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Abstract. We presented some monotonicity properties for the k-generalized

digamma function ψk(h) and we established some new bounds for ψ
(s)
k (h), s ∈

N ∪ {0}, which refine recent results.

1. Introduction

The ordinary Gamma function is given by [1]:

Γ(h) = lim
s→∞

s! sh−1

h(h+ 1)(h+ 2) · · · (h+ (s− 1))
, h > 0

was discovered by Euler when he generalized the factorial function to non integer
values. The digamma function is the logarithmic derivative of the ordinary gamma
function and is given by [1]:

ψ(1 + h) = −γ +

∞∑
s=1

h

s(h+ s)
, h > −1

where γ = lim
m→∞

(
m∑
s=1

1
s − logm

)
≃ 0.577 is the Euler-Mascheroni constant. In

2006, Kirchhoff applied the polygamma functions in the field of physics [3] and
many series involving polygamma functions appeared in Feynman calculations [8].
In 2021, Wilkins and Hromadka [16] use the digamma function, as well as new
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variants of the digamma function, as a new family of basis functions in mesh-free
numerical methods for solving partial differential equations. polygamma functions
are used to approximate the values of many special functions and have many ap-
plications in physics, statistics and applied mathematics [14].

Many mathematicians studied the completely monotonic (CM) of some func-
tions including the digamma function to deduce some of its bounds. An infinitely
differentiable function L(h) on R+ is CM if (−1)sL(s)(h) ≥ 0 for s ∈ N ∪ {0}. A
theorem [15, Theorem 12b] stated the sufficient condition for L(h) being CM on
R+ as:

L(h) =

∫ ∞

0

e−hydv(y),

where v(y) is non-decreasing and the integral converges for h ∈ R+.

In 2006, Muqattash and Yahdi [10] presented the following inequality:

lnh < ψ(1 + h) < ln(1 + h), h ∈ R+. (1)

In 2011, Batir [2] presented the following inequalities:

ln
(
h2 + h+ e−2γ

)
≤ 2ψ(h+ 1) < ln

(
h2 + h+

1

3

)
, h ∈ [0,∞) (2)

ln
( 2h+ 2

e
2

h+1 − 1

)
< 2ψ(h+ 1) ≤ ln

(2h+ (e2 − 1)e−2γ

e
2

1+h − 1

)
, h ∈ [0,∞) (3)

and(1 + 2h

2

)
e−2ψ(1+h) < ψ′(1 + h) <

(π2 e−2γ + 6h

6

)
e−2ψ(h+1), h ∈ (0,∞). (4)

In 2014, Guo and Qi [5] refined the inequality (1) by

ln (h+ 1/2) < ψ(1 + h) < ln
(
e−γ + h

)
, h ∈ R+. (5)

Diaz and Pariguan [4] presented the k−generalized gamma function as:

Γk(h) = lim
s→∞

s! ks (sk)
h
k−1

h(k + h)(2k + h) · · · ((s− 1)k + h)
, k, h ∈ R+.

Mansour [7] determined the Γk by a combination of some functional equations. The
k-analogue of the digamma function is introduced by [11]

ψk(h) =
−1

k
(γ − ln k)− 1/h−

∞∑
s=1

(
1

sk + h
− 1

sk

)
, k, h ∈ R+

and it has the following relations for h, k ∈ R+ and s ∈ N ∪ {0}

kψk(h)−ψ

(
h

k

)
= ln k, ψ

(s)
k (k+ h) =

(−1)s s!

hs+1
+ψ

(s)
k (h) and ψ′

k(k) =
π2

6k2
. (6)



1128 H. MOUSTAFA, M. MAHMOUD, A. TALAT

In 2018, Nantomah, Nisar and Gehlot [12] introduced the following integral formu-
las:

ψk(h) =

∫ ∞

0

(
2e−y − e−ky

ky
− e−hy

1− e−ky

)
dy, h, k > 0 (7)

and

ψ
(s)
k (h) = (−1)s+1

∫ ∞

0

ys
(

e−hy

1− e−ky

)
dy, h, k > 0; s ∈ N. (8)

Yin, Huag, Song and Dou [19] deduced the following inequality:

0 ≤ ψ′
k(h)−

1

kh
≤ 1

h2
, h, k ∈ R+. (9)

In 2020, Yildrim [17] deduced the following inequality:

− k

12h2
< ψk(h+ k)− 1

k
lnh− 1

2h
< 0, h, k ∈ R+. (10)

In 2021, Moustafa, Almuashi and Mahmoud [9] presented the following asymp-
totic formulas for k > 0 :

ψk(h) ∼
1

k
lnh− 1

2h
−

∞∑
m=1

k2m−1 B2m

(2m) h2m
, h→ ∞ (11)

and for s ∈ N,

ψ
(s)
k (h) ∼ (−1)s−1(s− 1)!

khs
− (−1)ss!

2hs+1
+(−1)s+1

∞∑
m=1

(s+ 2m− 1)! k2m−1 B2m

(2m)! h2m+s
, h→ ∞

(12)
and they also deduced the inequalities:

1

k
lnh+

1

h
− k

2
ψ′
k(h) < ψk(k+h) <

lnh

k
+1/h− k

2
ψ′
k

(k + 3h

3

)
, h, k > 0 (13)

where the upper bound of (13) refines upper bound of (10) for all h > k
3 , and for

s ∈ N, h, k ∈ R+

(s− 1)!

khs
+

(−1)sk

2
ψ
(s+1)
k

(
h+

k

3

)
< (−1)s+1ψ

(s)
k (h) <

(s− 1)!

khs
+

(−1)sk

2
ψ
(s+1)
k (h).

(14)
Notes: All of the k−digamma function results allow us to make new conclusions
about the classical digamma function or new proofs for some of its established con-
clusions when k tends to one, and likewise for the k−gamma function [6, 18, 20].
For extra information about Γk and ψk functions, see [4, 7, 9, 19] and the related
references therein.

We will introduce two CM functions involving ψk(h) and ψ
′
k(h) functions. Some

new bounds for ψ
(s)
k (h) functions (s ∈ N ∪ {0}) will be deduced, which generalize

and refine some recent results. Also, we will study the monotonicity of two functions
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containing the k−generalized digamma function and consequently, we will deduce

some new best bounds for ψ
(s)
k (h) functions (s ∈ N ∪ {0}).

2. Auxiliary Results

In [13], the following corollary was introduced:

Corollary 1. Assume that S is a function defined on h > h0, h0 ∈ R with
lim
h→∞

S(h) = 0. Then for ω ∈ R+, S(h) > 0, if S(h + ω) < S(h) for h > h0

and S(h) < 0, if S(h+ ω) > S(h) for h > h0.

Using the monotonicity properties, we can conclude the following results:

Lemma 1.

ln

(
h2 + 3h+ 3

3

)
< h, ∀h ∈ R+, (15)

ln

(
1

e−γ + h
+ 1

)
<

1

1 + h
, ∀h > e2γ − eγ − 1

eγ
(
2− eγ

) ≃ 1.00313 (16)

and

2

1 + h
< ln

(
2(1 + h)

h2 + h+ e−2γ
+ 1

)
, ∀h > 1√

e2γ
(
− 3 + e2γ

) − 1 ≃ 0.352938.

(17)

Proof. Let the function L(h) = ln
(
h2+3h+3

3

)
− h and then L′(h) = −h(1+h)

3+3h+h2 < 0

for all h > 0 and then L(h) is decreasing on (0,∞) with lim
h→0+

Lk(h) = 0 and

then Lk(h) < 0 for all h > 0 which proves (15). Secondly, we let the function

C(h) = ln
(

1
e−γ+h + 1

)
− 1

1+h . Then

C ′(h) =
1 + eγ − e2γ + eγ

(
2− eγ

)
h

(1 + h)2
(
1 + eγh

)(
1 + eγ(1 + h)

) > 0, h > h1 =
−1− eγ + e2γ

eγ
(
2− eγ

) ≃ 1.00313.

Then C(h) is increasing on (h1,∞) with lim
h→∞

C(h) = 0 and this proves (16). By

the same way, we obtain (17). □

Lemma 2. For k ∈ R+, we have

kψk(k + h) < γ + ln

(
3

π2

)
+ ln(2h+ k), ∀h > k

2
. (18)
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Proof. Let the function Nk(h) = ln
(

3
π2

)
+ γ + ln(2h + k) − kψk(k + h). Then

N ′
k(h) =

2
k+2h − kψ′

k(k + h) and by using (6), we obtain

N ′
k(h)−N ′

k(k + h) =
k3

(3k + 2h)(k + 2h)(k + h)2
> 0, h, k > 0.

Using the asymptotic formula (12), we have lim
h→∞

N ′
k(h) = 0 and then Corollary 1

gives us that N ′
k(h) > 0 for h > 0 and k > 0. Then, we have Nk(h) is increasing on

R+ and by using (6) again, we get Nk(h) > Nk
(
k
2

)
≃ 0.0430254 > 0 for all h > k

2
and k > 0. □

Lemma 3. For k > 0, we have

ekψk(h+2k) < ekψk(h+k) + k, ∀h > 0. (19)

Proof. Set the function Bk(h) = ekψk(h+2k) − ekψk(h+k) − k. Then by using (6), we
get

Bk(h+ k)−Bk(h)

ekψk(h+k)
= e

k
h+k+ k

h+2k − 2e
k

h+k + 1 ≑ Dk(h).

Then
(h+ k)2

ke
k

h+k

D′
k(h) = 2− (5k2 + 6kh+ 2h2)e

k
h+2k

(2k + h)2
≑ fk(h).

Then f ′k(h) = k3e
k

h+2k

(2k+h)4 > 0 for all h, k > 0 and hence fk(h) is increasing on R+

with lim
h→∞

fk(h) = 0. Then fk(h) < 0 for h, k > 0 and then Dk(h) is decreasing

on R+ with lim
h→∞

Dk(h) = 0. Then Bk(h + k) − Bk(h) > 0 for h, k > 0. Using the

asymptotic formula (11), we have lim
h→∞

Bk(h) = 0 and then Corollary 1 gives us

that Bk(h) < 0 for all h, k > 0. □

Lemma 4. For k > 0, we have

e2kψk(h+2k) > e2kψk(h+k) + 2k(h+ k), ∀h > 0. (20)

Proof. Set the function mk(h) = e2kψk(h+2k) − e2kψk(h+k) − 2k(h+ k). Then

mk(h+ k)−mk(h) = e2kψk(h+3k) − 2e2kψk(h+2k) + e2kψk(h+k) − 2k2 ≑ tk(h).

Then by using (6), we get

tk(h+ k)− tk(h)

e2kψk(h+k)
= e

2k
h+k+ 2k

h+2k+ 2k
h+3k − 3e

2k
h+k+ 2k

h+2k + 3e
2k

h+k − 1 ≑ sk(h).

Then

(h+ k)2s′k(h)

2ke
2k

h+k

= − (49k4 + 96k3h+ 72k2h2 + 24kh3 + 3h4)e
2k

h+2k+ 2k
h+3k

(2k + h)2(3k + h)2

+
3(5k2 + 6kh+ 2h2)

(2k + h)2 e
−2k
h+2k

− 3 ≑ uk(h)
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Then

(2k + h)4u′k(h)

2k(3k2 + 3kh+ h2)e
2k

h+2k

=
379k6 + 959k5h+ 1049k4h2 + 626k3h3 + 213k2h4

(3k2 + 3kh+ h2)(3k + h)4 e
−2k
h+3k

+
39kh5 + 3h6

(3k2 + 3kh+ h2)(3k + h)4 e
−2k
h+3k

− 3 ≑ wk(h).

Then

w′
k(h) =

−2k5
(
129k4 + 240k3h+ 172k2h2 + 56kh3 + 7h4

)
e

2k
h+3k

(3k + h)6(3k2 + 3kh+ h2)2
< 0, h, k > 0

and hence wk(h) is decreasing on (0,∞) with lim
h→∞

wk(h) = 0. Then wk(h) > 0 for

h, k ∈ R+ and then uk(h) is increasing on R+ with lim
h→∞

uk(h) = 0. Then sk(h) is

decreasing on R+ with lim
h→∞

sk(h) = 0. Then tk(h + k) − tk(h) > 0 for h, k ∈ R+.

Using the asymptotic formula (11), we have lim
h→∞

tk(h) = 0 and then Corollary 1

gives us that tk(h) < 0 for all h, k ∈ R+. Then mk(h+k)−mk(h) < 0 for h, k ∈ R+

with lim
h→∞

mk(h) = 0 and then mk(h) > 0 for all h, k ∈ R+. □

3. Some CM Monotonic Functions

Theorem 1. Assume that h, k > 0. Then the function

Uβ,k(h) = ψ′
k(h)−

2

kh
+

2

k2
ln

(
1 +

βk

h

)
is CM on R+ if and only if β ≥ 1

2 .

Proof.

U ′
β,k(h) = ψ′′

k(h) +
2

kh2
+

2

k2

(
1

h+ βk
− 1

h

)
and by using (8) and the identity 1

hl = 1
(l−1)!

∫∞
0
yl−1e−hydy for h > 0, (see [1]),

we have

U ′
β,k(h) =

∫ ∞

0

2e−hy

k2(eky − 1)
ϕk(y)dy,

where

ϕk(y) = (eky − 1)(e−βky − 1) + ky
(
eky − 1

)
− (ky)2

2
eky.

Let β ≥ 1
2 . Then

e
ky
2 ϕk(y) ≤ eky − e

3ky
2 + e

ky
2 − 1 + ky

(
e

3ky
2 − e

ky
2

)
− 1/2(ky)2e

3ky
2

=

∞∑
m=1

n(m)

2m+2 (m+ 2)!
(ky)m+2
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where

n(m) = 2m+2 − 3m+2 + 1 + 2(m+ 2)
(
3m+1 − 1

)
− 2(m+ 2)(m+ 1)3m

= −2(m+ 2)
(
(m− 1)2m + 1

)
−

m∑
s=1

(m+ 2)(m+ 1)(m− s)

(m+ 2− s)
(ms ) 2m+1−s

< 0

and then−U ′
β,k(h) is CM on R+ and hence Uβ,k(h) is decreasing on R+. Using the

asymptotic formula (12), we have lim
h→∞

Uβ,k(h) = 0 and then Uβ,k(h) > 0. Then

Uβ,k(h) is CM on R+ for β ≥ 1
2 . On the other side, if Uβ,k(h) is CM, then by using

again the asymptotic formula (12), we get lim
h→∞

h Uβ,k(h) = 2β−1
k ≥ 0 and hence

β ≥ 1
2 . □

Theorem 2. Assume that h, k > 0 and λ ∈ R. Then the function

Fλ,k(h) = ψk(h+ k)− 1

k
ln(h+ λk)

is CM on R+ if and only if λ ≤ 1
2 . Also, the function −Fλ,k(h) is CM on R+ if

λ ≥ 1.

Proof.

F ′
λ,k(h) = − 1

k(h+ λk)
+ ψ′

k(h+ k) =

∫ ∞

0

e−hy

k(eky − 1)
φk(y)dy,

where

φk(y) = ky − e−λky
(
eky − 1

)
.

Let λ ≤ 1
2 , then we obtain

e
ky
2 φk(y) ≤ 1 + ky e

ky
2 − eky

= −
∞∑
l=2

(
2l − l − 1

)
(ky)1+l

2l (1 + l)!

= −
∞∑
l=2

( l∑
s=2

(
l
s

) )
(ky)1+l

2l (1 + l)!
< 0

and consequently, −F ′
λ,k(h) is CM on R+ for λ ≤ 1

2 and hence Fλ,k(h) is decreasing

on R+. Using the asymptotic formula (11), we obtain lim
h→∞

Fλ,k(h) = 0 and then

Fλ,k(h) > 0. Hence Fλ,k(h) is CM on R+ for λ ≤ 1
2 . On the other hand, if Fλ,k(h) is

CM, then by using again the asymptotic formula (11), we obtain lim
h→∞

h Fλ,k(h) =

1
2 − λ ≥ 0 and then λ ≤ 1

2 . Now for λ ≥ 1, we have ekyφk(y) ≥
∞∑
l=1

l (ky)l+1

(l+1)! > 0



SOME BOUNDS FOR THE k-GENERALIZED DIGAMMA FUNCTION 1133

and consequently, F ′
λ,k(h) is CM on R+ for λ ≥ 1 and hence Fλ,k(h) is increasing

on R+ with lim
h→∞

Fλ,k(h) = 0 and then Fλ,k(h) < 0. Then −Fλ,k(h) is CM on R+

for λ ≥ 1. □

4. Some Inequalities for the ψk and ψ
(s)
k Functions

Let us mention some important consequences of Theorems 1 and 2.

Corollary 2. Let a ∈ (0,∞). Then we have

1

kh
− 1

k2
ln

(
ak + h

h

)
<
ψ′
k(h)

2
, k, h ∈ R+ (21)

with the best possible constant a = 1
2 .

Proof. The inequality (21) at a = 1
2 follows from U 1

2 ,k
(h) > 0 in Theorem 1 and

the inequality (21) is equivalent that h Ua,k(h) > 0 which yields a ≥ 1
2 as stated

when we proved Theorem 1. Then a = 1
2 is the best in (21), since the logarithmic

function is strictly increasing on R+. □

Remark 1. Using the identity ln (1 + h) < h for all h > −1, (see [1]) yields the
lower bound of (21) refines the lower bound of (9) for all h, k > 0.

Corollary 3. Let a ∈ (0,∞) and s = 1, 2, 3, · · · . Then we have

2 s!

khs+1
+

2 (s− 1)!

k2

( 1

(h+ ak)s
− 1

hs

)
< (−1)sψ

(s+1)
k (h), h, k ∈ (0,∞) (22)

with the best possible constant a = 1
2 .

Proof. The inequality (22) at a = 1
2 follows from (−1)sU

(s)
1
2 ,k

(h) > 0 in Theorem

1 and the inequality (22) is equivalent that hs+1 (−1)sU
(s)
a,k(h) > 0. Using the

asymptotic expansion (12), we have lim
h→∞

hs+1 (−1)sU
(s)
a,k(h) = s!

k

(
2a − 1

)
≥ 0

and hence a ≥ 1
2 . Using the decreasing property of the function 1

hs on (0,∞) for

s = 1, 2, 3, · · · , we deduce that a = 1
2 is the best possible constant in (22). □

Corollary 4. Let a ∈ [0,∞). Then we have

ln(h+ ak) < kψk(k + h) < ln(k + h), k, h ∈ R+ (23)

with the best possible constant a = 1
2 .

Proof. The inequality (23) at a = 1
2 is deduced from F 1

2 ,k
(h) > 0 and F1,k(h) < 0

in Theorem 2. The left-hand side of (23) is equivalent that h Fa,k(h) > 0 and
this gives a ≤ 1

2 as stated when we proved Theorem 2. Then a = 1
2 is the best in

(23). □

Remark 2. • Letting k = 1 and a = 0 in (23), we obtain (1).
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• Using (21), we deduce that the lower bound of (23) refines the lower bound
of (13) for every k, h ∈ R+.

Corollary 5. Let a ∈ [0,∞) and s = 1, 2, 3, · · · . Then we have

s!

hs+1
+

(s− 1)!

k (h+ k)s
< (−1)s+1ψ

(s)
k (h) <

s!

hs+1
+

(s− 1)!

k (h+ ak)s
, h, k ∈ (0,∞) (24)

with the best possible constant a = 1
2 .

Proof. The inequality (24) at a = 1
2 is deduced from (−1)sF

(s)
1
2 ,k

(h) > 0 and

(−1)sF
(s)
1,k (h) < 0 in Theorem 2. The right-hand side of (24) is equivalent that

h1+s (−1)sF
(s)
a,k(h) > 0. Using the asymptotic expansion (12), we have

lim
h→∞

hs+1 (−1)sF
(s)
a,k(h) = s!

(1
2
− a

)
≥ 0

and hence a ≤ 1
2 . Then a = 1

2 is the best possible constant in (24). □

Remark 3. Using (22), we deduce that the upper bound of (24) refines the upper
bound of (14) for every s ∈ N and h, k > 0.

Lemma 5. For k > 0, the function

Tk(h) = ekψk(h+k) − h (25)

is strictly decreasing convex on (−k,∞) with lim
h→∞

Tk(h) = k
2 and lim

h→0
Tk(h) =

ke−γ .

Proof. Using (6), we have lim
h→0

Tk(h) = ke−γ . Differentiating (25) yields

T ′
k(h) = −1 + kψ′

k(h+ k)ekψk(k+h)

and
T ′′
k (h)

k ekψk(k+h)
= k

[
ψ′
k(k + h)

]2
+ ψ′′

k(k + h) ≑ Sk(h).

Applying (6), we get

(k + h)2

2k

[
Sk(k + h)− Sk(h)

]
= −ψ′

k(k + h)− 2h2 + 4kh+ 2k2 − 1

2(h+ k)2
≑ Qk(h).

Applying (6) again, we get

Qk(k + h) = Qk(h) +
Ak(k + h)

2(k + h)2(2k + h)2
,

where
Ak(h) = k2 + 2kh+ 2h2 > 0, h, k ∈ R+

and then Qk(k + h) > Qk(h) for all h > −k and by using the asymptotic formula
(12), we have lim

h→∞
Qk(h) = 0 and then Corollary 1 gives us Qk(h) < 0 for every

h > −k. Consequently, we have Sk(k+ h) < Sk(h) for all h > −k and by using the
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asymptotic expansion (12), we have lim
h→∞

Sk(h) = 0 and then T ′′
k (h) > 0 for every

h > −k. Then T ′
k(h) is strictly increasing on (−k,∞). By using the asymptotic

formulas (11) and (12), we have

lim
h→∞

T ′
k(h) = 0 and lim

h→∞
Tk(h) = k/2.

Then T ′
k(h) < lim

h→∞
T ′
k(h) = 0 and this finishes the proof. □

And consequently, we have the following Corollary:

Corollary 6. Set a and b be positive real numbers. Then we have

ln(h+ ak) < kψk(h+ k) < ln(h+ bk), h, k ∈ R+ (26)

where a = 1
2 and b = 1

eγ ≃ 0.56 being the best.

Remark 4. • Letting k = 1 in (26), we obtain (5).
• The upper bound of (26) refines the upper bound of (23) for all h, k > 0.

Lemma 6. For h ≥ 0 and k ∈ R+,

ln
( c k

e
k

k+h − 1

)
≤ kψk(k + h) < ln

( d k

e
k

k+h − 1

)
, (27)

where the constants c = e−γ(e− 1) ≃ 0.965 and d = 1 are the best possible.

Proof. Set

fk(h) = Tk(k + h)− Tk(h) = −k + ekψk(k+h)
(
e

k
k+h − 1

)
, h ≥ 0 and k > 0.

Since T ′
k(h) is strictly increasing on (−k,∞), then fk(h) is strictly increasing on

[0,∞) and by using (6) and the asymptotic expansion (11), we get

fk(0) = −k + ke−γ(e− 1) ≤ −k + ekψk(k+h)
(
e

k
k+h − 1

)
< lim
h→∞

fk(h) = 0

and this gives (27). □

Remark 5. Using (16), we deduce that the upper bound of (27) refines the upper
bound of (26) for all h > 1.00313k and k > 0.

Lemma 7. For h > 0 and k > 0, we have

g e−kψk(h+k) < kψ′
k(k + h) < r e−kψk(k+h), (28)

where the constants g = π2 e−γ

6 ≃ 0.924 and r = 1 are the best possible.

Proof. By using the increasing property of T ′
k(h) on (−k,∞), we have

T ′
k(0) = −1 + kψ′

k(k)e
kψk(k) < −1 + kψ′

k(k + h)ekψk(k+h) < lim
h→∞

T ′
k(h) = 0.

Using (6) yields
π2 e−γ

6
< kψ′

k(k + h)ekψk(k+h) < 1,

which finishes the proof. □
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Remark 6. Using (23) yields e−kψk(k+h) < 2
2h+k for every h, k > 0 and then the

upper bound of (28) refines the upper bound of (24) at s = 1 for all h, k > 0.

Lemma 8. For h > 0 and k > 0,

1− e−
k

h+k +
k2

(h+ k)2
< k2ψ′

k(h+ k) < e
k

h+k − 1. (29)

Proof. By applying the mean value theorem to Tk on the interval [h, h + k], we
obtain

−Tk(h) + Tk(k + h)

k
= T ′

k(h+ αh), 0 < αh < k.

By using the increasing property of T ′
k(h) on (−k,∞), we obtain

T ′
k(h) < T ′

k(h+ αh) < T ′
k(k + h), 0 < αh < k.

Combining the last two relations yields

T ′
k(h) <

−Tk(h) + Tk(k + h)

k
< T ′

k(k + h)

and this gives us (29). □

Remark 7. Using (19), we deduce that the upper bound of (29) refines the upper
bound of (28) for every h, k ∈ R+.

Lemma 9. For k > 0, the function

Wk(h) = e2kψk(h+k) − h2 − hk (30)

is strictly increasing concave in (−k,∞) with lim
h→∞

Wk(h) =
k2

3 and lim
h→0

Wk(h) =

k2e−2γ .

Proof. Using (6), we have lim
h→0

Wk(h) = k2e−2γ . Differentiating (30) yields

W ′
k(h) = −2h− k + 2kψ′

k(h+ k)e2kψk(k+h),

1

2
W ′′
k (h) = −1 + ke2kψk(k+h)

[
ψ′′
k(k + h) + 2k

(
ψ′
k(k + h)

)2
]

and
1

2ke2kψk(k+h)
W ′′′
k (h) = ψ′′′

k (k+h)+6kψ′
k(k+h)ψ

′′
k(k+h)+4k2

(
ψ′
k(k+h)

)3

≑ Vk(h).

Applying (6), we get

(h+ k)2

2k

[
Vk(k + h)− Vk(h)

]
= −3ψ′′

k(k + h) +
6(h+ 2k)

(h+ k)2
ψ′
k(h+ k)

− 6k
(
ψ′
k(h+ k)

)2

− 11k2 + 12kh+ 3h2

k(h+ k)4
≑ Uk(h).
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Similarly, we get

(h+ k)2(h+ 2k)2

6k(3k2 + 3kh+ h2)

[
Uk(h+ k)− Uk(h)

]
= ψ′

k(h+ k)

− 114k5 + 298k4h+ 321k3h2

6k(k + h)2(2k + h)2(3k2 + 3kh+ h2)

− 178k2h3 + 51kh4 + 6h5

6k(k + h)2(2k + h)2(3k2 + 3kh+ h2)

≑ Hk(h).

And finally, we get

Hk(k+h)−Hk(h) = − k4Pk(k + h)

3(k + h)2(2k + h)2(3k + h)2(3k2 + 3kh+ h2)(7k2 + 5kh+ h2)

where

Pk(h) = 12k4 + 36k3h+ 46k2h2 + 28kh3 + 7h4 > 0, h, k ∈ R+

and then Hk(h + k) < Hk(h) for all h > −k and by using the asymptotic formula
(12), we have lim

h→∞
Hk(h) = 0 and then Corollary 1 gives usHk(h) > 0 for every h >

−k. Consequently, we obtain Uk(h+k) > Uk(h) for all h > −k with lim
h→∞

Uk(h) = 0

and then Uk(h) < 0 for every h > −k and similarly, we get Vk(h) > 0 for all h > −k.
Then W ′′

k (h) is strictly increasing on (−k,∞). By using the asymptotic formulas
(11) and (12), we have

lim
h→∞

W ′′
k (h) = lim

h→∞
W ′
k(h) = 0 and lim

h→∞
Wk(h) =

k2

3
.

Then W ′′
k (h) < 0 for all h > −k and then W ′

k(h) is strictly decreasing on (−k,∞).
Hence W ′

k(h) > lim
h→∞

W ′
k(h) = 0 and this completes the proof. □

And consequently, we have the following Corollary:

Corollary 7. Set a, b ∈ R+ and k > 0. Then we have

1

2k
ln
(
h2 + hk + ak2

)
≤ ψk(h+ k) <

1

2k
ln

(
h2 + hk + bk2

)
, h ∈ [0,∞) (31)

where the constants a = e−2γ ≃ 0.315 and b = 1
3 are the best possible.

Remark 8. • Putting k = 1 in (31) yields (2).
• Using (15), we deduce that the upper bound of (31) refines the upper bound
of (10) for h, k > 0.

• For k > 0, the upper and lower bounds of (31) refine the upper and lower

bounds of (26) for h >
(

1
3−e

−2γ

2e−γ−1

)
k ≃ 0.147224 k and h > 0 respectively.
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Lemma 10. For h ≥ 0 and k > 0, we have

1

2k
ln

(
2hk + ck2

e
2k

h+k − 1

)
< ψk(h+ k) ≤ 1

2k
ln

(
2hk + dk2

e
2k

h+k − 1

)
, (32)

where c = 2 and d = e−2γ(e2 − 1) ≃ 2.014 are the best possible.

Proof. Set

Mk(h) =Wk(k+h)−Wk(h) = e2kψk(k+h)
(
e

2k
h+k−1

)
−2hk−2k2, h ≥ 0, k > 0.

Since W ′
k(h) is strictly decreasing on (−k,∞), then Mk(h) is strictly decreasing on

[0,∞) and by using (6) and the asymptotic expansion (11), we get

Mk(0) = k2e−2γ(e2−1)−2k2 ≥ e2kψk(h+k)
(
e

2k
h+k −1

)
−2hk−2k2 > lim

h→∞
Mk(h) = 0

and this gives (32). □

Remark 9. • Letting k = 1 in (32), we obtain (3).
• Using (17), we deduce that the lower bound of (32) refines the lower bound
of (31) for h > 0.352938k.

Lemma 11. For h > 0 and k > 0, we have(h
k
+ a

)
e−2kψk(h+k) < ψ′

k(h+ k) <
(h
k
+ b

)
e−2kψk(h+k), (33)

where the constants a = 1
2 and b = π2 e−2γ

6 ≃ 0.519 are the best possible.

Proof. Using the decreasing property of W ′
k(h) on (−k,∞) yields

W ′
k(0) > 2kψ′

k(h+ k)e2kψk(h+k) − 2h− k > lim
h→∞

W ′
k(h) = 0.

Using(6), we have

π2 e−2γ k

3
> 2kψ′

k(h+ k)e2kψk(h+k) − 2h > k,

which finishes the proof.
□

Remark 10. • Putting k = 1 in (33) gives (4).
• Using (18), we deduce that the lower bound of (33) refine the lower bound
of (28) for h > k

2 and k > 0.

Lemma 12. For h > 0 and k > 0,

1

2k2

(
e

2k
h+k − 1− k2e−2kψk(h+k)

)
< ψ′

k(h+ k) (34)

<
1

2k2

( 2k2

(h+ k)2
+ 1− e−

2k
h+k + k2e−2kψk(h+2k)

)
.
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Proof. By applying the mean value theorem to Wk on the interval [h, h+k], we get

Wk(h+ k)−Wk(h)

k
=W ′

k(h+ βh), 0 < βh < k.

Using the decreasing property of W ′
k(h) on (−k,∞) yields

W ′
k(h+ k) <

Wk(h+ k)−Wk(h)

k
< W ′

k(h)

and this gives us (34). □

Remark 11. Using (20), we deduce that the lower bound of (34) refine the lower
bound of (33) for h, k ∈ R+.

5. Conclusion

The main conclusions of this paper are stated in Theorems 1 and 2 and Lemmas
5 and 9. The authors proved the CM and the monotonicity properties of four func-
tions containing the k−generalized digamma and polygamma functions, derived

some new bounds for ψ
(s)
k (h) functions (s ∈ N ∪ {0}). These bounds refine some

recent results.
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