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Abstract 

In this paper, we determine the principal functions corresponding to the eigenvalues and the spectral 

singularities of the boundary value problem (BVP)  

2( ) ,   [0, ]y q x y y x  

2 2
0 1 2 0 1 2( ) (0) ( ) (0) 0,y y  

where q  is a complex-valued function, ,i  ,i  0,1,2i   and  is a eigenparameter, 

and introduce the convergence properties of principal functions. 
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1. INTRODUCTION  

The spectral analysis of a non-self-adjoint Sturm-Liouville equation (SLE) with continuous and discrete 

spectrum was investigated by Naimark 1 .
 
He proved the existence of the spectral singularities in the 

continuous spectrum of  SLE. Lyance showed that the spectral singularities play an important role in the 

spectral theory of  SLE 2 .  He also studied the effect of the spectral singularities in the spectral expansion 

of SLE in terms of the principal functions. The spectral analysis of the non-selfadjoint operators with purely 

dicrete spectrum has been considered by Keldysh 3,4 . He studied the spectrum and principal functions 

of operators involving a polynomial dependent on the spectral parameter, and also showed the completeness 

of the principal functions of these operators in Hilbert space. Some problems of the spectral analysis of a 

non-selfadjoint Schrödinger, Dirac and Klein-Gordon differential and difference equations with spectral 

singularities were studied in 5 13 .  The spectral analysis of quadratic eigenparameter dependent non-

selfadjoint Sturm Liouville equation has been studied in 14 15 .   

Let us consider the following BVP  

            
2( ) ,  ,y q x y y x                                     (1.1) 

    
2 2

0 1 2 0 1 2( ) (0) ( ) (0) 0,y y                         (1.2)                         

where q  is complex-valued function also absolutely continuous in each finite subinterval of   and ,i

i , 0,1,2,i  with 2 2 0.  It is clear that, the BVP (1.1)  and (1.2)  is non-selfadjoint.                                                                                                                                                
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Differently other studies in the literature, the specific feature of this paper which is one of the articles have 

applicability in study areas such as physics, engineering, mathematics is the presence of the spectral 

parameter not only in the Sturm-Liouville equation but also in the boundary condition at quadratic form. 

In this paper, which is extention of 15 ,  we aim to determine of the principal functions corresponding to 

eigenvalues and spectral singularities of the BVP (1.1) (1.2)  and investigate of their convergence 

properties. 

2. DISCRETE SPECTRUM OF (1.1) AND (1.2) 

We consider the equation 

                       
2( ) ,y q x y y x                             (2.1) 

related to the operator L  . 

The complex-valued function q  is assumed to satisfy the condition  

                              

0

( ) .x q x dx                                 (2.2) 

Let ( , )x  and ( , )e x  denote the solutions of (2.1) subject to the conditions 

2 2
0 1 2 0 1 2(0, ) ,    (0, ) ,   

lim ( , ) 1, ,i x

x
e x e  

respectively. The solution ( , )e x  is called the Jost solution of (2.1) . Therefore, under the condition (2.2)
, the solution ( , )x  is an entire function of  and the Jost solution is an analytic function of  in 

: : , Im 0  and continuous in : , Im 0 .   

In addition, Jost solution has the following representation:  

( , ) ( , ) , ,i x i t

x

e x e K x t e dt                (2.3) 

where the kernel ( , )K x t  is expressed in terms of q , and is continuously differentiable with respect to its 

arguments. 

On the other hand, ( , )K x t  satisfies 

( , ) ( ),
2

x t
K x t c                                     (2.4) 

 

1
( , ) , ( , ) ( ) ( ),

4 2 2x t
x t x t

K x t K x t q c           (2.5) 

where 0c  is a constant and ( ) ( )
x

x q s ds  . 
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Let ( , )e x  denote the solutions of (2.1) subject to the conditions 

lim ( , ) 1, lim ( , ) , .i x i x
x

x x
e e x e e x i  

Then 

( , ), ( , ) 2 ,

[ ( , ), ( , )] 2 , ,

W e x e x i

W e x e x i
                    (2.6) 

where 1 2,W f f  is the Wronskian of 1f  and 2f  .                                                                                                                                                                                                                                                                                                                              

Let us define the following functions: 

2 2
0 1 2 0 1 2

2 2
0 1 2 0 1 2

( ) : ( ) (0, ) ( ) (0, ), ,

( ) : ( ) (0, ) ( ) (0, ), ,

N e e

N e e
              (2.7) 

where : , Im 0 .  It is obvious that the functions N  and N  are analytic in 

 and : , Im 0 , respectively, and continuous on the real axis. The functions 

N  and N  are called Jost functions of L  . 

The resolvent of L  defined by  

2

0

( ) ( , ; ) ( ) ,    ( )R L f R x t f t dt f L  

where ( , ; )R x t  is Green's function given by  

               
( , ; ),

( , ; )
( , ; ),

R x t
R x t

R x t
                      (2.8) 

and 

( , ) ( , )

( )
( , ) ( , )

( )

( , ) ( , )

( )
( , ) ( , )

( )

, 0
( , ; )

,

, 0
( , ; )

, .

t e x

N
x e t

N

t e x

N
x e t

N

t x
R x t

x t

t x
R x t

x t

                            (2.9) 

in which (2.7) is taking into account. 

We denote the set of eigenvalues and spectral singularities of L  by ( )d L  and ( )ss L  , respectively. From 

the definition of the eigenvalues and spectral singularities, we have 17   

( ) : , ( ) 0 : , ( ) 0 ,

( ) : , ( ) 0 : , ( ) 0 ,
d

ss

L N N

L N N
       (2.10) 
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where 0  . 

Definition 1. The multiplicity of a zero of (N or )N  in (or )  is called the multiplicity of the 

corresponding eigenvalue or spectral singularity of the BVP (1.2)  and (1.3). 

We see from (2.6) that the functions ( , )x  and ( , ),x  defined by  

( ) ( )
( , ) ( , ) ( , ),

2 2

N N
x e x e x

i i
 

( ) ( )
( , ) ( , ) ( , ),

2 2

N N
x e x e x

i i
 

( ) ( )
( , ) ( , ) ( , ),

2 2

N N
x e x e x

i i
 

are the solutions of the boundary value problem (1.2) (1.3) where 

2 2
0 1 2 0 1 2( ) ( ) (0, ) ( ) (0, ).N e e  

Now let us assume that 

, ( ), lim ( ) ( ) 0, sup ( ) , 0.x

x x
q q AC q x q x e q x    (2.11) 

Theorem 1. ([15]). Under the condition (2.11) the operator L  has a finite number of eigenvalues and 

spectral singularities, and each of them is of a finite multiplicity. 

3. THE PRINCIPAL FUNCTIONS OF  (1.1) AND (1.2) 

In this section, we determine the principal vectors of the operator L  corresponding to its eigenvalues and 

spectral singularities. We start with the following definition. 

Definition 2.  Let 0  be an eigenvalue of  L . If the functions  

0 0 1 0 0( , ), ( , ),..., ( , )sy x y x y x  

satisfy the equations 

2

0 0 02
, 0

d
q x y x

dx
 

2

0 0 1 02
, , 0n n

d
q x y x y x

dx
 

for 0,,1,..., ,n s  then the function 0 0( , )y x  is said to be the eigenfunction corresponding to the 

eigenvalue 0   of .L   The functions 1 0 0( , ),..., ( , )sy x y x  are called associated functions 

corresponding to the eigenvalue 0.  The eigenfunctions and associated functions corresponding to 

0  are called the principal functions of the eigenvalue 0.  The principal functions 

corresponding to the spectral singularities are defined similarly. 
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Henceforth, we assume that the condition (2.11) holds. Let 1,..., j   and 1,...,j k  denote the zeros 

of the functions N  in  and N  in  (which are the eigenvalues of L ) with multiplicities 

1,..., jm m  and 1,..., ,j km m   respectively. It is obvious that 

( , ), ( , ) ( ) 0

p p

n n

n n

d d
W x e x N

d d
          (3.1) 

for 0,1,..., 1,pn m 1,2,..., ,p j  and 

( , ), ( , ) ( ) 0

p p

n

n

d d
W x e x N

d d
        (3.2) 

for 0,1,..., 1,pn m 1,..., .p j k   

Theorem 2.  The formula 

0

( , ) ( , ) ,

p p

nn k

n kn k
k

n
x a e x

k        (3.3) 

for 0,1,..., 1,pn m 1,2,...,p j , and 

0

( , ) ( , ) ,

p p

nn k

n kn k
k

n
x b e x

k             (3.4) 

for 0,1,..., 1,pn m 1,..., ,p j k   hold, where the constants 1, ,...,o na a a  and  1, ,...,o nb b b   

depend on p , respectively. 

 Proof. We will prove only (3.3) using the mathematical induction, because the case of (3.4) is similar. Let 

0.n  It is evident from (3.1) that 

0( , ) ( ). ( , )p p px a e x  

for 1,2,...,p j . Suppose that (3.3) holds for an arbitrary integer 0n  such that  01 2.pn m  

Differentiating the equation 

2
2

2
, 0

d
q x y x

dx
                                   (3.5) 

with respect to  and substituting p , we have 

0 0 0

0 0 0

1 12

0 0 02 1 1
( ) ( , ) 2 1 ( , ) ( 1) ( , ).

n n n

p p p p pn n n

d
q x y x n y x n n y x

dx
  (3.6) 

 

As ( , )x  and ( , )e x  solve the equation (3.5), we obtain by (3.3), (3.5)-(3.6) that 
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0

2
2

2
( ) ( , ) 0,   1,2,..., ,n p

d
q x g x for p j

dx
 

where 

00

0 00

11
0

11
0

1
( , ) ( , ) ( , ) .

pp

nn k

n p n kn k
k

n
g x x a e x

k    (3.7) 

On the other hand, (3.1)  and (3.7)  imply that 

0

0 0

1

1
( , ), ( , ) ( , ), ( , ) 0,

p p

n

n n

d
W g x e x W x e x

d
 

and therefore, 

0 0 1( , ) ( ) ( , )n p n p pg x a e x  

for 1,2,..., .p j  The proof is complete. 

Using the notations                                
!

n k p
n k p

a
A

n k
 

and 

!
v j p

v j p

b
B

v j
 

we can write 3.3  and 3.4  as 

0

1 1
( , ) ( , ) ,

! !
p p

nn k

n k pn k
k

x A e x
n k

 

 0,1,..., 1,pn m 1,2,..., ,p j   

0

1 1
( , ) ( , ) ,

! !
p p

nn k

n k pn k
k

x B e x
n k

 

 0,1,..., 1,pn m 1,..., .p j k   

Now we introduce the functions 

,
0

1 1
( , ) ( , ) ( , ) ,

! !
p p

nn k

n p p n k pn k
k

U x x A e x
n k

     (3.8) 

 0,1,..., 1,pn m  1,2,...,p j  and 

,
0

1 1
( , ) ( , ) ( , ) ,

! !
p p

nn k

n p p n k pn k
k

U x x B e x
n k

   (3.9) 
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 0,1,..., 1,pn m 1,..., .p j k   

It follows from the definition that the functions , ( , ), 0,1,..., 1,n p p pU x n m  1,2,..., ,p j    

1,...,j k   are the principal functions corresponding to the eigenvalues of L  .                                                                                                                                                                                                                                                                                                                                                                                                                       

 Theorem 3. 

2
, ( , ) ,   for 0,1,..., 1, 1,2,..., , 1,..., .n p p pU x L n m p j j k          (3.10) 

 Proof. Let 0 1pn m  and 1 .p j  From (2.3), (2.4) and (2.11) we obtain 

2( , ) ,
x t

K x t ce  

and therefore, 

2
Im Im( , ) ,

x t
p p

p

n
x tn n

n
x

e x x e c t e e dt                      (3.11) 

 where  0c   is a constant. Since Im 0p  for the eigenvalues p , 1,2,..., ,p j  (3.10) follows  

from (3.8) and (3.11). Similarly we prove the results for 0 1pn m   ,  1 .j p k  

Let 1,..., v   and 1,...,v l  be the zeros of N  and N  in  (which are the spectral singularities 

of L ) with multiplicities 1,..., vn n  and 1,..., ,v ln n  respectively. We can show 

0

( , ) ( , ) ,

p p

nn k

n kn k
k

n
x c e x

k                        (3.12) 

  0,1,..., 1,pn n 1,2,..., ,p v  and 

0

( , ) ( , ) ,

p p

nn k

n kn k
k

n
x d e x

k                      (3.13) 

  0,1,..., 1,pn n    1,..., .p v l                                                                                                                                  

Now define the generalized eigenfunctions and generalized associated functions corresponding to the 

spectral singularities of L  by the following: 

,
0

1 1
( , ) ( , ) ( ) ( , )

! !
p p

nn k

n p p n k pn k
k

v x x C e x
n k

      (3.14) 

 0,1,..., 1,pn n 1,2,..., ,p v   

,
0

1 1
( , ) ( , ) ( ) ( , )

! !
p p

n j

n p p v j pn j
j

v x x D e x
n j

       (3.15) 
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 0,1,..., 1,pn n 1,..., .p v l                                                                                                                                      

Consequently, the functions ,  ( , ),n p pv x 0,1,..., 1,pn n 1,2,..., , 1,...,p v v l   are the 

principal functions corresponding to the spectral singularities of L  . 

 Theorem 4. 

2
, ( , ) ,   for 0,1,..., 1, 1,2,..., , 1,..., .n p p pv x L n n p v v l           (3.16) 

Proof. If we consider 3.11  for the principal functions corresponding to the spectral singularities 

, 1,2,..., , 1,..., ,p p v v l   of L  and consider that  Im 0p   for the spectral singlarities, 

then we have 3.16 , by 3.14  and 3.15 .   

Define the following Hilbert spaces: 

22

0

: (1 ) ( )n
nH f x f x dx  and 

22

0

: (1 ) ( )n
nH g x g x dx  

for 0,1,2,...,n  with norms 

2 22

0

(1 ) ( )n
n
f x f x dx and  

2 22

0

(1 ) ( ) ,n
n

g x g x dx  

respectively. It is evident that 

0 2H L and 2
1 ( 1).n n n nH H L H H                   (3.17) 

Also nH  is isormorphic to the dual of .nH   

 Theorem 5. 

, ( 1)( , ) , 0,1,..., 1, 1,2,..., , 1,..., .n p p n pv x H n n p v v l  

Proof. For 0 1pn n  and 1 p v  using (2.3) we get 

( , ) ( , ) .

i

n
n n

n
x

e x x t K x t dt  

By the definition of the space ( 1)nH  and using (2.4) and (3.14), we arrive at  , ( 1)( , )n p p nv x H   

for  0 1pn n  and 1 p v . In the same manner, we obtain  , ( 1)( , )n p p nv x H  for 

0 1pn n  and 1v p l  . 

As a consequence of the preceding theorem we have the folowing:  

Corollary 1. 

0, ( , )   for 0,1,..., 1,  1,2,..., , 1,..., ,n p p n pv x H n n p v v l  
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where 

0 1 2,..., 1,...,max , , .v v ln n n n n n  
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