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İlhan Karakılıç1 ID , Derya Bayrıl 2 ID

Keywords

Geometric Kinematics,

Instantaneous Invari-

ants,

Lie Algebra,

Time Independent

Planar Motion

Abstract − To investigate the instantaneous properties of a planar motion, Roth and Bottema [1]

obtain the instantaneous invariants of a planar motion using Veldkamp’s canonical frame [7]. We

investigate the derivatives of time-independent planar motions with respect to the fixed frame up

to thrid order and their instantaneous invariants are obtained by using the Lie algebra to the planar

motion group near identity element.
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1. Introduction

Lie theory connects almost every branch of mathematics. It has a wide range of applications from harmonic

analysis to quantum groups. In this work, our interest is Lie algebra in plane kinematics [4]. The group of

rigid body motions are all related to Lie groups. Planar motion group, Spherical motion group and Spatial

motion group are represented by SE(2), SO(3) and SE(3) respectively.

Rigid body motions in R2 has a 3×3 homogeneous matrix representation. Any element of planar motion

group is given by,

G =
(

R t⃗

0 1

)
(1.1)

where R is the (2× 2) rotation matrix and the vector t⃗ is a (2× 1) translation vector. Well known Mozzi-

Chasles’s theorem says that each spatial motion is a screw motion. That is, any spatial displacement can

be seen as a rotation about a line, the screw axis, and followed by a translation parallel to that line. In the

planar case, there is a fixed point instead of a line. Any planar motion is a rotation about this fixed point.

To study planar motion, we attach a coordinate frame, M , to the moving body and a coordinate frame, F to

the ground (reference frame). In plane kinematics, except pure translations, there is a single point whose

coordinates are the same both in the fixed frame and in the moving frame before and after the displacement.
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Article History: Received: 07.01.2023 - Accepted: 09.01.2023 - Published: 01.03.2023

https://dergipark.org.tr/tr/pub/ikjm
https://orcid.org/0000-0001-8718-4268
https://orcid.org/0000-0001-9661-4813
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This point is called the pole point of the planar displacement. The rotation angle θ and the pole points are

the geometric invariants of planar kinematics.

Any rigid transformation is the combination of a rotation followed by a translation, given by,

X⃗ = Rx⃗ + t⃗ (1.2)

where x⃗ is the coordinates of a point in the moving frame M and X⃗ is the coordinates of the point in the

fixed frame F . In 1.2 the rotation matrix R and the translation vector t⃗ are given by,

R =
(

cosθ −sinθ

sinθ cosθ

)
t⃗ =

(
a

b

)
. (1.3)

Then the fundamental equations of the plane kinematics can be written as;

X = x cosθ− y sinθ+a, (1.4)

Y = x sinθ+ y cosθ+b.

If θ, a and b are functions of a time parameter µ, one can determine a continuous motion of a point with

its positions, velocity, accelaration etc. The parameters depending on µ are the concerns of time-dependent

kinematics of the motion. But some other properties are independent of time; such as curves, tangents,

poles etc. which are called the geometric kinematics of the motion. In this case

X = x cosθ− y sinθ+a(θ), (1.5)

Y = x sinθ+ y cosθ+b(θ)

where θ is the only parameter for the planar motion, and a,b are the functions of θ [1, 3]. In the equation

1.5 the planar motion is completely defined by the functions a(θ) and b(θ). The equation 1.5 is called time-

independent motion.

2. Veldkamp’s Canonical Frame

To discuss the instantaneous geometric invariants of a planar motion, we introduce Veldkamp’s canonical

frame. In his dissertation [7], for a given time-independent motion a(θ) and b(θ) are the power series of θ;

a(θ) =
∞∑

n=0
an(

θn

n!
), b(θ) =

∞∑
n=0

bn(
θn

n!
) (2.1)

and the following are satisfield:

i) The moving and fixed frame are chosen such that they coincide in the "zero-position", so we have from

2.1 and 1.5

a0 = b0 = 0. (2.2)

ii) At the moment θ = 0 we place common origin of the frames at the pole, which implies

a1 = b1 = 0. (2.3)
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iii) The axes OX and Ox are chosen along the common tangent of the pole curves (at the pole), which yields

a2 = 0. (2.4)

iv) Assuming b2 ̸= 0, we can take the possitive direction of the X axis as to set b2 > 0. The coinciding frames

OX Y and Ox y defined by i)-iv) are called canonical. Here OX Y and Ox y denote the fixed frame and the

moving frame respectively. These canonical frames can be used to study instantaneous kinematics, for

details see [1, 7].

Roth and Bottema [1] obtained the geometry of the planar motion by differentiating the coordinate axes

given in equation 1.5.

X = x Ẋ =−y Ẍ =−x
...
X = y +a3 . . .

Y = y Ẏ = x Ÿ =−y +b2
...
Y =−x +b3 . . .

(2.5)

at θ = 0, where dot over an alphabet denotes the derivative with respect to θ. Hence instantaneous prop-

erties of the motion depend on the constants a3, a4, . . . , an , . . . and b2,b3,b4, . . . ,bn , . . . . which are called the

instantaneous invariants of the kinematics.

2.1. The Group Planar Motions and Its Lie Algebra

The (3×3) matrix G in equation 1.1 represents the planar motion group, it is the element of the Lie group

SE(2). The time independent motion in equation 1.5 defines a one parameter subgroup of SE(2). Let D(θ)

denotes the planar displacement defined in equation 1.5 in the homogeneous matrix representation,

D(θ) =


cosθ −sinθ a(θ)

sinθ cosθ b(θ)

0 0 1

 .

If we consider an initial point P (0), then the transfomed point P (θ) is written by,

(
P (θ)

1

)
= D(θ)

(
P (0)

1

)
. (2.6)

Differentiating the equation 2.6 gives,

(
Ṗ (θ)

0

)
= DF (θ)

(
P (θ)

1

)
, (2.7)

where DF (θ) is the derivative with respect to the fixed frame. The geometric velocity matrix DF (θ) of the

group element D(θ) can be found as,

DF (θ) = Ḋ(θ)D(θ)−1 =


0 −1 ȧ(θ)+b(θ)

1 0 −a(θ)+ ḃ(θ)

0 0 0

 . (2.8)
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Let (X ,Y ,1)t and (x, y,1)t be the homogeneous coordinates of P (θ) in the fixed frame and the moving frame

respectively. Then the equation 2.7 at θ = 0 gives,
Ẋ

Ẏ

0

= DF (0)


X

Y

1

=


0 −1 a1

1 0 b1

0 0 0




X

Y

1

 . (2.9)

Since the moving frame and the fixed frame are coincident at θ = 0, we get

Ẋ =−y +a1 Ẏ = x +b1.

In equation 2.3 a1 and b1 are equal to zero. Hence,

Ẋ =−y Ẏ = x.

The second derivatives can be obtained by differentiating the equation 2.7 ,

(
P̈ (θ)

0

)
= DF2 (θ)

(
P (θ)

1

)
, (2.10)

where DF2 (θ) denotes the second derivative matrix with respect to the fixed frame. The matrix DF2 (θ) can

be written as follows,

DF2 (θ) = ḊF (θ)+D2
F (θ) =


−1 0 a(θ)+ ä(θ)

0 −1 b(θ)+ b̈(θ)

0 0 0

 . (2.11)

Then the equation 2.10 at θ = 0 is,
Ẍ

Ÿ

0

= DF2 (0)


X

Y

1

=


−1 0 a2

0 −1 b2

0 0 0




X

Y

1

 . (2.12)

Since a2 = 0 in 2.4 and the frames are coincident at θ = 0,

Ẍ =−x Ÿ =−y +b2.

Finally, the third derivative of the equation 2.6 can be found as,

( ...
P (θ)

0

)
= DF3 (θ)

(
P (θ)

1

)
, (2.13)
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where DF3 (θ) denotes the third derivative with respect to the fixed frame. The third order derivative matrix

DF3 (θ) can be found as follows,

DF3 (θ) = D̈F (θ)+2ḊF (θ)DF (θ)+DF (θ)ḊF (θ)+D3
F (θ)

=


0 1

...
a (θ)−b(θ)

−1 0 a(θ)+ ...
b (θ)

0 0 0

 .
(2.14)

Then the equation 2.13 at θ = 0 is,
...
X
...
Y

0

= DF3 (0)


X

Y

1

=


0 1 a3

−1 0 b3

0 0 0




X

Y

1

 . (2.15)

That is,
...
X = y +a3

...
Y =−x +b3.

Hence the kinematic invariants of time-independent planar motion are obtained by using the elements of

Lie algebra, se(2) to the planar motion group, SE(2). Similarly, higher order terms in the equation 2.5 can

be obtained by using the higher order derivatives of equation 2.6.

3. Conclusion

Instantaneous properties of a planar motion are obtained by Bottema and Roth [1] using canonical frame

which was introduced by Veldkamp [7]. In this study, the derivatives of time-independent planar motions

with respect to the fixed frame are given and the instantaneous invariants of planar motions are obtained

by using the Lie algebra to SE(2).
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