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ABSTRACT. We presented some monotonicity properties for the k-generalized
digamma function 9, (h) and we established some new bounds for w? (h),s €
N U {0}, which refine recent results.

1. INTRODUCTION

The ordinary Gamma function is given by [1]:

sl sh—1

A AT Dt 2) (1)
was discovered by Euler when he generalized the factorial function to non integer
values. The digamma function is the logarithmic derivative of the ordinary gamma
function and is given by [1]:

T'(h) = h>0

> h
Y(14+h)=—y+ Y ——, h>—1
;s(h—i—s)

m

where v = lim (Z % — log m) ~ (0.577 is the Euler-Mascheroni constant. In
m—0o0 s=1

2006, Kirchhoff apf)lied the polygamma functions in the field of physics [3] and
many series involving polygamma functions appeared in Feynman calculations [g].
In 2021, Wilkins and Hromadka [16] use the digamma function, as well as new
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variants of the digamma function, as a new family of basis functions in mesh-free
numerical methods for solving partial differential equations. polygamma functions
are used to approximate the values of many special functions and have many ap-
plications in physics, statistics and applied mathematics [14].

Many mathematicians studied the completely monotonic (CM) of some func-
tions including the digamma function to deduce some of its bounds. An infinitely
differentiable function L(h) on Rt is CM if (—1)*L&)(h) > 0 for s € NU {0}. A
theorem |15, Theorem 12b] stated the sufficient condition for L(h) being CM on
RT as:

L(h) = / e Mdu(y),
0
where v(y) is non-decreasing and the integral converges for h € R*.
In 2006, Muqattash and Yahdi [10] presented the following inequality:
Inh<$(l+h) <n(l+h), heR*. (1)
In 2011, Batir |2] presented the following inequalities:

1n<h2+h+e_27) <2p(h+1) <In (h2+h+3), hel0,00)  (2)

3
2h + 2 2h 2 e

In (%) <2p(h+1) §1n< (e = Le ) hel0,00) (3)

et —1 eTHh —1

and
1 2 —2v

(LQ%)e—MH’ﬂ <y(i+n) < (72 - +6h)e—2¢<h+1>7 h e (0,00). (4)

In 2014, Guo and Qi [5] refined the inequality (1)) by
In(h+1/2) <¢(1+h)<In(e7 +h), heR*. (5)

Diaz and Pariguan [4] presented the k—generalized gamma function as:
lim sl kS (sk)tt
S5—00 h(k + h)(Qk + h) ce ((8 — 1)k + h)’

Mansour [7] determined the I'y, by a combination of some functional equations. The
k-analogue of the digamma function is introduced by [11]

Li(h) = k., h e RT.

—1 - 1 1
h)=—((y—Ink)—1/h— - — k,h e RT
o) = b=l =3 () ke

and it has the following relations for h,k € RT and s € NU {0}

h s —1)° s! s / 2
o) =0 () =m0l e ) = S o0 and vih) = . 6)
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In 2018, Nantomah, Nisar and Gehlot [12] introduced the following integral formu-

las:
o (2 Y — e kY e~ hy
h) = — d h,k>0 7
,(/Jk:( ) /0\ ( ky 1_€ky> Y, , K> ( )
and
(s) N
(b)) = (1) /0 y (1_e_ky>dy, h,k > 0;s € N. (8)
Yin, Huag, Song and Dou [19] deduced the following inequality:
1 1
<Yp(h) — — < = h,k € RT.
In 2020, Yildrim [17] deduced the following inequality:
o k) - th— L <0, hkeR* (10)
S 12p2 CH k 2h 7 ’ ’

In 2021, Moustafa, Almuashi and Mahmoud [9] presented the following asymp-
totic formulas for k > 0 :

1 1 k*m=1 By,
~Zlnh-— -y L —2m 11
velh) ~ = gp = 30 Tt oo (1)
and for s € N,
(s) (1) 1(s —1)! (—1)Ss' ot — (s42m — 1) k*! By,
Yy (h) ~ he - 2hs+1 - Z:l (2m)! h2m+s s h =00
(12)
and they also deduced the inequalities:
In k+3h
El h+ fwk( ) <y (k+h) < T+1/h— (5 + ). hEk>0(3)

where the upper bound of refines upper bound of for all A > %, and for
s€N, hkeRT

(s 1!  (=1)°k (s+1)
e 2

k
3

s (s=1! (=1)°k (s
B < oo < Co D BV e
kh 2

(14)
Notes: All of the k—digamma function results allow us to make new conclusions
about the classical digamma function or new proofs for some of its established con-
clusions when k tends to one, and likewise for the k—gamma function [6}/18,[20].
For extra information about T'; and v, functions, see [4,[7,/9,[19] and the related
references therein.

(n+

We will introduce two CM functions involving 1, (h) and 1} (h) functions. Some

new bounds for w;s)(h) functions (s € NU {0}) will be deduced, which generalize
and refine some recent results. Also, we will study the monotonicity of two functions
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containing the k—generalized digamma function and consequently, we will deduce
some new best bounds for w,&s)(h) functions (s € NU {0}).

2. AUXILIARY RESULTS

In [13], the following corollary was introduced:

Corollary 1. Assume that S is a function defined on h > hg, hg € R with
hlim S(h) = 0. Then for w € RT, S(h) > 0, if S(h +w) < S(h) for h > hg

and S(h) < 0, if S(h +w) > S(h) for h > ho.

Using the monotonicity properties, we can conclude the following results:

Lemma 1.
h2 4 3h+3
ln(+3 a )<h, Vh € RY, (15)
1 1 27 v —1
n( — + 1) < Yh>S % T ~1.00313 (16)
eV +h 1+h ev(2—ev)
and
P 2(1 + h) 1
<1 1),  vh> — 1 ~0.352938.
T+ n(h2+h+e—2v+ )

62’7( -3+ 627>
(17)

3F3h+h2
for all h > 0 and then L(h) is decreasing on (0,00) with hlir(r)lJr Ly(h) = 0 and
—
then Li(h) < 0 for all A > 0 which proves (15). Secondly, we let the function

C(h) = In (ﬁ—kl) — L. Then

Proof. Let the function L(h) = In (%) — h and then L'(h) = 24+ < ¢

1—|—e”’—627+67(2—67 h —1— eV + 27
C'(h) = S0, h>h = ——< T 100313,
(1+h)2(1+67h) <1+6’Y(1+h)> 67<2—e’7>
Then C(h) is increasing on (hy,00) with hlim C(h) = 0 and this proves 1' By
—00
the same way, we obtain (7). O

Lemma 2. For k € R, we have

kb (k+ ) < 7 +1n (732) k4 k), VA E (18)
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Proof. Let the function Niy(h) = In () + v + In(2h + k) — ki (k + h). Then

Nj(h) = ]H_% — k). (k + h) and by using (@), we obtain
]{?3

(3k + 2h)(k + 2h)(k + h)
Using the asymptotic formula lj we have lim Nj(h) =0 and then Corollary
h—o00

Nj.(h) — Ni(k+h) = 5 >0, h,k > 0.

gives us that N/ (h) > 0 for h > 0 and k > 0. Then, we have Ny (h) is increasing on
R* and by using @ again, we get Ni(h) > N (g) ~ (0.0430254 > 0 for all h > %
and k > 0. O

Lemma 3. For k > 0, we have
Fr(ht2k) o gk (htk) 4 f Vh > 0. (19)

Proof. Set the function By (h) = efVr(h+2k) _ ek¥u(h+k) _ k. Then by using @, we
get
By(h+ k) — Bi(h)

— eFIE TR _ 9T 41 = Dy.(h).

ek (h+k)
Then k
(ht+k)? (5k% + 6kh + 2h2)eriz
ok Del) =2 = fulh).
keﬁ k( ) (2k+h)2 fk( )
ko
Then fi(h) = % > 0 for all h,k > 0 and hence fy(h) is increasing on R™

with hlim fx(h) = 0. Then fi(h) < 0 for h,k > 0 and then Dj(h) is decreasing
— 00
on RT with hlim Dy (h) = 0. Then By (h + k) — Bx(h) > 0 for h,k > 0. Using the
—00
asymptotic formula 1) we have lim Bg(h) = 0 and then Corollary (1| gives us
h—o0
that By(h) < 0 for all h, k > 0.

Lemma 4. For k > 0, we have
2RO (ht2k) o 2k (hHh) 4 ok(h + k),  Vh >0, (20)
Proof. Set the function my,(h) = e2#¥s(h+2k) _ 2k¥(htk) _ ok (b + k). Then
mi(h + k) — mg(h) = e2kex(30) _ 9oy (h42k) 4 2hvoi(hth) _ op2 = 4 (1),
Then by using @, we get

tk(h—‘rk‘)—tk(h):e%_i_ 2k 4 2k 2k | 2k ok
2k (h+k)

Then

(h+ k)%, (h)  (49K* + 96K3h + T2k2h? + 24kh3 + 3h*)eTsar T 7or

ke iiE (2k + h)2(3k + h)2
3(5k% 4 6kh + 2h?)

—2 -3 :uk(h)
(2k + h)2 entoE
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Then
(2k + )4l () 379K + 959k5h 4 1049k*h? + 626k3h> + 213k%h*
2k(3k2 + 3kh + h2)ew (3k2 + 3kh + h2)(3k + h)4 emear
39kh® + 3hS
+ - —ok _3:wk(h)
(3k2 + 3kh + h2)(3k + h)* en+3r
Then

2k

2 (120K + 240K%h + 172421 + 56kRS + Th* ) e H5m
wi(h) = (3k + h)O(3k2 + 3kh + h2)? <0 Rk>0
and hence wy(h) is decreasing on (0, 0c0) with }3520 wg(h) = 0. Then wy(h) > 0 for
h,k € RT and then u(h) is increasing on Rt with hler;o ug(h) = 0. Then si(h) is
decreasing on R* with hli_)n;o sk(h) = 0. Then t(h + k) — tg(h) > 0 for h,k € RT.
Using the asymptotic formula 1] we have hler;O ti(h) = 0 and then Corollary

gives us that tx(h) < 0 for all h, k € RT. Then my(h+k)—my(h) <0 for h,k € R
with hlim my(h) =0 and then my(h) > 0 for all h, k € RT. O
—00

3. SOME CM MONOTONIC FUNCTIONS

Theorem 1. Assume that h,k > 0. Then the function

) 2 2 k

is CM on R if and only if B > %

Proof.
2 2 1 1
U/ h — " h - . -
palh) = (M) ¥ Ths + g (thBk h)
and by using and the identity % = ﬁfooc y'=le="dy for h > 0, (see [1]),
we have
, *  2e
Uﬁ,k(h) = ) 4]{2(6169 — 1)¢k:(y)dy7

where

Gul) = (e = 1) 1) ky (e —1) = B oy
Let 3> 5. Then

ky 3ky

Hop() < M - H ¥ =1y (- ) 120k

m=1
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where

n(m) — om+2 _ 3m+2 +1 +2(m+2) (3m+1 _ 1) _ 2(m+2)(m+ 1)3m
= —2(m+2)((m—1)2 +1)—S§_:1 mta_) (&) 2m*
< 0

and then—Uj ; (h) is CM on R* and hence Ug 1,(h) is decreasing on R*. Using the
asymptotic formula |) we have hlim Ug,k(h) = 0 and then Ug(h) > 0. Then
— 00

Ug,i(h) is CM on RT for 8 > £. On the other side, if Ug ;(h) is CM, then by using
again the asymptotic formula , we get lim h Ug(h) = L,;l > 0 and hence

h—00
B> 1 O
Theorem 2. Assume that h,k > 0 and X\ € R. Then the function

1
F/\,k(h) = wk(h + k’) - E ln(h + )\k)

is CM on RT if and only if X < 3. Also, the function —F) j(h) is CM on RT if
A>1.

Proof.
Pl (h)—1+w’(h+k)—/ooehy (y)d
MY k() I M
where
op(y) = ky — e Y (e’“y — 1)-
Let A\ < %, then we obtain
eFoply) <1+kye?d — et

o (2= 1= 1) (k)
2 (1+1)!

=2

5 (é (i)) (ky) !
-2 a0

=2

and consequently, —FY ; (h) is CM on R for A < 1 and hence F), j(h) is decreasing
on R*. Using the asymptotic formula , we obtain hlim Fy (k) = 0 and then
—00

F) ,x(h) > 0. Hence F) ;(h) is CM on R for A < % On the other hand, if F) x(h) is
CM, then by using again the asymptotic formula , we obtain hlim h Fy (k) =
—o0

% — X >0 and then \ < % Now for A > 1, we have ekygok(y) >



SOME BOUNDS FOR THE k-GENERALIZED DIGAMMA FUNCTION 1133

and consequently, Fy ;(h) is CM on R* for A > 1 and hence F) (h) is increasing

on Rt with hlim F) r(h) = 0 and then F) (h) < 0. Then —F) (h) is CM on R
— 00

for A > 1. O

4. SOME INEQUALITIES FOR THE 1), AND ngf) FuNcTIioNs
Let us mention some important consequences of Theorems [I] and

Corollary 2. Let a € (0,00). Then we have

1 1, (ak+h\ _(h)
kh k2ln< I >< 2

with the best possible constant a =

kheR" (21)

= N

Proof. The inequality at a = 5 follows from Uy x(h) > 0 in Theorem (1| and
the inequality is equivalent that h U, x(h) > 0 which yields a > 1 as stated
when we proved Theorem |1} Then a = % is the best in , since the logarithmic
function is strictly increasing on R™T. O

Remark 1. Using the identity In (1 + h) < h for all h > —1, (see [1)]) yields the
lower bound of refines the lower bound of (@ for all h, k > 0.

Corollary 3. Leta € (0,00) and s =1,2,3,---. Then we have
2 s! 2 (S — 1)! 1 1 (s+1)
- — —-1)° h h,k 0 22
khs+1 k2 ((h+ak)s hs> <( ) wk; ( )7 I 6( 700) ( )

with the best possible constant a = %

Proof. The inequality 1) at a = 1 follows from (—l)SUfL(h) > 0 in Theorem
3
and the inequality 1) is equivalent that h°*1 (fl)SUéf,i(h) > 0. Using the
asymptotic expansion 1) we have hlim hstt (—1)SULSS,1(h) = %(Qa — 1) >0
—00 ’

and hence a > % Using the decreasing property of the function % on (0,00) for
s=1,2,3,---, we deduce that a = % is the best possible constant in . (I

Corollary 4. Let a € [0,00). Then we have

In(h + ak) < kv (k+h) <In(k+h),  kheR" (23)

with the best possible constant a = %

5.
Proof. The inequality at a = 3 is deduced from Fi y(h) >0 and Fyx(h) <0
in Theorem The left-hand side of (23) is equivalent that h F, (k) > 0 and
this gives a < % as stated when we proved Theorem [2l Then a = % is the best in

©3). O
Remark 2. o Lettingk =1 and a=0 in , we obtain .
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e Using , we deduce that the lower bound of refines the lower bound
of for every k,h € RT.
Corollary 5. Let a € [0,00) and s =1,2,3,---. Then we have
s! (s—1)! (s) s! (s—1)!
—1)** ¥ (h
ey i G S O s Sy o

with the best possible constant a =

h,k € (0,00) (24)

1
.

Proof. The inequality at a = 3 is deduced from (—1)5Fis3€(h) > 0 and
%
(-1)® 1(8,3 (h) < 0 in Theorem The right-hand side of is equivalent that
hits (—l)sFéf,z(h) > 0. Using the asymptotic expansion 1D we have
s 1
lim A+ (—1)*F)(h) = 51(5 ~a) 20

h—o0

and hence a < % Then a = % is the best possible constant in . O

Remark 3. Using (@, we deduce that the upper bound of refines the upper
bound of for every s € N and h,k > 0.
Lemma 5. For k > 0, the function
Ti(h) = ek¥r(hth) _p (25)
is strictly decreasing convex on (—k,00) with lim Tj,(h) = % and lim Ty(h) =
h—o00 h—0
ke 7.
. . L= D . .
Proof. Using @, we have }lngb Ti(h) = ke~ 7. Differentiating yields

Ti(h) = =1 + k) (h + k)eFvrtth)
and

TN h / 2 " .
M;T&,}W = k[wk(k - h)} + 9} (k+h) = Si(h).

Applying @, we get

(k + h)? B o _2RP - 4kh 42k -1
S Sl ) = S| = vk + b) iR T ).
Applying @ again, we get
Ag(k+h)

where
Ag(h) = k? 4+ 2kh + 2h* > 0, h ke RT
and then Qx(k + h) > Q(h) for all h > —k and by using the asymptotic formula
, we have hlim Qr(h) = 0 and then Corollary [1] gives us Qg (h) < 0 for every
de el

h > —k. Consequently, we have Si(k+ h) < Si(h) for all h > —k and by using the
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asymptotic expansion li we have hlim Si(h) = 0 and then T}/(h) > 0 for every
—00
h > —k. Then Tj(h) is strictly increasing on (—k,oco). By using the asymptotic
formulas and , we have
lim Tj,(h) =0 and lim Ty(h) = k/2.
h—o0 h—o0
Then T} (h) < hlim Ty (h) = 0 and this finishes the proof. O
nde el
And consequently, we have the following Corollary:

Corollary 6. Set a and b be positive real numbers. Then we have

In(h + ak) < k (h+ k) < In(h + bk), h,k € RY (26)
where a = % and b= e% ~ 0.56 being the best.
Remark 4. e Letting k=1 in @, we obtain

e The upper bound of (@) refines the upper bound of for all h, k > 0.
Lemma 6. For h >0 and k € RT,

In (efkl) < kiby(k+h) <1 (dkl) (27)

ek+h —
where the constants ¢ = e V(e — 1) = 0.965 and d =1 are the best possible.
Proof. Set
Fe(B) = Tu(k + h) — Tiu(h) = —k + kst (eW - 1), h>0andk > 0.

Since Tj.(h) is strictly increasing on (—k, c0), then fi(h) is strictly increasing on
[0,00) and by using @ and the asymptotic expansion , we get

fe(0) = —k 4+ ke V(e — 1) < —k + ekvrlkth) (eﬁ - 1) < hlim fr(h)=0
—00
and this gives (27)). ]

Remark 5. Using (@, we deduce that the upper bound of refines the upper
bound of @ for all h > 1.00313k and k > 0.

Lemma 7. For h > 0 and k > 0, we have
g e Rk Bt (B + B) < 7 e R hEh) (28)
where the constants g = 772% ~ 0.924 and r =1 are the best possible.
Proof. By using the increasing property of T} (h) on (—k,c0), we have
Ti(0) = =1+ kg (k)" e < —1 4k (k + h)e" e < lim Ti(h) = 0.
Using @ yields .
i g < Kl (k + h)eFestth) < 1
which finishes the proof. O
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Remark 6. Using yields e~ *¥r(b+h) < 2h2 5 for every h,k > 0 and then the
upper bound of (@ refines the upper bound of at s =1 for all h,k > 0.

Lemma 8. For h >0 and k > 0,

_ k> e
L= e 4 e <Fht k) <emr -1, (29)

Proof. By applying the mean value theorem to T} on the interval [h,h + k], we

obtain
Tk (h) + Tr(k + h)

k
By using the increasing property of T}, (k) on (—k, 00), we obtain

T (h) < Ti(h + ap) < Ty (k + h), 0<ap<k.
Combining the last two relations yields

/() < —Tx(h) +ka(l<: +h)

and this gives us . O

Remark 7. Using (@, we deduce that the upper bound of (@ refines the upper
bound of (@ for every h,k € RT.

Lemma 9. For k > 0, the function
Wi (h) = e2F¥ulhth) _p2 _ pf (30)

=Ti(h+ an), 0<ap<k.

< Ti(k+h)

is strictly increasing concave in (—k,00) with lim Wy (h) = %2 and lim Wi (h) =
2 2y h—00 h—0
k%e™*.

Proof. Using @, we have lim Wy (h) = k2e~27. Differentiating 1] yields
h—0

Wi (h) = —2h — k + 2ki), (h + k)e2Fos(kth)

1 , 2
SWH(R) = =1+ ke vulten) [w,;(k + ) + 26 (5 (k + b))

and

1 " " / " / 3 .
Sy WA () = O (k) + 6kl (kR (ke )42 (W (k) ) % Va(h).

Applying @, we get

(h + k)?
2k

6(h+ 2k) ,
Wi/}k(h‘f‘k)

2 11k2 + 12kh + 3h?
k(h+ k)4

Vil -+ b) = Vie()| = =800k + 1) +

6k (wgc(h + k)) = Up(h).
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Similarly, we get

(h + k)2 (h + 2k)?
6k(3k? + 3kh + h?)

[Uk(h+ k) = Uu(h)| = v+ )

114k° + 298k*h + 321k3h?
 6k(k + h)2(2k + h)2(3k2 + 3kh + h?)
178k2h® 4 51kh* + 6h°
 6k(k + h)2(2k + h)2(3k2 + 3kh + h2)
= Hy(h).

And finally, we get
k*Py(k + h)

(et h) = Hi(h) = =5 53 o T )23k + )2 (3K 1 8Jh & 12) (TR2 + 5k + 72)

where

Pi.(h) = 12k* + 36k*h + 46k*h* + 28kh3 + Th* >0,  h,k € RT
and then Hy(h + k) < Hy(h) for all h > —k and by using the asymptotic formula
, we have hlLIr;O Hy,(h) = 0 and then Corollary [I|gives us Hy(h) > 0 for every h >
—k. Consequently, we obtain Uy (h+k) > Uy (h) for all b > —k with hli_{](r)lo Ui(h) =0

and then Uy (h) < 0 for every h > —Fk and similarly, we get Vj,(h) > 0 for all h > —k.
Then W)/(h) is strictly increasing on (—k,o0). By using the asymptotic formulas

and , we have

]€2
lim W/(h) = lim W/(h) =0and lim Wy(h) = .
h—o0 h—o0 h— o0 3
Then W}/ (h) < 0 for all h > —k and then W} (h) is strictly decreasing on (—k,00).
Hence W (h) > hlim W/ (h) = 0 and this completes the proof. O
ade el

And consequently, we have the following Corollary:

Corollary 7. Set a,b € Rt and k > 0. Then we have

LW <h2+hk+ak2) < Gp(h+k) < ~In (h2+hk+bk2), he[0,00) (31)

2k 2k
where the constants a = e~ 27 ~ 0.315 and b = % are the best possible.
Remark 8. o Putting k=1 in yields (@

o Using , we deduce that the upper bound of refines the upper bound

of(@)for h,k > 0.
e For k > 0, the upper and lower bounds of refine the upper and lower

bounds of for h > (%)k ~ (0.147224 k and h > 0 respectively.
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Lemma 10. For h > 0 and k > 0, we have

1 2hk + ck? 1 2hk + dk?
o7 In (%—i—c) <Yp(h+k)< 5 In (zk—i_) : (32)
2k er+k —1 2k er+k — 1

where ¢ = 2 and d = e=27(e? — 1) ~ 2.014 are the best possible.

Proof. Set
Myu(h) = Wi(k+h)— Wi (h) = e2kexk+h) <eh27fk71)72hk72k2, h>0, k>0

Since W/ (h) is strictly decreasing on (—Fk, o0), then My, (h) is strictly decreasing on
[0,00) and by using @ and the asymptotic expansion , we get

Mip(0) = k2= (€2 —1)—2k2 > 2k¥x(h+h) (eﬁ —1) —2hk—2k > lim My(h) =0
—00
and this gives (32). ]

Remark 9. o Letting k=1 in @, we obtain
e Using , we deduce that the lower bound of refines the lower bound
of for h > 0.352938k.

Lemma 11. For h > 0 and k > 0, we have

(% + a) e 2k (hth) Yi(h+ k) < (% + b)e_%wk(}”’k), (33)
where the constants a = % and b= =" ~ 0.519 are the best possible.

6

Proof. Using the decreasing property of W} (h) on (—k,c0) yields
WL(0) > 2k, (b + k)e?RVethth) _op _ k> Jim W (h) =0.
—00

Using@, we have
2 e 27
3
which finishes the proof.

> 2k, (h+ k)e2*ve(h k) _op > k.

O

Remark 10. e Putting k=1 in gives .
e Using (@, we deduce that the lower bound of refine the lower bound
0f@f0rh>§ and k > 0.

Lemma 12. For h >0 and k > 0,

1 2

(e -1 R ) <yl (k) 34

1 ( 2k2
(

I 2k 2 —2ki, (h+2k)
a2 (g g T1 e TR )
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Proof. By applying the mean value theorem to Wy, on the interval [h, h 4 k], we get
Wi(h+ k) — Wi(h)

k
Using the decreasing property of W} (k) on (—k, c0) yields
Wi(h + k) — Wi(h)

= k

=Wi(h+B,),  0<B, <k

Wi (h+ k) < Wi(h)
and this gives us . O

Remark 11. Using (@), we deduce that the lower bound of refine the lower
bound of for h,k € RT.

5. CONCLUSION

The main conclusions of this paper are stated in Theorems [I|and [2| and Lemmas
and [0 The authors proved the CM and the monotonicity properties of four func-
tions containing the k—generalized digamma and polygamma functions, derived

some new bounds for w,(:)(h) functions (s € NU {0}). These bounds refine some
recent results.
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