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Abstract. This article formulae for the third-order theoretical moments for
superdiagonal and subdiagonal of the Markov-switching bilinear

Xt = c (st)Xt−ket−l + et, k, l ∈ N,

and an expression for the bispectral density function are obtained.

1. Introduction

The series is nonlinear the spectral will not adequately characterize the series.
For instance, for some types of nonlinear time series (e.g. Markov switching bilinear
models). As well, spectral analysis will not necessarily show up any features of non-
linearity (or nongaussianity) present in the series. It may be necessary, therefore,
to perform higher order spectral analysis on the series in order to detect departures
from linearity and Gaussianity. The simplest type of bispectral analysis notably by
Rosenblatt and Van Ness (1965), Rosenblatt (1966), Van Ness (1966) and Brillinger
and Rosenblatt (1967a, b).

Markov switching time series models (MSM) have recently received a growing
interest because of their ability to adequately describe various observed time se-
ries subjected to change in regime. An (MSM) is a discrete-time random process
((Xt, st), t ∈ Z) such that (i): (st, t ∈ Z) is not observable, finite state, discrete-
time and homogeneous Markov chain and (ii): the conditional distribution of Xk

relative to its entire past, depends on (st) only through sk. Flexibility is one of
the main advantages of (MSM). The changes in regime can be smooth or abrupt,
and they occur frequently or occasionally depending on the transition probability
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of the chain. Markov-switching models were introduced to the econometric main-
stream by Hamilton [c,f., [7]] , [c,f., [8]] and continue to gain popularity especially
in financial time series analysis in order to integrate the mentioned characteristics
in the conditional mean through local linearity representation. In this paper we
alternatively propose a Markov switching bilinear (MS −BL) representation, in
which the process follows locally from a bilinear characterization. This is in order
to give a general, flexible and economic framework for Markov switching modelling
and (MS −BL) has been extensively studied by Bibi and Aknouche (2010). In
this paper we shall consider a Markov-switching bilinear model defined by

Xt = c (st)Xt−ket−l + et, t ∈ Z, (1)

where (et, t ∈ Z) is a strictly stationary and ergodic sequence of random variables
with mean E (et) = 0 and variance E

(
e2t
)
= 1, for all t. The functions ai (st) , bj (st)

and cij (st) depends upon a time homogeneous Markov chain (st, t ∈ Z) with fi-
nite state space S = {1; . . . ; d}, irresuctible, aperiodic and ergodic, initial dis-
tribution π(i) = P (s1 = i), i = 1; . . . ; d, n−step transition probabilities matrix

Pn =
(
p
(n)
ij

)
(i,j)∈S×S

where p
(n)
ij = P (st = j |st−n = i ) with P := (pij)(i,j)∈S×S

where pij := p
(1)
ij = P (st = j |st−1 = i ) for i; j ∈ S. In addition, we assume that et

and {(Xs−1, st), s ≤ t} are independent, we shall note

P (M) =

 p11M (1) . . . p1dM (1)
... . . .

...
pd1M (d) . . . pddM (d)

 , Π(M) =

 π (1)M (1)
...

π (d)M (d)

 ,

and I(n) is the n × n identity matrix. The model (1) is known as a superdiagonal
model if k > l, and subdiagonal model for k < l. Let (Xt, t ∈ Z) be a stationary
time series satisfying the MS − BL model (1), and the necessary condition for
(Xt, t ∈ Z) to be strictly stationary (see Bibi and Aknouche (2010)). A sufficient
condition for stationarity is γL(A) < 0, where γL(A) is the Lyapunov exponent.
The third-order moments of (Xt) are defined by (c,f., [6])

R (r1, r2) = E {(Xt − µ) (Xt−r1 − µ) (Xt−r2 − µ)} (2)

= E (Xt Xt−r1Xt−r2)− µ (γ (r1) + γ (r2) + γ (r1 − r2)) + 2µ3,

where µ = E (Xt) , γ (r) = E (Xt Xt−r) . It is sufficient to calculate R (r1, r2) in
the sector 0 ≤ r1 ≤ r2 and the other values of R (r1, r2) are determined from its
symmetric relations (see Subba Rao and Gabr, (1984)).
Lii and Rosenblatt (1982) have shown how bispectral density function, can be
used for estimating the phase relationships, and this in turn can be applied to
the problem of deconvolution of e.g. seismic traces, quite a number of seismic
records are observed to be nongaussian, and in many geophysical problems it is
often required to estimate the coefficients. Also, the bispectral density function



THE BISPECTRAL REPRESENTATION OF MARKOV SWITCHING BILINEAR MODELS859

could, in principle be used for testing linearity. The bispectrum has been used in
a number of investigations as a data analytic tool; we mention in particular the
work of Hasselman, Munk and MacDonald (1963) on ocean waves, the papers of
Lii and Rosenblatt (1979) on the energy transfer in grid generated turbulence. In
this paper, we shall use the third-order moments to derive the bispectral density
function of MS −BL models.

2. Spectral and Bispectral

We now consider the evaluation of the spectral and bispectral of the process (Xt)
when the process satisfies some linear time series models. Firstly, we consider the
following model

Xt =

q∑
j=0

bj (st) et−j , (3)

we have

E (Xt) = 0, for all t,

γ (r) = E (Xt Xt−r) =


q∑

j=r

1′(d)P
(
bj
)
π
(
bj−r

)
if 0 ≤ r ≤ q

0 if r > q
.

The spectral density function f (.) of the process (Xt) define by

f (ω) =
1

2π

+∞∑
r=−∞

γ (r) exp (−irω) , − π ≤ ω ≤ π,

of (2) the spectral density function of the process (Xt) is given by f (ω) = γ (0) +

2
q∑

r=1
γ (r) cos (ωr), all ω, the bispectral density function f (ω1, ω2) is given by

f (ω1, ω2) = 0, all ω1, ω2 ∈ [−π, π]. Secondly, we consider the following model

Xt =

p∑
i=1

ai (st)Xt−i +

q∑
j=1

bj (st) et−j + et, (4)

Franq and Zaköıan (2001), propose the following representation of (4)

Xt = (Xt, Xt−1, ..., Xt−p+1, et, et−1, ..., et−q+1)
′ ∈ Rp+q

= A (st)Xt−1 + et,
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where et = (et, 0, ..., 0)
′ ∈ Rp+q and

A (st) =



a1 (st) ... ap (st) b1 (st) ... bq (st)
1 0 ... ... ... 0
0 1 0 ... ... 0
...

. . .
. . .

. . .
. . .

...
0 ... ... 0 1 0
0 ... ... ... ... 0
0 1 0 ... ... 0
...

. . .
. . .

. . .
. . .

...
0 ... ... 0 1 0


.

γ (r) = E
(
Xt X

′
t−r

)
is the autocovariance of Xt, then for all r > 0,

π (i)E
(
Xt X

′
t−r

∣∣ st = i
)
=

d∑
j=1

A (i)E
(
Xt−1 X ′

t−r

∣∣ st−1 = j
)
pjiπ (j) ,

we note W (r) =
(
π (1)E

(
Xt X

′
t−r

∣∣ st = 1
)
, ..., π (d)E

(
Xt X

′
t−r

∣∣ st = d
))′

(see
Pataracchia (2011)) from which we have

W (r) = P (A)W (r − 1) = Pr (A)W (0) ,∀r > 0,

where A = (A (1) , ..., A (d))
′
. Hence, we can compute the autocovariance of the

process Xt:

γ (r) =
(
H ′ ⊗ 1′(d)

)
W (r)H.

For r < 0, let us define

W̃ (r) =
(
π (1)E

(
Xt X

′
t−r

∣∣ st−r = 1
)
, ..., π (d)E

(
Xt X

′
t−r

∣∣ st−r = d
))′

.

Then for r < 0,

W̃
(i)

(r) = π (i)E
(
Xt X

′
t−r

∣∣ st−r = i
)
=

(
W (i) (−r)

)′
,

from which we have W̃ (r) = W (−r) = P−r (A)W (0) ,∀r < 0. Hence, for negative

r, we can compute the autocovariance of the processXt: γ (r) =
(
H ′ ⊗ 1′(d)

)
W̃ (r)H,

from which it can be verified that γ (r) = γ (−r) ,∀r < 0.
Spectral representation which defines the spectral as Fourier transform of the

autocovariance function

f (ω) =
1

2π

+∞∑
r=−∞

γ (r) exp (−irω) , − π ≤ ω ≤ π

=
1

2π

(
H ′ ⊗ 1′(d)

) +∞∑
r=−∞

P|r| (A) exp (−irω)W (0)H
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=
1

2π

(
H ′ ⊗ 1′(d)

) (
P (A)− P−1 (A)

) (
2 cosω I(d) −

(
P (A) + P−1 (A)

))
W (0)H,

on conditional ρ (P (A)) < 1 (see Costa and all (2005)), the bispectral density
function f (ω1, ω2) is given by f (ω1, ω2) = 0, for all ω1, ω2 ∈ [−π, π].
Finally, we consider the MS−bilinear model

Xt =

p∑
i=1

ai (st)Xt−i +

q∑
j=1

bj (st) et−j +

P,Q∑
i,j=1

cij (st)Xt−iet−j + et, (5)

Bibi, A., Aknouche, A. (2010), propose the following representation of (5)

Xt = B (st)Xt−1 + et,

same result is obtained

f (ω) =
1

2π

(
H ′ ⊗ 1′(d)

) (
P (B)− P−1 (B)

)
×
(
2 cosω I(d) −

(
P (B) + P−1 (B)

))
W (0)H,

where B = (B (1) , ..., B (d))
′
. We note that sepectral representation does not allow

us to distinguish linear models for nonlinear models and therefore should be talking
about higher order spectral (bispectral).

2.1. Superdiagonal models. The superdiagonal model may be written as

Xt = c (st)Xt−ket−k+m + et, k ≥ 2, 1 ≤ m ≤ k − 1, (6)

we have

µ = E (Xt) = 0, for all t,

γ (r) = E (Xt Xt−r) =

{
1′(d)

(
I(d) − Pk

(
c2
))−1

π if r = 0

0 if r ̸= 0
.

Lemma 1. For the superdiagonal model (6) all the third-order moments R (r1, r2)
are equal to zero except at r1 = k −m, r2 = k, viz., R(k −m, k) = 1′(d)Pk (c)π (V )

where π (V ) =
(
π (1)E

(
X2

t |st = 1
)
, ..., π (d)E

(
X2

t |st = d
))′

.

Proof. Consider the case r1 = r2 = 0. Using (6) it can be shown that

E
(
X3

t |st = i
)
= c3 (i)E

(
X3

t−ke
3
t−k+m |st = i

)
+3c (i)E (Xt−ket−k+m |st = i ) = 0,

using (2) we obtain, R(0, 0) = 0. For r1 = r2 = r, say, where r > 0, we expand Xt

using (3) to give

E
(
XtX

2
t−r |st = i

)
= c (i)E

(
Xt−kX

2
t−ret−k+m |st = i

)
= 0,

using (2) we obtain, R(r, r) = 0. Now, we consider the case r1 = 0 and r2 = r.
Squaring both sides of (3), multiplying by Xt−r and taking expectations, we get

E
(
X2

t Xt−r |st = i
)
= c2 (i)E

(
X2

t−kXt−re
2
t−k+m |st = i

)
= 0,



862 A. GHEZAL, I. ZEMMOURI

then R(0, r) = 0. Lastly, consider the case r1 = r and r2 = r + s. When r ≥ 1 and
s ≥ 1, it can be shown that

E (XtXt−rXt−r−s |st = i ) = c (i)E (Xt−kXt−rXt−r−set−k+m |st = i ) ,

□

E (XtXt−rXt−r−s |st = i ) =

{
c (i)E

(
X2

t−k |st = i
)
if r1 = k −m, r2 = k

0 otherwise
,

using (2) we obtain, R(k −m, k) = 1′(d)Pk (c)π (V ) .

2.2. Subdiagonal models. The subdiagonal model may be written as

Xt = c (st)Xt−1et−2 + et, (7)

in which Xt−1 and et−2 are dependent, and therefore the derivation of the moments
is more complicated and rather long. For this reason, we will present the final
results. We have

µ = E (Xt) = 0, for all t,

var (Xt) = E
(
X2

t

)
= 1′(d)

{
π +

(
I(d) − P

(
c2
))−1 (

I(d) + 2P
(
c2
))

π
(
c2
)}

,

and

γ (r) = E (Xt Xt−r) =

{
1′(d)P (c)π (c) if r = 3

0 otherwise
.

Moreover, the third-order moments are given by

R (r1, r2) = E (Xt Xt−r1Xt−r2) = 1′(d)×
π (c) + 3

(
I(d) + 3

(
I(d) − P

(
c2
))−1 P

(
c2
))

P (c)π
(
c2
)
if r1 = 1, r2 = 2

2P2 (c)π (c) if r1 = 2, r2 = 4
O(d) otherwise

3. Bispectral Structure

The bispectral density function is defined as

f (ω1, ω2) =
1

4π2

+∞∑
r1=−∞

+∞∑
r2=−∞

R (r1, r2) exp (−ir1ω1 − ir2ω2) ,

where R (r1, r2) is the third-order central moment defined by (2). Using the well
known symmetric relations for both R (r1, r2) and f (ω1, ω2) (see, e.g., Subba Rao
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and Gabr, 1984) the bispectral density function f (ω1, ω2) of the MS −BL model
(1) is given as follows. For the superdiagonal model (6)

f (ω1, ω2) =
R(k −m, k)

4π2

{
H(k −m, k) +H(k, k −m) +H(−m,−k)

+H(−k,−m) +H(m,−k +m) +H(−k +m,m)

}
,

(8)
where H (r1, r2) = exp (−ir1ω1 − ir2ω2). For the subdiagonal model (7), f (ω1, ω2)
given by

f (ω1, ω2) =
1

4π2


R (1; 2)

{
H (1; 2) +H (2; 1) +H (1;−1)+

H (−1; 1) +H(−1,−2) +H(−2,−1)

}
R (2; 4)

{
H (2; 4) +H (4; 2) +H (2;−2)+

H (−2; 2) +H(−4,−2) +H(−2,−4)

}
 . (9)

Example 1. The modulus of f (ω1, ω2), given by (3.1), is plotted for d = 2, c (1) =
0.7, c (2) = 0.8 and k = 2, m = 1; k = 3, m = 1; k = 5, m = 1; k = 7,
m = 5 in Figures 1, 2, 3 and 4. Finally, Figures 5 and 6 represent the bispectral
modulus of subdiagonal model with d = 2, c (1) = 0.7, c (2) = 0.8 and d = 5,
c (1) = c (2) = c (4) = 0.7, c (3) = 0.8, c (5) = 0.6 respectively.
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Figure 1. Bispectral modulus of the superdiagonal model
Xt = c (st)Xt−2et−1 + et.

4. Conclusion

For the superdiagonal and subdiagonal bilinear models we have obtained all
the theoretical third-order central moments and also explicit expressions for the
bispectral density function. In practice, given real data {X1, X2, , ..., XN}, both
third-order moments and bispectral density function could be estimated (see, e.g.,
Subba Rao and Gabr, 1984).
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Figure 2. Bispectral modulus of the superdiagonal model
Xt = c (st)Xt−3et−2 + et.
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Figure 3. Bispectral modulus of the superdiagonal model
Xt = c (st)Xt−5et−4 + et.
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Figure 4. Bispectral modulus of the superdiagonal model
Xt = c (st)Xt−7et−2 + et.
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Figure 5. Bispectral modulus of the subdiagonal model
Xt = c (st)Xt−1et−2 + et.
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Figure 6. Bispectral modulus of the subdiagonal model
Xt = c (st)Xt−1et−2 + et.
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