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We introduce a novel probability distribution that may be used to model both 

skewed and symmetric data. This new distribution, called the skew-

symmetric Gudermanian-Laplace (SSGL) distribution, includes a shape 

parameter that allows it to change the asymmetry. Some fundamental 

statistical properties of the new distribution have been given explicit 

analytical expressions. The study also includes parameter estimations and 

simulation sections. We considered two datasets in the real-world data 

application. The first dataset is the "heights of 100 Australian athletes" data, 

which is discussed in many studies examining alternative skewed models. 

The second dataset contains the average wind speeds recorded by the 

İstanbul Çatalca meteorological observatory in January 2020. We showed 

that the SSGL distribution outperforms its well-known alternative, the Skew-

Normal distribution, in both datasets. As a result of the study, it was 

concluded that the SSGL distribution is a suitable alternative for modeling 

skewed data. 
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 Bu makalede hem çarpık hem de simetrik verileri modellemek için 

kullanılabilecek yeni bir olasılık dağılımı sunuyoruz. Çarpık simetrik 

Gudermanian-Laplace (SSGL) dağılımı olarak adlandırılan bu yeni dağılım, 

asimetriyi değiştirmesine izin veren bir şekil parametresi içerir. Yeni dağılımın 

bazı temel istatistiksel özelliklerine açık analitik ifadeler verilmiştir. Çalışma 

aynı zamanda parametre tahminleri ve simülasyon bölümlerini de içermektedir. 

Gerçek dünya veri uygulamasında ise iki veri kümesini ele aldık. İlk veri seti, 

alternatif çarpık olasılık modellerini inceleyen birçok çalışmada el alınan “100 

Avustralyalı sporcunun boyları” verisidir. İkinci veri seti, İstanbul Çatalca 

meteoroloji gözlemevi tarafından Ocak 2020'de kaydedilen ortalama rüzgar 

hızlarıdır. SSGL dağılımının, her iki veri setinde de iyi bilinen alternatifi olan 

Çarpık-Normal dağılımından daha iyi performans gösterdiğini gösterdik. 

Çalışma sonucunda SSGL dağılımının çarpık verilerin modellenmesi için 

uygun bir alternatif olduğu sonucuna varılmıştır. 

Anahtar Kelimeler: 
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1.Introduction

Data may have a longer tail on one side than the other, indicating that it is "skewed." Understanding 

skewed data is crucial for a data scientist or other professional who works with data because most real-

world situations aren't symmetrical—real data sets are frequently skewed. Skewed data, on the other 

hand, can pose problems with statistical models because outliers, which frequently generate skew, can 

have a harmful effect on a model's performance. In this regard, the presence of a skewness parameter 

in a probability distribution improves modeling success. There are several methods of obtaining skew-

adjustable probability distributions via a parameter. For a detailed review of these methods, we advise 

interested readers to check (Gupta & Kundu, 2009). In this study, we shall focus on one of these 

approaches, the family of skew-symmetric distributions, which was introduced by Azzalini (Azzalini, 

1985). 

The skew-symmetric distribution family is a wide family of probability density functions that include 

the skewness parameter(s). The following lemma defines the main frame of probability distributions in 

the family (Azzalini, 1985). 

Lemma: Let 𝑓 be a density function symmetric about zero, and 𝛹 is a Lebesgue measurable function 

satisfying (i) 0 ≤ 𝛹(𝑥) ≤ 1, (ii) 𝛹(𝑥) + 𝛹(−𝑥) = 1 for 𝑥 ∈ ℝ. Then 

ℎ(𝑥) = 2𝑓(𝑥)Ψ(𝑔(𝑥)) (1) 

is a probability density function, where 𝑔 is a function that is odd and continuous. 

Proof: Let 𝑡(𝑥) = 2Ψ(𝑔(𝑥)) − 1. It is easy to show that 𝑡 is an odd function. Due to 𝑓 is a pdf 

symmetric about zero it's an even function and 𝑓(𝑥)𝑡(𝑥) is an odd function. Thus 

∫ ℎ(𝑥)𝑑𝑥
∞

−∞

− 1 = ∫ 2𝑓(𝑥)𝛹(𝑔(𝑥))𝑑𝑥
∞

−∞

− 1 = ∫ 𝑓(𝑥)𝑡(𝑥)𝑑𝑥
∞

−∞

= 0. 

Many studies in the literature have focused on the skew-symmetric distributions produced by the 

various choices of base distribution  𝑓, skewing function Ψ, and odd function 𝑔. Azzalini (Azzalini, 

1985) introduced the skew-normal distribution 𝑆𝑁(𝜆) in his pioneering work, and ℎ(𝑥) =

2𝜑(𝑥)Φ(𝜆𝑥) represents its density function, where 𝜑 and Φ are the probability density function (pdf) 

and cumulative density function (cdf) of a standard normal distribution, and 𝜆 ∈ ℝ is the asymmetry 

parameter. Elal-Olivero (Elal-Olivero, 2010) introduced the alpha skewed-normal distribution 

(𝐴𝑆𝑁(𝛼)) by taking the skewing function 𝛹(𝑥) = ((1 − 𝛼𝑥)2 + 1)(2 + 𝛼2)−1 and the base 

distribution 𝜑. Arellano-Valle et al. (Arellano-Valle, Gómez, & Quintana, 2004) presented a skew-

normal distribution generalization, where 𝑓 and 𝛹 are the pdf and cdf of the normal distribution, 

respectively, and 𝑔(𝑥) = (𝜆1𝑥)(1 + 𝜆2𝑥
2)−1 2⁄ , where 𝜆1 ∈ ℝ and 𝜆2 ≥ 0 are real constants. Ma and 

Genton (Ma & Genton, 2004) proposed the flexible-skew-normal distribution, where 𝑔(𝑥) =

(𝛼𝑥 + 𝛽𝑥3). This is a particular case of flexible skew-generalized normal distribution (Nekoukhou, 
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Alamatsaz, & Aghajani, 2013), with (𝑥) = (𝜆1𝑥 + 𝜆3𝑥
3)(1 + 𝜆2𝑥

2)−1 2⁄  . The purpose of this work is 

to introduce the new Skew-Symmetric Gudermannian-Laplace distribution.  

The contents of the rest of this paper are as follows: The skew-symmetric Gudermannian-Laplace 

distribution is introduced in the next section. In addition, this section includes studies on skewness and 

kurtosis coefficients, entropy, and raw moments of distribution. The next section provides inference 

procedures for maximum likelihood estimation and simulation studies. The final two sections of the 

study are the application of real data section, which demonstrates the usefulness of the new 

distribution, and the conclusion section, which discusses some findings related to the proposed 

distribution. 

2. Skew-Symmetric Gudermannian-Laplace Distribution 

In this section, the probability density function of the skew-symmetric Gudermannian-Laplace 

distribution is presented with some basic properties. We use the base distribution in eq(1) as 

standardized generalized Gudermannian (GG) which is symmetric about zero. The pdf of standardized 

GG distribution is (Altun, 2019) 

𝑓(𝑥) =
𝑒
𝜋𝑥
2

𝑒𝜋𝑥 + 1
,     𝑥 ∈ ℝ.  

As skewing function Ψ, we use the cdf of the well-known Laplace distribution. Thus, by taking the 

odd function 𝑔(𝑥) = 𝜆𝑥, our skewing function is obtained as 

Ψ(𝑔(𝑥)) = {
1 − 𝑒−𝜆𝑥 2⁄ , 𝜆𝑥 ≥ 0

𝑒𝜆𝑥 2⁄          , 𝜆𝑥 < 0
,        𝜆, 𝑥 ∈ ℝ.  

Definition: A random variable 𝑋 has the Skew-Symmetric Gudermannian-Laplace distribution with 

parameter λ, 𝑋~𝑆𝑆𝐺𝐿(𝜆), if its pdf has the form  

ℎ(𝑥; 𝜆) =
𝑒
𝜋𝑥
2

𝑒𝜋𝑥 + 1
[(1 − 𝑒−|𝜆𝑥|)sgn(𝜆𝑥) + 1],     𝑥 ∈ ℝ (2) 

where sgn is the signum function, 𝜆 ∈ ℝ is a shape parameter and controlling the skewness.  

Cumulative Distribution Function (Cdf) : It is clear that ℎ(𝑥; 0) = 𝑓(𝑥), thus 𝐻(𝑥; 0) =

2𝜋−1𝑎𝑟𝑐𝑡𝑎𝑛[𝑒𝑥𝑝{𝑥𝜋/2}] (Altun, 2019). We give the cdf of the 𝑋~𝑆𝑆𝐺𝐿(𝜆) random variable as two 

separate functions for 𝜆 > 0 and 𝜆 < 0 to save space. For 𝜆 > 0 cdf of 𝑋 is 

𝐻(𝑥; 𝜆) =

{
 
 

 
 
𝑠𝑒𝑐(𝜆) +

𝑖𝑒𝑖𝜆𝐵−𝑒−𝜋𝑥 (
1
2 −

𝜆
𝜋 , 0)

𝜋
                       , 𝑥 < 0

2gd (
𝜋𝑥
2 ) + 𝜋 𝑠𝑒𝑐

(𝜆) + 𝑖𝑒𝑖𝜆𝐵−𝑒𝜋𝑥 (
1
2 −

𝜆
𝜋 , 0)

𝜋
, 𝑥 ≥ 0

, 
(3) 
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where gd(x) = 2𝑎𝑟𝑐𝑡𝑎𝑛(𝑡𝑎𝑛ℎ(𝑥/2)) is the Gudermannian function and 𝐵𝑧(𝑎, 𝑏) is the incomplete 

beta function (Dutka, 1981). For 𝜆 < 0 we get 

𝐻(𝑥; 𝜆) =

{
 
 

 
 
−𝑠𝑒𝑐(𝜆) −

𝑖𝑒−𝑖𝜆𝐵−𝑒−𝜋𝑥 (
Λ
2𝜋
, 0) − 4 𝑐𝑜𝑡−1 (𝑒

𝜋𝑥
2 )

𝜋
+ 2              , 𝑥 < 0

2𝑒
Λ𝑥
2   𝐹2 1 (1,

Λ
2𝜋
;
Λ
2𝜋
+ 1;−𝑒𝜋𝑥)

Λ
−
1

2
𝑡𝑎𝑛 (

Λ

4
) (𝑐𝑜𝑡 (

Λ

4
) − 1)

2

, 𝑥 ≥ 0

, 
(4) 

where 𝐹2 1 is the hypergeometric function (Abramowitz & Stegun, 1964) and Λ = 2𝜆 + 𝜋. 

Raw Moments: Let 𝑋~𝑆𝑆𝐺𝐿(𝜆), then even moments of 𝑋 is given by  

𝐸(𝑋2𝑘) = |∑(−
1

2
)
𝑖

∑(−1)𝐿 (
2𝑖

𝐿
)

2𝑖

𝐿=0

(𝑖 − 𝐿)2𝑘
2𝑘

𝑖=1

| ,           𝑘 = 1,2,3,… 
(5) 

As can be seen, the even moments are unaffected by 𝜆. Moreover, the values of even moments are 

𝐸(𝑋2) = 1, 𝐸(𝑋4) = 5, 𝐸(𝑋6) = 61, 𝐸(𝑋8) = 1385,… and are known as Euler numbers. Odd 

moments are calculated as 

𝐸(𝑋2𝑘−1) =

𝑘! (−𝜁 (𝑘 + 1,
2|𝜆| + 𝜋
4𝜋

) + 𝜁 (𝑘 + 1,
|𝜆|
2𝜋
+
3
4
) + 𝜁 (𝑘 + 1,

1
4
) − 𝜁 (𝑘 + 1,

3
4
))

sgn(𝜆)2𝑘𝜋𝑘+1
, 

(6) 

where 𝜁 is the generalized Riemann zeta function (Edwards, 2001). By using raw moments, expected 

value and variance of 𝑋 calculated as  

𝐸(𝑋) =
sgn(λ)

2π2
(−𝜁 (2,

2|𝜆| + 𝜋

4𝜋
) + 𝜁 (2,

|𝜆|

2𝜋
+
3

4
) + 16𝐶), (7) 

 

𝑉𝑎𝑟(𝑋) = 1 −
1

4π4
(−ζ(2,

2|λ| + π

4π
) + ζ(2,

|λ|

2π
+
3

4
) + 16𝐶)

2

. (8) 

where 𝐶 ≅ 0.915966 and known as the Catalan number. Limiting case of an odd moment is 

lim
|𝜆|→∞

 𝐸(𝑋2𝑘−1) =
(2𝑘 − 1)(ζ(𝑘 + 1, 1 𝑘 + 1⁄ ) − ζ(𝑘 + 1, 3 𝑘 + 1⁄ ))

(𝑘 + 1)π4sgn(𝜆)
. 

Thus  

lim
|𝜆|→∞

 𝐸(𝑋) = 8𝐶 𝜋2sgn(𝜆)⁄ = −0.7425 ×  𝑠𝑔𝑛(𝜆), 
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and  

lim
|𝜆|→∞

 𝑉𝑎𝑟(𝑋) = 1 −
64𝐶2

π4
= 0.44876. 

It is obvious that 𝑉𝑎𝑟(𝑋) = 1 for 𝜆 = 0. 

Skewness and Kurtosis: The third standardized moment is the skewness of a random variable 𝑋, 

which is defined as 

𝑆𝐾𝑋 = 𝐸 (
𝑋 − 𝜇𝑋
𝜎𝑋

)
3

=
1

𝜎𝑋
3
(𝐸(𝑋3) − 3𝜇𝜎𝑋

2 − 𝜇𝑋
3) 

where 𝜇𝑋 = 𝐸(𝑋) and 𝜎𝑋
2 = 𝑉𝑎𝑟(𝑋). The skewness coefficient of random variable 𝑋~𝑆𝑆𝐺𝐿(𝜆) can 

be calculated using eq(8), eq(9), and eq(10) as  

𝑆𝐾𝑋(𝜆) =

sgn(λ)3(−ζ(2,Λ1) + ζ(2,Λ2) + 16𝐶)
3

−3π2sgn(λ) (

2π2(ζ(2,Λ2) − ζ(2,Λ1))

+ζ(4,Λ1) − ζ(4,Λ2)

+32π2𝐶 − ζ (4,
1
4
) + ζ (4,

3
4
)

)

4π6 (1 −
sgn(λ)2(−ζ(2,Λ1) + ζ(2,Λ2) + 16𝐶)2

4π4
)
3/2
, 

 

where Λ1 =
2|𝜆|+𝜋

4𝜋
 and Λ2 =

|𝜆|

2𝜋
+
3

4
. Considering the limit case,  

𝑆𝐾𝑋(𝜆)
|𝜆|→∞
→   

−96𝜋4𝐶 + 4096𝐶3 + 3𝜋2 (𝜁 (4,
1
4
) − 𝜁 (4,

3
4
))

sgn(𝜆)4(𝜋4 − 64𝐶2)3/2
= sgn(𝜆)× 1.7978 

is obtained for |𝜆| → ∞. As can be seen, the skewness of the distribution follows the same sign as the 

parameter 𝜆. It is obvious that 𝑆𝐾𝑋(0) = 0 and denotes the symmetric case.  

The kurtosis coefficient of a random variable is defined as its 4th central moment and is expressed as  

𝐾𝑅𝑋 = 𝐸 (
𝑋 − 𝜇𝑋
𝜎𝑋

)
4

=
1

𝜎𝑋
4
(𝐸(𝑋4) − 4𝜇𝑋𝐸(𝑋

3) + 6𝜇𝑋
2𝐸(𝑋2) − 3𝜇𝑋

4). 

The skewness coefficient of random variable 𝑋~𝑆𝑆𝐺𝐿(𝜆) can be calculated using eq(7), eq(8), and 

eq(10) as 



847 
 

𝐾𝑅𝑋(𝜆) =

−

3sgn(λ)4 (
−ζ(2,Λ1)

+ζ(2,Λ2) + 16𝐶
)
4

16π8

+

3sgn(λ)2 (
−ζ(2,Λ1)

+ζ(2,Λ2) + 16𝐶
)(

π2(ζ(2,Λ2) − ζ(2,Λ1))

+ζ(4,Λ1) − ζ(4,Λ2)

+16π2𝐶 − ζ (4,
1
4
) + ζ (4,

3
4
)

)

2π6
+ 5

(1 −
sgn(λ)2(−ζ(2,Λ1) + ζ(2,Λ2) + 16𝐶)2

4π4
)
2  

It is easy the calculate 𝐾𝑅𝑋(0) = 5. The limiting case of kurtosis is 

𝐾𝑅𝑋(𝜆)
|𝜆|→∞
→   

−12288𝐶4 + 384𝜋4𝐶2 + 4𝜋2𝐶 (𝜓(3) (
3
4
) − 𝜓(3) (

1
4
)) + 5𝜋8

(π4 − 64𝐶2)2
= 7.978. 

Using numerical approach, we observe that the kurtosis coefficient is minimum at 𝜆=1/2 and equal to 

4.8981.  

  
Figure 1. Skewness and kurtosis (left) and Shannon entropy (right) of 𝑆𝑆𝐺𝐿(𝜆) distribution according to 𝜆. 

Note that, 𝑆𝐾𝑋(−𝜆) = −𝑆𝐾𝑋(𝜆) and 𝐾𝑅𝑋(−𝜆) = 𝐾𝑅𝑋(𝜆). The left panel of Figure 1 shows the effect of 

the 𝜆 parameter on the skewness and kurtosis coefficients in the range 𝜆 ∈ [0,20], and can be 

interpreted for 𝜆 ∈ [−20,20]. 

Shannon Entropy: Entropy is a measure of the variation or uncertainty of a random variable. 

Shannon entropy, defined as 𝑆𝐻𝑋 = 𝐸(− ln 𝑓𝑋(𝑋)), is the most well-known measure of entropy. The 

right panel of Figure 1 shows the Shannon entropy graph for the random variable 𝑋~𝑆𝑆𝐺𝐿(𝜆) in the 

range of 𝜆 values between [-5,5]. The highest entropy value has been numerically observed to be 1.386 

at 𝜆 = 0. Given that the variance in eq(8) reaches its highest value of 1 at 𝜆 = 0, we may argue that the 

uncertainty in the distribution reaches its maximum in the symmetric case. On the other hand, the sign 

of the 𝜆 parameter has no effect on the entropy value. 

Location-Scale Extension: Location and scale parameters, 𝜇 and 𝜎 respectively, can be introduced by 

means of 𝑋 = 𝜎𝑍 + 𝜇, where 𝑍 is a random variable with density eq(2). Thus, the pdf of 𝑋 is obtained 

as 
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ℎ(𝑥; μ, σ, 𝜆) =
𝑒
π
2σ
(𝑥−𝜇)

σ (𝑒
π
σ
(𝑥−𝜇) + 1)

[sgn(𝜆(𝑥 − 𝜇)) (1 − 𝑒
−|
𝜆(𝑥−𝜇)
𝜎

|
) + 1], (9) 

where 𝜇 ∈ ℝ, 𝜎 > 0, and 𝜆 ∈ ℝ. We use the notation 𝑆𝑆𝐺𝐿(𝜇, 𝜎, 𝜆) for 𝑋. Figure 2 illustrates the pdf 

of the location scale extended 𝑆𝑆𝐺𝐿 distribution with different parameter values. 

 
Figure 2. Plots of SSGL(μ,σ,λ) pdf. 

3.Estimation of Parameters and Simulation 

In this section, we will study the maximum likelihood estimators of the parameters of the 

𝑆𝑆𝐺𝐿(𝜇, 𝜎, 𝜆) distribution. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from this distribution. The 

logarithmic likelihood function can be expressed as  

𝐿(𝜇, 𝜎, 𝜆; 𝑋) =∑ log 𝑒
𝜋(𝑋𝑖−𝜇)
2𝜎 (

1 − 𝑒
−|
𝜆(𝑋𝑖−𝜇)

𝜎
|

sgn(𝜆(𝑋𝑖 − 𝜇))
+ 1)

𝑛

𝑖=1
−∑ log𝜎 (𝑒

𝜋(𝑋𝑖−𝜇)
𝜎 + 1)

𝑛

𝑖=1
 

directly from eq(9). We obtain the following normal equations by taking the first derivatives of L with 

respect to μ,σ and λ, and setting them to zero: 

∑log

(

 
 
 
 
 
 

𝑒
𝜋Δ
2

2𝜎3(𝑒𝜋Δ + 1)2

(

 
 
 
 
 

−2(𝑒𝜋Δ + 1) (𝜆ΔσAbs
′(𝜆Δ) + 𝜎2sgn′(𝜎)(𝑒|𝜆Δ| − 1))

sgn(𝜆Δ)𝑒|𝜆Δ|

+2𝜋Δσ𝑒𝜋Δ (
1 − 𝑒−|𝜆Δ|

sgn(𝜆Δ)
+ 1) − 𝜋Δσ(𝑒𝜋Δ + 1)(

1 − 𝑒−|𝜆Δ|

sgn(𝜆Δ)
+ 1)

−2𝜎(𝑒𝜋Δ + 1) (
1 − 𝑒−|𝜆Δ|

sgn(𝜆Δ)
+ 1)

)

 
 
 
 
 

)

 
 
 
 
 
 

= 0 

∑log(
Δ𝑒

𝜋Δ

2
−|𝜆Δ| (sgn(𝜆Δ)Abs

′(𝜆Δ) + 𝜎(𝑒|𝜆Δ| − 1)sgn′(𝜆Δ))

𝜎(𝑒𝜋Δ + 1)
) = 0 

∑log

(

 
 
 
 

𝑒
𝜋Δ
2
−|𝜆Δ|

2𝜎2(𝑒𝜋Δ + 1)2

(

  
 

𝜋(𝑒𝜋Δ − 1)(𝑒|𝜆Δ| − 1) − 2𝜆(𝑒𝜋Δ + 1)Abs
′(𝜆Δ)

sgn(𝜆Δ)

−
2𝜆𝜎(𝑒𝜋Δ + 1) (𝑒|𝜆Δ| − 1)

sgn′(𝜆Δ)
+
𝜋(𝑒𝜋Δ − 1)

𝑒−|𝜆Δ| )

  
 

)

 
 
 
 

= 0 
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where Δ = (𝑋𝑖 − 𝜇) 𝜎⁄ , respectively. Thus, the maximum likelihood (ML) estimates of the parameters 

𝜇, 𝜎, 𝜆, say �̂�, �̂�, and �̂�, can be obtained by simultaneously and numerically solving these equations. 

Monte-Carlo Simulation: We performed Monte Carlo simulation studies to illustrate the estimation 

performance of the obtained ML estimators. Since the quantile function of the distribution cannot be 

obtained analytically, the following algorithm can be used to generate random variables from the 

distribution. 

 Step 1. Set parameter values (𝜇, 𝜎, 𝜆) 

Step 2. Generate 𝑈~𝑈(0,1) 

 Step 3. Solve 𝐻(𝑍; 𝜆) − 𝑈 = 0 with respect to 𝑍, where 𝐻(𝑍; 𝜆) is the cdf of 𝑆𝑆𝐺𝐿(𝜆) 

 Step 4. Calculate 𝑋 = 𝜎𝑍 + 𝜇 

Different parameter values are used in Monte Carlo simulations. Table 1 shows the mean absolute bias 

(Bias) and mean squared error (MSE) values obtained from simulations repeated 1000 times for 

different sample sizes n=30, 50, 100 and 1000. The formula used for computing Bias and MSE are 

given in follows 

𝐵𝑖𝑎𝑠 =
1

1000
∑ |𝜃 − 𝜃|

1000

𝑖=1
, 

𝑀𝑆𝐸 =
1

1000
∑ (𝜃 − 𝜃)

21000

𝑖=1
, 

where θ represents the real parameter value and 𝜃 is the maximum likelihood estimate of θ. 

Table 1. Monte-Carlo simulation results. 

Parameter values  

�̂� �̂� �̂� 

n Bias MSE Bias MSE Bias MSE 

𝜇 = −2, 𝜎 = 2, 𝜆 = 1.5 30 0.6046 0.6875 0.4017 0.2425 4.0394 124.85 

50 0.4872 0.4061 0.3508 0.1842 2.0410 29.356 

100 0.3175 0.1584 0.2419 0.0905 0.8769 1.3217 

1000 0.0920 0.0137 0.0795 0.0103 0.2414 0.0961 

𝜇 = −2, 𝜎 = 2, 𝜆 = 7.5 30 0.2375 0.1482 0.3691 0.2056 15.434 544.14 

50 0.1593 0.0640 0.2754 0.1258 9.4193 290.77 

100 0.1052 0.0187 0.1953 0.0579 5.3101 107.08 

1000 0.0261 0.0011 0.0562 0.0046 0.7638 0.9050 

𝜇 = −4, 𝜎 = 6, 𝜆 = −2.5 30 1.4335 4.1693 1.1915 2.1655 7.2708 248.88 

50 0.9649 1.6478 1.0101 1.5355 3.3004 76.773 

100 0.7528 0.9349 0.7843 0.9005 1.3555 7.4157 

1000 0.1963 0.0663 0.2164 0.0752 0.3088 0.1555 

𝜇 = −3, 𝜎 = 4, 𝜆 = −7.5 30 0.4714 0.4785 0.6439 0.6683 16.324 601.18 

50 0.2830 0.1332 0.5064 0.4064 9.2901 267.51 

100 0.1966 0.0643 0.3789 0.2089 4.6045 90.125 

1000 0.0573 0.0051 0.1225 0.0233 0.7168 0.8628 
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As seen in Table 1, we conducted our simulations with high and low skewness and sigma values. 

When we examine bias and MSE values in this table as the sample size increases, both the Bias and 

MSE values decrease for all parameter values. This shows that the estimations are precise and 

accurate, implying that they are consistent and unbiased. Because the ML estimators are 

asymptotically unbiased, this is an expected result. 

4.Application to Real Data 

The purpose of this section is to demonstrate the usefulness of the 𝑆𝑆𝐺𝐿 distribution by using two real-

world data sets.  

Australian Athletes Data: The first set is the heights (in centimeters) of 100 Australian athletes data 

(Telford & Cunningham, 1991), which is a popular data set in the literature, especially in studying 

skewed distributions. We employed Azzalini's skew Normal (SN) distribution and the well-known 

Normal (N) distribution to compare the modeling success of the SSGL distribution. The results are 

presented in Table 2 along with the maximum likelihood estimates, log-likelihood value (LH), Akaike 

information criterion (AIC) and Bayes information criterion (BIC) values, and Kolmogorov-Smirnov 

statistics with associated p-value (KS). In the same table, the observed values of some statistics and 

the theoretical values calculated by parameter estimates of these statistics are also presented. 

Table 2. Summary of fits for Australian athletes data set. 

 �̂� �̂� �̂� -LH KS (p) AIC BIC 

SSGL 177.920 8.762 -0.614 348.064 0.046 (0.98) 702.127 709.943 

SN 182.269 11.232 -1.718 350.303 0.075 (0.60) 706.607 714.422 

N 174.590 8.242 - 352.321 0.090 (0.37) 708.641 713.852 

 
Mean Std.Dev. Skewness Kurtosis Q1 Median Q3 

SSGL 174.636 8.122 -0.521 4.919 170.270 175.237 179.610 

SN 174.524 8.135 -0.370 3.233 168.934 174.323 179.662 

Data 174.594 8.242 -0.560 4.197 170.950 175.000 179.700 

According to the KS values in Table 2, the goodness of fit of all three models could not be rejected. 

However, compared to the other two distributions based on LH, AIC, and BIC values, the SSGL 

distribution fits better. Considering the values reported in studies (Hasanalipour & Sharafi, 2012) and 

(Jamalizadeh, Behboodian, & Balakrishnan, 2008), the SSGL distribution is more successful than the 

alternatives mentioned in these studies. 

Wind Speed Data: This dataset contains the average wind speeds recorded by the İstanbul Çatalca 

meteorological observatory (41°10'04.9"N, 28°29'27.1"E) in January 2020 at 2-hour intervals. 
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Figure 3. Histogram of wind speed data with fitted densities (left), empirical cdf and fitted cdf (right). 

Examining Table 3, we find that the KS test does not accept the goodness of fit of the SN and N 

distributions, but the SSGL distribution is reasonable. AIC and BIC values also show that the SSGL 

distribution provides a better fit.  

Table 3. Summary of fits for wind speed data set. 

 �̂� �̂� �̂� -LH KS (p) AIC BIC 

SSGL 0.770 4.547 15.720 1607.526 0.0274 (0.65) 3221.052 3234.723 

SN 0.591 4.631 18.140 1616.539 0.0768 (0.00) 3239.078 3252.748 

N 4.138 2.979 - 1766.838 0.1299 (0.00) 3537.676 3546.789 

 
Mean Std.Dev. Skewness Kurtosis Q1 Median Q3 

SSGL 4.128 3.066 1.759 7.849 1.934 3.321 5.444 

SN 4.280 2.799 0.983 3.855 2.219 3.836 6.000 

Data 4.138 2.979 1.340 4.363 2.034 3.225 5.338 

 
Figure 4. Probability plot for wind speed data. 

Table 3 also includes some statistics of wind speed data. If the theoretical values of these statistics 

calculated with the estimated parameters for the SSGL and SN distributions are examined, one sees 

that the mean and standard deviation values of wind speed are more accurately estimated by SSGL. 

The same may be said for the first quartile (Q1), median, and third quartile (Q3). When we examine 

Figure 3 and Figure 4, it is seen that SSGL fits better than SN in most of the empirical distribution. At 

the end of the right tail, the SN distribution provides a better fit than SSGL distribution. This explains 

why the skewness of the data is better predicted by SN. 
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5.Conclusion 

In this study, we derived a new skew-symmetric model called SSGL to model skewed data. The 

closed-form pdf and cdf of the resulting distribution were obtained in the study. Furthermore, 

statistically significant features of the distribution, such as raw moments, skewness and kurtosis 

coefficients, and Shannon entropy, have been investigated. In addition, maximum likelihood 

estimators for unknown parameters of the new distribution were studied. The performance of these 

estimators in the study was also compared to a series of Monte Carlo simulation studies that had been 

performed. Given the information obtained from the simulation study, it can be said that all obtained 

estimators of the SSGL parameters are asymptotically consistent and unbiased. Finally, the usability of 

the derived distribution has been exemplified by applications performed on two real-world datasets. In 

both samples, the SSGL distribution provides a better fit than Azzalini's SN distribution. As a result of 

this study, it was concluded that the SSGL distribution is a suitable alternative for modeling skewed 

data, especially with the help of computer programs. 
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