refines the upper bound of (26) for all $h>1.00313 k$ and $k>0$.
Lemma 7. For $h>0$ and $k>0$, we have

$$
\begin{equation*}
g e^{-k \psi_{k}(h+k)}<k \psi_{k}^{\prime}(k+h)<r e^{-k \psi_{k}(k+h)} \tag{28}
\end{equation*}
$$

where the constants $g=\frac{\pi^{2} e^{-\gamma}}{6} \simeq 0.924$ and $r=1$ are the best possible.
Proof. By using the increasing property of $T_{k}^{\prime}(h)$ on $(-k, \infty)$, we have

$$
T_{k}^{\prime}(0)=-1+k \psi_{k}^{\prime}(k) e^{k \psi_{k}(k)}<-1+k \psi_{k}^{\prime}(k+h) e^{k \psi_{k}(k+h)}<\lim _{h \rightarrow \infty} T_{k}^{\prime}(h)=0
$$

Using (6) yields

$$
\frac{\pi^{2} e^{-\gamma}}{6}<k \psi_{k}^{\prime}(k+h) e^{k \psi_{k}(k+h)}<1
$$

which finishes the proof.

Remark 6. Using (23) yields $e^{-k \psi_{k}(k+h)}<\frac{2}{2 h+k}$ for every $h, k>0$ and then the upper bound of (28) refines the upper bound of (24) at $s=1$ for all $h, k>0$.
Lemma 8. For $h>0$ and $k>0$,

$$
\begin{equation*}
1-e^{-\frac{k}{h+k}}+\frac{k^{2}}{(h+k)^{2}}<k^{2} \psi_{k}^{\prime}(h+k)<e^{\frac{k}{h+k}}-1 \tag{29}
\end{equation*}
$$

Proof. By applying the mean value theorem to T_{k} on the interval $[h, h+k]$, we obtain

$$
\frac{-T_{k}(h)+T_{k}(k+h)}{k}=T_{k}^{\prime}\left(h+\alpha_{h}\right), \quad 0<\alpha_{h}<k
$$

By using the increasing property of $T_{k}^{\prime}(h)$ on $(-k, \infty)$, we obtain

$$
T_{k}^{\prime}(h)<T_{k}^{\prime}\left(h+\alpha_{h}\right)<T_{k}^{\prime}(k+h), \quad 0<\alpha_{h}<k
$$

Combining the last two relations yields

$$
T_{k}^{\prime}(h)<\frac{-T_{k}(h)+T_{k}(k+h)}{k}<T_{k}^{\prime}(k+h)
$$

and this gives us 29).
Remark 7. Using (19), we deduce that the upper bound of (29) refines the upper bound of (28) for every $h, k \in \mathbb{R}^{+}$.

Lemma 9. For $k>0$, the function

$$
\begin{equation*}
W_{k}(h)=e^{2 k \psi_{k}(h+k)}-h^{2}-h k \tag{30}
\end{equation*}
$$

is strictly increasing concave in $(-k, \infty)$ with $\lim _{h \rightarrow \infty} W_{k}(h)=\frac{k^{2}}{3}$ and $\lim _{h \rightarrow 0} W_{k}(h)=$ $k^{2} e^{-2 \gamma}$.
Proof. Using (6), we have $\lim _{h \rightarrow 0} W_{k}(h)=k^{2} e^{-2 \gamma}$. Differentiating 30 yields

$$
\begin{gathered}
W_{k}^{\prime}(h)=-2 h-k+2 k \psi_{k}^{\prime}(h+k) e^{2 k \psi_{k}(k+h)} \\
\frac{1}{2} W_{k}^{\prime \prime}(h)=-1+k e^{2 k \psi_{k}(k+h)}\left[\psi_{k}^{\prime \prime}(k+h)+2 k\left(\psi_{k}^{\prime}(k+h)\right)^{2}\right]
\end{gathered}
$$

and
$\frac{1}{2 k e^{2 k \psi_{k}(k+h)}} W_{k}^{\prime \prime \prime}(h)=\psi_{k}^{\prime \prime \prime}(k+h)+6 k \psi_{k}^{\prime}(k+h) \psi_{k}^{\prime \prime}(k+h)+4 k^{2}\left(\psi_{k}^{\prime}(k+h)\right)^{3} \doteqdot V_{k}(h)$.
Applying (6), we get

$$
\begin{aligned}
\frac{(h+k)^{2}}{2 k}\left[V_{k}(k+h)-V_{k}(h)\right] & =-3 \psi_{k}^{\prime \prime}(k+h)+\frac{6(h+2 k)}{(h+k)^{2}} \psi_{k}^{\prime}(h+k) \\
& -6 k\left(\psi_{k}^{\prime}(h+k)\right)^{2}-\frac{11 k^{2}+12 k h+3 h^{2}}{k(h+k)^{4}} \doteqdot U_{k}(h)
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
\frac{(h+k)^{2}(h+2 k)^{2}}{6 k\left(3 k^{2}+3 k h+h^{2}\right)}\left[U_{k}(h+k)-U_{k}(h)\right] & =\psi_{k}^{\prime}(h+k) \\
& -\frac{114 k^{5}+298 k^{4} h+321 k^{3} h^{2}}{6 k(k+h)^{2}(2 k+h)^{2}\left(3 k^{2}+3 k h+h^{2}\right)} \\
& -\frac{178 k^{2} h^{3}+51 k h^{4}+6 h^{5}}{6 k(k+h)^{2}(2 k+h)^{2}\left(3 k^{2}+3 k h+h^{2}\right)} \\
& \doteqdot H_{k}(h) .
\end{aligned}
$$

And finally, we get
$H_{k}(k+h)-H_{k}(h)=-\frac{k^{4} P_{k}(k+h)}{3(k+h)^{2}(2 k+h)^{2}(3 k+h)^{2}\left(3 k^{2}+3 k h+h^{2}\right)\left(7 k^{2}+5 k h+h^{2}\right)}$
where

$$
P_{k}(h)=12 k^{4}+36 k^{3} h+46 k^{2} h^{2}+28 k h^{3}+7 h^{4}>0, \quad h, k \in \mathbb{R}^{+}
$$

and then $H_{k}(h+k)<H_{k}(h)$ for all $h>-k$ and by using the asymptotic formula (12), we have $\lim _{h \rightarrow \infty} H_{k}(h)=0$ and then Corollary 1 gives us $H_{k}(h)>0$ for every $h>$ $-k$. Consequently, we obtain $U_{k}(h+k)>U_{k}(h)$ for all $h>-k$ with $\lim _{h \rightarrow \infty} U_{k}(h)=0$ and then $U_{k}(h)<0$ for every $h>-k$ and similarly, we get $V_{k}(h)>0$ for all $h>-k$. Then $W_{k}^{\prime \prime}(h)$ is strictly increasing on $(-k, \infty)$. By using the asymptotic formulas (11) and (12), we have

$$
\lim _{h \rightarrow \infty} W_{k}^{\prime \prime}(h)=\lim _{h \rightarrow \infty} W_{k}^{\prime}(h)=0 \text { and } \lim _{h \rightarrow \infty} W_{k}(h)=\frac{k^{2}}{3} .
$$

Then $W_{k}^{\prime \prime}(h)<0$ for all $h>-k$ and then $W_{k}^{\prime}(h)$ is strictly decreasing on $(-k, \infty)$. Hence $W_{k}^{\prime}(h)>\lim _{h \rightarrow \infty} W_{k}^{\prime}(h)=0$ and this completes the proof.

And consequently, we have the following Corollary:
Corollary 7. Set $a, b \in \mathbb{R}^{+}$and $k>0$. Then we have

$$
\begin{equation*}
\frac{1}{2 k} \ln \left(h^{2}+h k+a k^{2}\right) \leq \psi_{k}(h+k)<\frac{1}{2 k} \ln \left(h^{2}+h k+b k^{2}\right), \quad h \in[0, \infty) \tag{31}
\end{equation*}
$$

where the constants $a=e^{-2 \gamma} \simeq 0.315$ and $b=\frac{1}{3}$ are the best possible.
Remark 8. - Putting $k=1$ in (31) yields (2).

- Using (15), we deduce that the upper bound of (31) refines the upper bound of (10) for $h, k>0$.
- For $k>0$, the upper and lower bounds of (31) refine the upper and lower bounds of 26. for $h>\left(\frac{\frac{1}{3}-e^{-2 \gamma}}{2 e^{-\gamma}-1}\right) k \simeq 0.147224 k$ and $h>0$ respectively.

Lemma 10. For $h \geq 0$ and $k>0$, we have

$$
\begin{equation*}
\frac{1}{2 k} \ln \left(\frac{2 h k+c k^{2}}{e^{\frac{2 k}{h+k}}-1}\right)<\psi_{k}(h+k) \leq \frac{1}{2 k} \ln \left(\frac{2 h k+d k^{2}}{e^{\frac{2 k}{h+k}}-1}\right) \tag{32}
\end{equation*}
$$

where $c=2$ and $d=e^{-2 \gamma}\left(e^{2}-1\right) \simeq 2.014$ are the best possible.
Proof. Set
$M_{k}(h)=W_{k}(k+h)-W_{k}(h)=e^{2 k \psi_{k}(k+h)}\left(e^{\frac{2 k}{h+k}}-1\right)-2 h k-2 k^{2}, \quad h \geq 0, \quad k>0$.
Since $W_{k}^{\prime}(h)$ is strictly decreasing on $(-k, \infty)$, then $M_{k}(h)$ is strictly decreasing on $[0, \infty)$ and by using (6) and the asymptotic expansion (11), we get
$M_{k}(0)=k^{2} e^{-2 \gamma}\left(e^{2}-1\right)-2 k^{2} \geq e^{2 k \psi_{k}(h+k)}\left(e^{\frac{2 k}{h+k}}-1\right)-2 h k-2 k^{2}>\lim _{h \rightarrow \infty} M_{k}(h)=0$ and this gives 32 .

Remark 9. - Letting $k=1$ in (32), we obtain (3).

- Using (17), we deduce that the lower bound of (32) refines the lower bound of (31) for $h>0.352938 k$.

Lemma 11. For $h>0$ and $k>0$, we have

$$
\begin{equation*}
\left(\frac{h}{k}+a\right) e^{-2 k \psi_{k}(h+k)}<\psi_{k}^{\prime}(h+k)<\left(\frac{h}{k}+b\right) e^{-2 k \psi_{k}(h+k)} \tag{33}
\end{equation*}
$$

where the constants $a=\frac{1}{2}$ and $b=\frac{\pi^{2} e^{-2 \gamma}}{6} \simeq 0.519$ are the best possible.
Proof. Using the decreasing property of $W_{k}^{\prime}(h)$ on $(-k, \infty)$ yields

$$
W_{k}^{\prime}(0)>2 k \psi_{k}^{\prime}(h+k) e^{2 k \psi_{k}(h+k)}-2 h-k>\lim _{h \rightarrow \infty} W_{k}^{\prime}(h)=0
$$

Using(6), we have

$$
\frac{\pi^{2} e^{-2 \gamma} k}{3}>2 k \psi_{k}^{\prime}(h+k) e^{2 k \psi_{k}(h+k)}-2 h>k
$$

which finishes the proof.

Remark 10. - Putting $k=1$ in (33) gives (4).

- Using (18), we deduce that the lower bound of (33) refine the lower bound of (28) for $h>\frac{k}{2}$ and $k>0$.
Lemma 12. For $h>0$ and $k>0$,

$$
\begin{align*}
\frac{1}{2 k^{2}}\left(e^{\frac{2 k}{h+k}}-1-k^{2} e^{-2 k \psi_{k}(h+k)}\right) & <\psi_{k}^{\prime}(h+k) \tag{34}\\
& <\frac{1}{2 k^{2}}\left(\frac{2 k^{2}}{(h+k)^{2}}+1-e^{-\frac{2 k}{h+k}}+k^{2} e^{-2 k \psi_{k}(h+2 k)}\right)
\end{align*}
$$

Proof. By applying the mean value theorem to W_{k} on the interval $[h, h+k]$, we get

$$
\frac{W_{k}(h+k)-W_{k}(h)}{k}=W_{k}^{\prime}\left(h+\beta_{h}\right), \quad 0<\beta_{h}<k
$$

Using the decreasing property of $W_{k}^{\prime}(h)$ on $(-k, \infty)$ yields

$$
W_{k}^{\prime}(h+k)<\frac{W_{k}(h+k)-W_{k}(h)}{k}<W_{k}^{\prime}(h)
$$

and this gives us (34).
Remark 11. Using (20), we deduce that the lower bound of (34) refine the lower bound of (33) for $h, k \in \mathbb{R}^{+}$.

5. Conclusion

The main conclusions of this paper are stated in Theorems 1 and 2 and Lemmas 5 and 9 . The authors proved the CM and the monotonicity properties of four functions containing the k-generalized digamma and polygamma functions, derived some new bounds for $\psi_{k}^{(s)}(h)$ functions $(s \in \mathbb{N} \cup\{0\})$. These bounds refine some recent results.

Author Contribution Statements The authors contributed equally to this article.

Declaration of Competing Interests The authors declare that they have no competing interest.

References

[1] Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1965.
[2] Batir, N., Sharp bounds for the psi function and harmonic numbers, Math. Inequal.Appl, 14(4) (2011), 917-925. http://files.ele-math.com/abstracts/mia-14-77-abs.pdf
[3] Coffey, M. W., One integral in three ways: moments of a quantum distribution, J. Phys. A: Math. Gen., 39 (2006), 1425-1431. https://doi.org/10.1088/0305-4470/39/6/015
[4] D́iaz, R., Pariguan, E., On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15(2) (2007), 179-192. https://doi.org/10.48550/arXiv.math/0405596
[5] Guo, B.-N., Qi, F., Sharp inequalities for the psi function and harmonic numbers, Analysis, 34(2) (2014), 201-208. DOI 10.1515/anly-2014-0001.
[6] Kokologiannaki, C. G., Krasniqi, V., Some properties of the k-gamma function, Le Matematiche, 68(1) (2013), 13-22. DOI 10.4418/2013.68.1.2
[7] Mansour, M., Determining the k-generalized gamma function $\Gamma_{k}(x)$ by functional equations, Int. J. Contemp. Math. Sciences, 4(21) (2009), 653-660. http://www.m-hikari.com/ijcms-password2009/21-24-2009/mansourIJCMS21-24-2009.pdf
[8] Miller, A. R., Summations for certain series containing the digamma function, J. Phys. A: Math. Gen., 39 (2006), 3011-3020. DOI 10.1088/0305-4470/39/12/010
[9] Moustafa, H., Almuashi, H., Mahmoud, M., On some complete monotonicity of functions related to generalized k-gamma function, J. Math., 2021 (2021), 1-9. https://doi.org/10.1155/2021/9941377
[10] Muqattash, I., Yahdi, M., Infinite family of approximations of the digamma function, Math. Comput. Modelling, 43(11-12) (2006), 1329-1336. https://doi.org/10.1016/j.mcm.2005.02.010
[11] Nantomah, K., Iddrisu, M. M., The k-analogue of some inequalities for the gamma function, Electron. J. Math. Anal. Appl., 2(2) (2014), 172-177.
[12] Nantomah, K., Nisar, K. S., Gehlot, K. S., On a k-extension of the Nielsen's (beta)-function, Int. J. Nonlinear Anal. Appl., 9(2) (2018), 191-201. http://dx.doi.org/10.22075/ijnaa.2018.12972.1668
[13] Qi, F., Guo, S.-L., Guo, B.-N., Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math., 233 (2010), 2149-2160. https://doi.org/10.1016/j.cam.2009.09.044
[14] Qiu, S.-L., Vuorinen, M., Some properties of the gamma and psi functions with applications, Math. Comp., 74(250) (2005), 723-742. DOI 10.1090/S0025-5718-04-01675-8
[15] Widder, D. V., The Laplace Transform, Princeton University Press, Princeton, 1946.
[16] Wilkins, B. D., Hromadka, T. V., Using the digamma function for basis functions in mesh-free computational methods, Engineering Analysis with Boundary Elements, 131 (2021), 218-227. https://doi.org/10.1016/j.enganabound.2021.06.004
[17] Yildirim, E., Monotonicity properties on k-digamma function and its related inequalities, J. Math. Inequal., 14(1) (2020), 161-173. https://doi.org/10.7153/jmi-2020-14-12
[18] Yildirim, E., Ege, I., On k-analogues of digamma and polygamma functions, J. Class. Anal., 13(2) (2018), 123-131. https://doi.org/10.7153/jca-2018-13-08
[19] Yin, L., Huag, L. G., Song, Z. M., Dou, X. K., Some monotonicity properties and inequalities for the generalized digamma and polygamma functions, J. Inequal. Appl., 1 (2018), 249. https://doi.org/10.1186/s13660-018-1844-2
[20] Yin, L., Zhang, J., Lin, X., Complete monotonicity related to the k-polygamma functions with applications, Ad. Diff. Eq., (2019), 1-10. https://doi.org/10.1186/s13662-019-2299-6

[^0]: 2020 Mathematics Subject Classification. 33B15, 26A48, 26D07.
 Keywords. Gamma function, digamma function, polygamma function, completely monotonic function, asymptotic expansion, inequalities.
 ${ }^{1}$ ■heshammoustafa14@gmail.com-Corresponding author; © 0000-0002-2792-6239
 ${ }^{2}{ }^{\square}$ mansour@mans.edu.eg; (D0000-0002-5918-1913
 ${ }^{3} \square_{\text {a_t_amer@yahoo.com; ©0000-0001-7702-8093. }}$

