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Abstract. In comparison to conventional fuzzy sets, the idea of interval-
valued intuitionistic fuzzy sets provides a more accurate definition of uncer-

tainty. Defuzzification is the aspect of fuzzy control that requires the most

processing. It has numerous applications in fuzzy control. In this paper, the
concepts strength, length, distance, eccentricity, radius, diameter, centred, self-

centered, path cover, and edge cover of an interval-valued intuitionistic fuzzy

graph (IVIFG) are defined in this work. Further, we introduce the definition
of a self-centered IVIFG and the necessary and sufficient conditions for an

IVIFG to be self-centered are given. Moreover, we investigate some properties
of self-centered IVIFG with an illustration and we have discussed applications

in IVIFG.

1. Introduction

L.A. Zadeh [18] developed fuzzy sets in 1965 to solve the challenges of dealing
with ambiguity in fuzzy sets. Various scholars have since investigated fuzzy sets and
fuzzy logic in attempt to answer other real-world issues involving ambiguous and
uncertain situations. Interval-valued fuzzy sets are an extension of fuzzy sets that
the author first introduced in Turksen [16] in 1986. Instead than utilising numbers
as the membership function, it includes the values of number intervals to account
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for uncertainty. It is typically represented by the symbol [µ−
AL(x), µ

+
AU ]. Use the

equation 0 ≤ µ−
AL(x) + µ+

AU (x) ≤ 1 to represent the degree of membership of the
fuzzy set A. T. Atanassov added a non-membership function that is represented
by intuitionistic fuzzy sets as an additional component to fuzzy sets. Additionally,
he added interval valued intuitionistic fuzzy sets to the concept of intuitionistic
fuzzy sets [2]. It is preferable to depict uncertainty using interval-valued intu-
itionistic fuzzy sets as opposed to traditional fuzzy sets. Defuzzification, which
has several applications in fuzzy control, is the component that needs the most
processing. For the purpose of interpreting the degree of true and false mem-
bership functions, it is defined as a pair of intervals [µ−, µ+], 0 ≤ µ− + µ+ ≤ 1
and [λ−, λ+], 0 ≤ λ− + λ+ ≤ 1 with 0 ≤ µ+ + λ+ ≤ 1. Rosenfeld [13] created
fuzzy graph theory in 1975. examined the fuzzy graphs for which Kauffmann con-
ceived of the fundamental concept in 1973. The interval-valued neutrosophic sets
(IVNS) [14], an extension of the interval-valued intuitionistic fuzzy sets (IVIFS), of-
fer a more accurate representation of uncertainty when compared to ordinary fuzzy
sets. The list of components that make up IVIFS was expanded by the addition
of the indeterminate-membership function, which is represented by IVNS. Fuzzy
control uses it in a variety of ways. Only holding incomplete data is permitted by
the aforementioned limitations, but processing uncertain information is still neces-
sary. Let’s take a hypothetical situation where there are ten to seventeen patients
being tested for a pandemic. In that period, five to seven patients will have positive
results, three to six will have negative results, and two to four will still be awaiting
results. It can be written as x([0.5,0.7],[ 0.2, 0.4], [0.3,0.6]) using neutrosophic no-
tions. In this work, self-centered IVIFG analyses the proportion of interval-valued
true and false membership functions in our result. If the indeterminate-membership
function, which is represented by IVNG, is added to the result, the result can then
devolve into self-centered IVNG. Rashmanlou [ [9], [10], [11], [12]] researched fuzzy
graphs with irregular IVFGs. Furthermore, they defined balanced IVFGs, antipo-
dal IVFGs, and some properties of highly irregular IVFGs. The concept of an
interval valued fuzzy subset of a set was created by Zadeh [17] in 1975 as an ex-
tension of the idea of a fuzzy set, where the values of the membership degrees are
intervals of numbers rather than real numbers. Akram and Dudec [6] proposed
the concept IVFGs in 2011. In this article, we present the idea of an IVIFG and
analyse the concepts of strength, length, distance, eccentricity, radius, and diam-
eter as well as of self-centered and centered. We also investigate into some of the
properties of an illustration of a self-centered interval-valued intuitionistic fuzzy
graph. Moreover, IVIFG applications are used to identify instability in various
aspects of human life. These applications’ purpose is to enhance the country’s de-
fences to the degree of its vulnerabilities. We suggested reading this article so that
researchers could investigate this idea further using fuzzy graph theory to measure
centre point radius distance, eccentricity, radius, and diameter are analyses. An
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interval-based membership structure is offered by this set theory to handle interval-
valued intuitionistic fuzzy data. By recording their hesitation when determining
membership values, users are able to more accurately represent the ambiguity and
unpredictability of this data. This work advances various areas that are relevant
to fuzzy graph architectures across all types of graphs by utilising a number of
conceptual frameworks that include vertex point and edge will analysis. this can
be used in a wide variety of fuzzy set condition analysis domains. Applications of
this principle include spotting instability in all aspects of human life. The structure
of this paper is as follows: Introducing the concept is covered in Section 1 of the
lesson plan. Preliminaries provide the fundamental definitions required for Section
2. Section 3 important concepts An interval-valued intuitionistic fuzzy graph (IV-
IFG)’s strength, length, distance, eccentricity, radius, diameter, self-centeredness,
path coverage, and edge coverage are specified in this work.

2. Preliminaries

The discussion of some fundamental definitions and properties in this section
will help in the formulation of the research studies.[ [3], [8], [4], [7], [6]]
A graph is indeed an ordered pair G∗ = (Q,R), where Q is the collection of vertex
positions for G∗. If a, b are on an edge of G∗, then two vertices a and b are said
to be adjacent in G∗. To represent {a, b} in R, we write ab in R. A simple graph
is considered complete if an edge connects each pair of unique vertices in it. Path
P : a1a2....an+1(n > 0) in G∗ has a length of n. If a1 = an+1 and n ≥ 3, a
path P : a1a2....an+1 in G∗ is referred to as a cycle. It should be noted that any
edge in the cycle graph Cn can be removed to provide the path graph Pn, which
has n − 1 edges. An undirected graph G∗ is considered to be linked if there is a
path connecting every pair of distinct vertices. If every pair of different vertices
in a connected graph G∗ has a path between them, then the distance between
two vertices a, b is equal to the length of the shortest path that connects them.
Eccentricity e(a) = max{d(a, b)/a ∈ Q}. A connected graph’s radius is given by
the formula r(G) = min{e(a)/a ∈ Q}. The formula d(G) = max{e(a)/a ∈ Q} is
used to determine the diameter of a connected graph G∗. The set of eccentricities
in a graph is called the eccentric set (S). A graph’s C(G∗) centre is made up of
the collection of vertices with the least amount of eccentricity. If all of a graph’s
vertices are in the middle, the graph is said to be self-centered. As a result, the
eccentric set of a self-centered graph only includes one element, meaning that all
of the vertices are equally eccentric. A graph with a diameter equal to its radius is
equivalently said to be self-centered.
Map µ : X → [0, 1] is referred to as a fuzzy subset λ on a set X. Map λ : X ×X →
[0, 1] If λ(a, b) ≤ min{µ(a), µ(b)} for all a, b ∈ X, called a fuzzy relation on X. A
fuzzy relation λ is symmetric if λ(a, b) = λ(b, a) for all a, b ∈ X.
An interval number D is an interval [a−, a+] with 0 ≤ a− ≤ a+ ≤ 1. The interval
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[a, a] is identified with the number a ∈ [0, 1]D[0, 1] denotes the set of all interval
numbers.

Definition 1. [1] An IFS R in the universe of discourse X is characterized by
two membership functions given by λR : X → [0, 1] and µR : X → [0, 1] re-
spectively, such that λR(a) + µR(a) ≤ 1 for all a ∈ X. The IFS R denoted by
R = {(a, λR(a), µR(a))/a ∈ X}

Definition 2. [15] An IFG is of form G̃ = (µ, λ) which µ = (µ1, µ2) and λ =
(λ1, λ2) so that
(i) The function µ1 : Q → [0, 1] and µ2 : Q → [0, 1] denote the degree of membership
and non membership of the element a ∈ Q respectively, such that 0 ≤ µ1(a) +
µ2(a) ≤ 1 for all a ∈ Q
(ii) The function λ1 : Q×Q → [0, 1] and λ1 : Q×Q → [0, 1] are defined by
λ1(a, b) ≤ min{µ1(a), µ1(b)}, λ2(a, b) ≤ max{µ2(a), µ2(b)} such that 0 ≤ λ1(a, b)+
λ2(a, b) ≤ 1, ∀ ab ∈ R.

Table 1. Abbreviations

Notation Meaning

G̃ = (µ, λ) IVIFG
µ1 IVIF degree of membership
µ1 IVIF degree of non membership
λ1 IVIF degree of edge membership
λ2 IVIF degree of edge non membership
Sp Strength of the strongest path P

lλ1,λ2
λ1λ2-length of a path P

δλ1,λ2(ai, aj) λ1λ2-distance
eλ1,λ2(ai) eccentricity of ai
rλ1,λ2

(ai) radius of G̃

dλ1,λ2
(ai) diameter of G̃

3. Self Centered IVIFG

IVIFG is defined in this section, which also lists helpful terms for the concepts
which were used to create the main findings. We use illustrations to discuss some
of the self-centered IVIFG’s properties.

Definition 3. An IVIFG of the form G̃ = (µ, λ) which µ = (µ1, µ2) = ([µ−
1 , µ

+
1 ],

[µ−
2 , µ

+
2 ]) and λ = (λ1, λ2) = ([λ−

1 , λ
+
1 ], [λ

−
2 , λ

+
2 ]) So that

(1) The function µ1 : Q → [0, 1] and µ2 : Q → [0, 1] denote the degree of membership
and non membership of the element a ∈ Q respectively, such that 0 ≤ µ+

1 (a) +
µ+
2 (a) ≤ 1 for all a ∈ Q
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(2) The function λ1 : Q × Q → [0, 1] and λ2 : Q × Q → [0, 1] denote the degree of
interval-valued membership and interval-valued non-membership of the edge ab ∈ R,
respectively, are defined by
(i) λ−

1 (a, b) ≤ min{µ−
1 (a), µ

−
1 (b)} and λ+

1 (a, b) ≤ min{µ+
1 (a), µ

+
1 (b)}

(ii) λ−
2 (a, b) ≤ max{µ−

2 (a), µ
−
2 (b)} and λ+

2 (a, b) ≤ max{µ+
2 (a), µ

+
2 (b)} such that

0 ≤ λ+
1 (a, b) + λ+

2 (a, b) ≤ 1, ∀ ab ∈ R.

Definition 4. An IVIFG G̃ = (µ, λ) of a graph G∗ = (Q,R) is called a complete if
(i) λ−

1 (a, b) = min{µ−
1 (a), µ

−
1 (b)} and λ+

1 (a, b) = min{µ+
1 (a), µ

+
1 (b)}, (ii)λ

−
2 (a, b) =

max{µ−
2 (a), µ

−
2 (b)} and λ+

2 (a, b) = max{µ+
2 (a), µ

+
2 (b)}.

Example 1. An IVIFG G̃ = (µ, λ) of a graph G∗ = (Q,R) given figure-1 is a com-

plete IVIFG G̃ = (µ, λ) such that µ = {u1([0.3, 0.5][0.2, 0.4]), u2([0.4, 0.6][0.3, 0.4]),
u3([0.1, 0.3][0.3, 0.6]), u4([0.3, 0.4][0.4, 0.5])}.

Figure 1. G̃ = (µ, λ) is IVIFG of G∗
1 is complete

Definition 5. A path P in IVIFG G̃ = (µ, λ) of a graph G∗ = (Q,R) is a sequence
of distinct vertices a1, a2, ..., an such that either one of the following conditions is
satisfied:
(1) λ−

1 (a, b) > 0, λ−
2 (a, b) = 0 and λ+

1 (a, b) > 0, λ+
2 (a, b) = 0 for some a, b ∈ R

(2) λ−
1 (a, b) = 0, λ−

2 (a, b) > 0 and λ+
1 (a, b) = 0, λ+

2 (a, b) > 0 for some a, b ∈ R
(3) λ−

1 (a, b) > 0, λ+
1 (a, b) = 0 and λ−

2 (a, b) > 0, λ+
2 (a, b) = 0 for some a, b ∈ R

(4) λ−
1 (a, b) = 0, λ+

1 (a, b) > 0 and λ−
2 (a, b) = 0, λ+

2 (a, b) > 0 for some a, b ∈ R
A path P : a1a2...an+1 in G∗ is called a cycle if a1 = an+1 and n ≥ 3.

Definition 6. Let P : u1, u2, ..., un be a path in IVIFG G̃ = (µ, λ) of graph
G∗ = (Q,R). The λ−

1 −strength of all paths joining any two vertices and the expres-
sion ai, aj is represented by the symbol (λ−

1ij)
∞ and is defined as max(λ−

1 (ai, aj)) .

The λ+
1 −strength of all paths joining any two vertices and the expression ai, aj is

represented by the symbol (λ+
1ij)

∞ and is defined as max(λ+
1 (ai, aj)) . The λ−

2 −
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strength of all paths joining any two vertices and the expression ai, aj is rep-

resented by the symbol (λ−
2ij)

∞ and is defined as max(λ−
2 (ai, aj)) . The λ+

2 −
strength of all paths joining any two vertices and the expression ai, aj is rep-

resented by the symbol (λ+
2ij)

∞ and is defined as max(λ+
2 (ai, aj)) .If the same

edge possesses every value of λ1− − strength, λ1+ − strength, λ2− − strength,
λ2+ − strength, then it is the strength of the strongest path P and it is denoted by
SP = ([(λ−

1ij)
∞, (λ+

1ij)
∞], [(λ−

2ij)
∞, (λ+

2ij)
∞]) for all i, j = 1, 2, ..., k.

Definition 7. The IVIFG If any two vertices of G̃ = (µ, λ) are connected by a

path, they are said to be connected. That is, an IVIFG G̃ is connected if (λ−
1ij)

∞ >

0, (λ+
1ij)

∞ > 0 and (λ−
2ij)

∞ > 0, (λ+
2ij)

∞ > 0.

Example 2. Consider a IVIFG G̃ = (µ, λ) as shown in Figure-1 in Example-1.
The path u1u4 has a length of 1 and a strength of ([0.3, 0.4][0.4, 0.5]). The path
u1u2u4 has a length of 2 and a strength of ([0.3, 0.5][0.4, 0.5]). The path u1u2u3u4

has a length of 3 and a strength of ([0.3, 0.5][0.4, 0.6]).

Definition 8. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R).
The λ−

1 − length of a path P : a1a2...an in G∗, lλ−
1
(p), is defined as lλ−

1
(p) =∑n−1

i=1 λ−
1 (ai, ai+1) and the λ+

1 − length of a path P : u1u2...un in G, lλ+
1
(p), is

defined as lλ+
1
(p) =

∑n−1
i=1 λ+

1 (ai, ai+1). The λ−
2 − length of a path P : a1a2...an

in G∗, lλ−
2
(p), is defined as lλ−

2
(p) =

∑n−1
i=1 λ−

2 (ai, ai+1) and the λ+
2 − length of

a path P : u1u2...un in G, lλ+
2
(p), is defined as lλ+

2
(p) =

∑n−1
i=1 λ+

2 (ai, ai+1). The

λ1λ2 − length of a path P : u1u2...un in G, lλ1λ2(p), is defined as lλ1λ2(p) =
([lλ−

1
, lλ+

1
], [lλ−

2
, lλ+

2
]) .

Example 3. Consider a connected IVIFG G̃ = (µ, λ) as shown in Figure-1 in
Example-1. Here, u1u4 is a path of length 1 and lλ1λ2

= ([0.3, 0.4][0.4, 0.5]), u1u2u4

is a path of length 2 and lλ1λ2 = ([0.6, 0.9][0.7, 0.9]), u1u2u3u4 is a path of length 3
and lλ1λ2 = ([0.5, 1.1][1.0, 1.6]).

Definition 9. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R). The

λ−
1 −distance, δλ−

1ij
, is the smallest λ−

1 − length of any ai−aj path P in G̃, where

ai, aj ∈ Q. That is, δλ−
1ij

= δλ−
1
(ai, aj) = min(lλ−

1
(p)) and λ+

1 − distance, δλ+
1ij

, is

the smallest λ+
1 − length of any ai − aj path P in G̃, where ai, aj ∈ Q. That is,

δλ+
1ij

= δλ+
1
(ai, aj) = min(lλ+

1
(p)). The λ−

2 − distance, δλ−
2ij

, is the smallest λ−
2 −

length of any ai − aj path P in G̃, where ai, aj ∈ Q. That is, δλ−
2ij

= δλ−
2
(ai, aj) =

min(lλ−
2
(p)) and λ+

2 − distance, δλ+
2ij

, is the smallest λ+
2 − length of any ai − aj

path P in G̃, where ai, aj ∈ Q. That is, δλ+
2ij

= δλ+
2
(ai, aj) = min(lλ+

2
(p)). The

distance, δλ1,λ2
(ai, aj), is defined as δλ1,λ2

(ai, aj) = ([δλ−
1ij

, δλ+
1ij

], [δλ−
2ij

, δλ+
2ij

]).
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Example 4. Consider a connected IVIFG G̃ = (µ, λ) as shown in Figure-1 in
Example-1. Here, δλ−

1
(u1, u4) = 0.3, δλ+

1
(u1, u4) = 0.4 and δλ−

2
(u1, u4) = 0.4, δλ+

2
(u1, u4) =

0.5. That is δλ1,λ2
(u1, u4) = ([0.3, 0.4], [0.4, 0.5]). Similarly, we calculate

δλ1,λ2(u1, u2) = ([0.3, 0.5], [0.3, 0.4]), δλ1,λ2(u1, u3) = ([0.4, 0.7], [0.6, 1.0]),
δλ1,λ2(u2, u3) = ([0.1, 0.3], [0.3, 0.6]), δλ1,λ2(u2, u4) = ([0.2, 0.4], [0.4, 0.5]),
δλ1,λ2

(u3, u4) = ([0.1, 0.3], [0.4, 0.6])

Definition 10. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R).
For each ai ∈ Q, the λ−

1 − eccentricity of ai, denoted by eλ−
1
(ai), is defined as

eλ−
1
(ai) = max{δλ−

1
(ai, aj)/ui ∈ Q} and for each ai ∈ Q, the λ+

1 − eccentricity of

ai, denoted by eλ+
1
(ai), is defined as eλ+

1
(ai) = max{δλ+

1
(ai, aj)/ai ∈ Q}. For each

ai ∈ Q, the λ−
2 − eccentricity of ai, denoted by eλ−

2
(ai), is defined as eλ−

2
(ai) =

max{δλ−
2
(ai, aj)/ui ∈ Q} and for each ai ∈ Q, the λ+

2 − eccentricity of ai, de-

noted by eλ+
2
(ai), is defined as eλ+

2
(ai) = max{δλ+

2
(ai, aj)/ai ∈ Q}. For each

ai ∈ Q, the eccentricity of ai, denoted by eλ1,λ2
(ai), is defined as eλ1,λ2

(ai) =
([eλ−

1
(ai), eλ+

1
(ai)], [eλ−

2
(ai), eλ+

2
(ai)]).

Definition 11. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R). The

λ−
1 −radius of G̃ is denoted by rλ−

1
(G) and is defined as rλ−

1
(G) = min{eλ−

1
(ai)/ai ∈

Q} and the λ+
1 − radius of G̃ is denoted by rλ+

1
(G) and is defined as rλ+

1
(G) =

min{eλ+
1
(ai)/ai ∈ Q}. The λ−

2 − radius of G̃ is denoted by rλ−
2
(G) and is defined

as rλ−
2
(G) = min{eλ−

2
(ai)/ai ∈ Q} and the λ+

2 − radius of G̃ is denoted by rλ+
2
(G)

and is defined as rλ+
2
(G) = min{eλ+

2
(ai)/ai ∈ Q}. The radius of G̃ is denoted by

rλ1,λ2
(G) and is defined as rλ1,λ2

(G) = ([rλ−
1
(G), rλ+

1
(G)], [rλ−

2
(G), rλ+

2
(G)]).

Definition 12. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R). The

λ−
1 −diameter of G̃ is denoted by dλ−

1
(G) and is defined as dλ−

1
(G) = max{eλ−

1
(ai)/ai ∈

Q} and the λ+
1 − diameter of G̃ is denoted by dλ+

1
(G) and is defined as dλ+

1
(G) =

max{eλ+
1
(ai)/ai ∈ Q}. The λ−

2 − diameter of G̃ is denoted by dλ−
2
(G) and is de-

fined as dλ−
2
(G) = max{eλ−

2
(ai)/ai ∈ Q} and the λ+

2 −diameter of G̃ is denoted by

dλ+
2
(G) and is defined as dλ+

2
(G) = max{eλ+

2
(ai)/ai ∈ Q}. The diameter of G̃ is de-

noted by dλ1,λ1(G) and is defined as dλ1,λ1(G) = ([dλ−
1
(G), dλ+

1
(G)], [dλ−

1
(G), dλ+

1
(G)]).

Example 5. From the above Examples-1,3,4. using standard calculations, it is easy
to see that: eλ−

1
− eccentricity, eλ+

1
− eccentricity and eλ−

2
− eccentricity, eλ+

2
−

eccentricity of each vertex is
eλ−

1
(u1) = 0.4, eλ−

1
(u2) = 0.3, eλ−

1
(u3) = 0.4, eλ−

1
(u4) = 0.3, eλ+

1
(u1) = 0.7, eλ+

1
(u2) =

0.5, eλ+
1
(u3) = 0.7, eλ+

1
(u4) = 0.4 and eλ−

2
(u1) = 0.6, eλ−

2
(u2) = 0.4, eλ−

2
(u3) =

0.6, eλ−
2
(u4) = 0.4, eλ+

2
(u1) = 1.0, eλ+

2
(u2) = 0.6, eλ+

2
(u3) = 1.0, eλ+

2
(u4) = 0.6
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eccentricity of each vertex is
eλ1,λ2(u1) = ([0.4, 0.7], [0.6, 1.0]), eλ1,λ2(u2) = ([0.3, 0.5], [0.4, 0.6]),
eλ1,λ2(u3) = ([0.4, 0.7], [0.6, 1.0]), eλ1,λ2(u4) = ([0.3, 0.4], [0.4, 0.6])

radius of G̃ is rλ1,λ2
(G) = ([0.3, 0.4], [0.4, 0.6]) and

diameter of G̃ is dλ1,λ2
(G) = ([0.4, 0.7], [0.6, 1.0])

Definition 13. A vertex ui ∈ Q is called a central vertex of a connected IVIFG
G̃ = (µ, λ) of graph G∗ = (Q,R), if rλ−

1
(G) = eλ−

1
(ui), rλ+

1
(G) = eλ+

1
(ui) and

rλ−
2
(G) = eλ−

2
(ui), rλ+

2
(G) = eλ+

2
(ui) and C(G̃) stands for the set of all central

vertices of an IVIFG.

Definition 14. IVIFG connected If every vertex in G̃ is a central vertex, then the
graph G̃ = (µ, λ) is a self-centered IVIFG, that is rλ−

1
(G) = eλ−

1
(ui), rλ+

1
(G) =

eλ+
1
(ui) and rλ−

2
(G) = eλ−

2
(ui), rλ+

2
(G) = eλ+

2
(ui) ∀ ui ∈ Q.

Example 6. Consider a connected IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) such
that µ = {u1([0.2, 0.4], [0.3, 0.5]), u2([0.4, 0.5], [0.3, 0.4]),
u3([0.3, 0.4], [0.2, 0.5])} as shown in Figure-2 By routine computations, it is easy to

Figure 2. G̃ = (µ, λ) is self centered IVIFG of G∗

see that:
(i) Distance δλ1,λ2

(ui, uj) is
δλ1,λ2

(u1, u2) = ([0.2, 0.4], [0.3, 0.5]),
δλ1,λ2(u1, u3) = ([0.2, 0.4], [0.3, 0.5]),
δλ1,λ2(u2, u3) = ([0.2, 0.4], [0.3, 0.5])
(ii) Eccentricity eλ1,λ2

(ui) of each vertex is ([0.2, 0.4], [0.3, 0.5]) for i = 1, 2, 3

(iii) radius of G̃ is rλ1,λ2(G) = ([0.2, 0.4], [0.3, 0.5]) and

diameter of G̃ is dλ1,λ2
(G) = ([0.2, 0.4], [0.3, 0.5])

Hence, G̃ is self centered IVIFG

Definition 15. A path cover of an IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a

set P of paths such that every vertex of G̃ is incident to some path of P .
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Example 7. Consider a connected IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) such
that µ = {u1([0.1, 0.3], [0.2, 0.4]), u2([0.2, 0.4], [0.1, 0.3]), u3([0.2, 0.3], [0.3, 0.5]),
u4([0.3, 0.4], [0.2, 0.5]), u5([0.4, 0.5][0.2, 0.3]), u6([0.2, 0.4], [0.3, 0.5])} as shown in Figure-

3. In this example, the some path covers of an IVIFG G̃ = (µ, λ) are M1 =

Figure 3. G̃ = (µ, λ) is IVIFG of G∗

{u1u2u3u5, u4u5u6},
M2 = {u1u2u4u5, u3u5u6},
M3 = {u1u2u4u5u6, u5u3},
M4 = {u1u2u4u5u6, u2u3},
M5 = {u1u2u3u5u6, u5u4},
M6 = {u1u2u3u5u6, u2u3},
M7 = {u1u2u4, u2u3u5u6},
M8 = {u1u2u3, u2u4u5u6},
M9 = {u1u6, u2u3u5u4},
M10 = {u1u2, u3u5, u4u5u6},
M11 = {u1u2, u4u5, u3u5u6}

Definition 16. An edge covers of an IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a

set E of edge such that every vertex of G̃ is incident to some edge of E.

Example 8. In above Example-7, as shown in Figure-3. The some of the edge
covers of an IVIFG G̃ = (µ, λ) are
E1 = {(u1, u2), (u2, u3), (u4, u5), (u5, u6)},
E2 = {(u1, u6), (u2, u4), (u3, u5)},
E3 = {(u1, u2), (u2, u4), (u3, u5), (u5, u6)},
E4 = {(u1, u6), (u2, u3), (u4, u5)},
E5 = {(u1, u2), (u2, u3), (u2, u4), (u5, u6)},
E6 = {(u1, u6), (u3, u5), (u4, u5)}
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Theorem 1. Every complete IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a IVIFG
and rλ−

1
(G) = 1

µ−
1i

, rλ+
1
(G) = 1

µ+
1i

and rλ−
2

= 1
µ−
2i

, rλ+
2

= 1
µ+
2i

, where The lowest

vertex membership is µ−
1i and The largest vertex membership is µ+

1i and The lowest
vertex membership is µ−

2i and The largest vertex membership is µ+
2i.

Proof. Let G̃ = (µ, λ) be a complete IVIFG. To prove that G̃ is a self centered
IVIFG. Therefore, we must demonstrate that each vertex is a central vertex. First
we claim that G̃ is a µ1i-self centred IVIFG. Then rλ−

1
(G) = 1

µ−
1i

and rλ+
1
(G) = 1

µ+
1i

,

where The lowest vertex membership is µ−
1i and The largest vertex membership is

µ+
1i. Fix a vertex ui in Q so that µ−

1i is the value of G̃ is lowest vertex membership

and µ+
1i is the value of G̃ is largest vertex membership.

Case1: Consider all the ui − uj paths P of length n in G̃, ∀ uj ∈ Q.

(i) If n = 1, then λ−
1ij = min{µ−

1i, µ
−
1j}. Therefore, λ

−
1 − length of P = lλ−

1
(P ) = 1

µ−
1i

and λ+
1ij = min{µ+

1i, µ
+
1j}. Therefore, λ

+
1 − length of P = lλ+

1
(P ) = 1

µ+
1i

.

(ii) (ii) One of the edges of P has the λ−
1 − strength of µ−

1i if n > 1 and hence,

λ−
1 − length of a ui−uj path will exceed 1

µ−
1i

. So that, λ−
1 − length of P = lλ−

1
(P ) >

1
µ−
1i

.

Hence, δλ−
1
(ui, uj) = min(lλ−

1
(p)) =

1

µ−
1i

, ∀uj ∈ Q. (1)

Also one of the edges of P possesses the λ+
1 −strength of µ+

1i and hence, λ+
1 −length

of P will exceed 1
µ+
1i

. that is, λ+
1 − length of P = lλ+

1
(P ) > 1

µ+
1i

.

Hence,δλ+
1
(ui, uj) = min(lλ+

1
(p)) =

1

µ+
1i

, ∀uj ∈ Q. (2)

Case 2: Let uk ̸= ui ∈ Q. Consider all uk−uj paths X of length n in G̃, ∀ uj ∈ Q.

(i) If n = 1, then λ−
1kj = min{µ−

1k, µ
−
1j} ≥ µ−

1i, since µ−
1i is the least. Hence,

λ−
1 − length (Q) = lλ−

1
(X) = 1

λ−
1 (uk,uj)

≤ 1
µ−
1i

.

Also λ+
1kj = min{µ+

1k, µ
+
1j} ≤ µ+

1i, since µ
+
1i is the largest. Hence, λ+

1 − length (Q) =

lλ+
1
(X) = 1

λ+
1 (uk,uj)

≥ 1
µ+
1i

.

(ii) If n = 2, then lλ−
1
(X) = 1

λ−
1 (uk,uk+1)

+ 1
λ−
1 (uk+1,uj)

≤ 2
µ−
1i

, Since, µ−
1i is the lowest.

Also lλ+
1
(X) = 1

λ+
1 (uk,uk+1)

+ 1
λ+
1 (uk+1,uj)

≥ 2
µ+
1i

, Since, µ+
1i is the largest.

(iii) If n > 2, then lλ−
1
(X) ≤ n

µ−
1i

, since µ−
1i is the lowest.

Also lλ+
1
(X) ≥ n

µ+
1i

, since µ+
1i is the largest.

Hence, δλ−
1
(uk, uj) = min(lλ−

1
(X)) ≤ 1

µ−
1i

, ∀uk, uj ∈ Q. and

δλ+
1
(uk, uj) = min(lλ+

1
(X)) ≥ 1

µ+
1i

, ∀uk, uj ∈ Q. (3)
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From equation 1,2 and 3, we have,
eλ−

1
(ui) = min(δλ−

1
(ui, uj)) =

1
µ−
1i

, ∀ui ∈ Q and

eλ+
1
(ui) = min(δλ+

1
(ui, uj)) =

1

µ+
1i

, ∀ui ∈ Q. (4)

Hence, G̃ is a λ−
1 and λ+

1 self centered IVIFG.
Now, rλ−

1
(G) = min(eλ−

1
(ui)) =

1
µ−
1i

, since by 4 rλ−
1
(G) = 1

µ−
1i

, where µ−
1i(ui) is the

lowest and rλ+
1
(G) = min(eλ+

1
(ui)) =

1
µ+
1i

, since by 4 rλ+
1
(G) = 1

µ+
1i

, where µ+
1i(ui)

is the largest.
Next, we claim that G̃ is a µ2i-self centered IVIFG. Then rλ−

2
(G) = 1

µ−
2i

and

rλ+
2
(G) = 1

µ+
2i

, where µ−
2i is the lowest and µ+

2i is the largest. Now fix a vertex

ui ∈ Q such that µ−
2i is lowest vertex membership value of G̃ and µ+

2i is largest

vertex membership value of G̃.
Case 1: Consider all the ui − uj paths P of length n in G̃, ∀ uj ∈ Q.

(i) If n = 1, then λ−
2ij = max{µ−

2i, µ
−
2j} = µ−

2i. Therefore, λ−
2 − length of P =

lλ−
2
(P ) = 1

µ−
2i

and λ+
2ij = max{µ+

2i, µ
+
2j} = µ+

2i. Therefore, λ+
2 − length of P =

lλ+
2
(P ) = 1

µ+
2i

.

(ii) If n > 1, then one of the edges of P possesses the λ−
2 − strength of µ−

2i and

hence, λ−
2 − length of a ui − uj path will exceed 1

µ−
2i

. So that, λ−
2 − length of

P = lλ−
2
(P ) > 1

µ−
2i

.

Hence, δλ−
2
(ui, uj) = max(lλ−

2
(p)) =

1

µ−
2i

, ∀uj ∈ Q. (5)

Also one of the edges of P possesses the λ+
2 −strength of µ+

2i and hence, λ+
2 −length

of P will exceed 1
µ+
2i

. that is, λ+
2 − length of P = lλ+

2
(P ) > 1

µ+
2i

.

Hence, δλ+
2
(ui, uj) = max(lλ+

2
(p)) =

1

µ+
2i

, ∀uj ∈ Q. (6)

Case 2: Let uk ̸= ui ∈ Q. Consider all uk−uj paths X of length n in G̃, ∀ uj ∈ Q.

(i) If n = 1, then λ−
2kj = max{µ−

2k, µ
−
2j} ≥ µ−

2i, since µ−
2i is the least. Hence,

λ−
2 − length (Q) = lλ−

2
(X) = 1

λ−
2 (uk,uj)

≤ 1
µ−
2i

.

Also λ+
2kj = max{µ+

2k, µ
+
2j} ≤ µ+

2i, since µ
+
2i is the greatest. Hence, λ+

2 −length (Q) =

lλ+
2
(X) = 1

λ+
2 (uk,uj)

≥ 1
µ+
2i

.

(ii) If n = 2, then lλ−
2
(X) = 1

λ−
2 (uk,uk+1)

+ 1
λ−
2 (uk+1,uj)

≤ 2
µ−
2i

, Since, µ−
2i is the least.

Also lλ+
2
(X) = 1

λ+
2 (uk,uk+1)

+ 1
λ+
2 (uk+1,uj)

≥ 2
µ+
2i

, Since, µ+
2i is the greatest.

(iii) If n > 2, then lλ−
2
(X) ≤ n

µ−
2i

, since µ−
2i is the least.
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Also lλ+
2
(X) ≥ n

µ+
2i

, since µ+
2i is the greatest.

Hence, δλ−
2
(uk, uj) = max(lλ−

2
(X)) ≤ 1

µ−
2i

, ∀uk, uj ∈ Q. and

δλ+
2
(uk, uj) = max(lλ+

2
(X)) ≥ 1

µ+
2i

, ∀uk, uj ∈ Q. (7)

From equation 5,6and 7, we have,
eλ−

2
(ui) = max(δλ−

2
(ui, uj)) =

1
µ−
2i

, ∀ui ∈ Q and

eλ+
2
(ui) = max(δλ+

2
(ui, uj)) =

1

µ+
2i

, ∀ui ∈ Q. (8)

Hence, G̃ is a λ−
2 and λ+

2 self centered IVIFG.
Now, rλ−

2
(G) = min(eλ−

2
(ui)) = 1

µ−
2i

, since by 7 rλ−
2
(G) = 1

µ−
2i

, where µ−
2i is the

least and rλ+
2
(G) = max(eλ+

2
(ui)) =

1
µ+
2i

, since by 8 rλ+
2
(G) = 1

µ+
2i

, where µ+
2i is the

largest.
From equation 4 and 8, every vertex of G̃ is a central vertex. Hence G̃ is a self
centered IVIFG. □

Corollary 1. Every complete IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a self
centered IVIFG and rλ1,λ2(G) = ([ 1

µ−
1i

, 1
µ+
1i

], [ 1
µ−
2i

, 1
µ+
2i

]) where, µ−
1i is the lowest vertex

membership and µ+
1i is the largest vertex membership. µ−

2i is the lowest vertex
membership and µ+

2i is the largest vertex membership.

Proof. By above theorem-1, every complete IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R)
is a self centered IVIFG.
rλ1,λ2

(G) = (rλ1
(G), rλ2

(G)) = ([min{rλ−
1 (G)},min{rλ+

1 (G)}], [min{rλ−
2 (G)},

min{rλ+
2 (G)}]). rλ1,λ2(G) = ([ 1

µ−
1i

, 1
µ+
1i

], [ 1
µ−
2i

, 1
µ+
2i

]), since µ−
1i is the lowest member-

ship value and µ+
1i is the largest membership value. µ−

2i is the lowest membership
value and µ+

2i is the largest membership value. □

Remark 1. Converse of the above theorem-1 is not true. By Example-6. Then G̃
is self centered IVIFG but not complete.

Lemma 1. An IVIFG G̃ = (µ, λ) of graph G∗ = (Q,R) is a self centered IVIFG if
and only if rλ−

1
(G) = dλ−

1
(G), rλ+

1
(G) = dλ+

1
(G) and rλ−

2
(G) = dλ−

2
(G), rλ+

2
(G) =

dλ+
2
(G).

Theorem 2. Let G̃ = (µ, λ) is a connected IVIFG. Then for at least one edge
max(λ−

1 (ui, uj)) = λ−
1 (ui, uj), max(λ+

1 (ui, uj)) = λ+
1 (ui, uj) and max(λ−

2 (ui, uj)) =

λ−
2 (ui, uj), max(λ+

2 (ui, uj)) = λ+
2 (ui, uj)

Proof. If G̃ = (µ, λ) be a connected IVIFG. Consider a vertex ui whose least mem-
bership value µ−

1i and greatest membership value is µ+
1i and least membership value
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µ−
2i and greatest membership value is µ+

2i.
Case 1: Let µ−

1i be the least value and µ+
1i(ui) be the greatest value and µ−

2i be the
least value and µ+

2i be the greatest value and in the vertex ui ∈ Q. Let ui, uj ∈ Q,

then ([λ−
1ij , λ

+
1ij ], [λ

−
2ij , λ

+
2ij ]) = ([µ−

1i, µ
+
1i], [µ

−
2i, µ

+
2i]) and ([max(λ−

1ij),max(λ+
1ij)],

[max(λ−
2ij),max(λ+

2ij)]) = ([µ−
1i, µ

+
1i], [µ

−
2i, µ

+
2i]). The strength of all the edges which

are incident on the vertex ui is ([µ
−
1i, µ

+
1i], [µ

−
2i, µ

+
2i]). Since G̃ is a connected IVIFG.

Case 2: Let µ−
1k be the least value and µ+

1i be the greatest value and µ−
2k be

the least value and µ+
2i be the greatest value in the vertex ui, uk ∈ Q. Then

([λ−
1ik, λ

+
1ik], [λ

−
2ik, λ

+
2ik]) = ([µ−

1k, µ
+
1i], [µ

−
2k, µ

+
2i]). Since, it is a connected IVIFG,

there will be an edge between ui and uk, max(λ−
1ik) = µ−

1k, max(λ+
1ik) = µ+

1i and

max(λ−
2ik) = µ−

2k, max(λ+
2ik) = µ+

2i. □

Theorem 3. Let G̃ = (µ, λ) be a connected IVIFG of graph G∗ = (Q,R) with

paths covers P1 and P2 of G̃. Then the necessary and sufficient condition for an
IVIFG to be self centered IVIFG is δλ−

1ij
= rλ−

1
(G), ∀ (ui, uj) ∈ P1, δλ+

1ij
=

dλ+
1
(G), ∀ (ui, uj) ∈ P2, and

δλ−
2ij

= rλ−
2
(G), ∀ (ui, uj) ∈ P1, δλ+

2ij
= dλ+

2
(G), ∀ (ui, uj) ∈ P2. (9)

Proof. Necessary Condition: We now assume that G̃ = (µ, λ) is a self cen-
tered IVIFG and we have to prove that equation 9 holds. Suppose equation 9
does not holds. then we have, δλ−

1
(ui, uj) ̸= rλ−

1
(G), for some (ui, uj) ∈ P1 and

δλ+
1
(ui, uj) ̸= dλ+

1
(G), for some (ui, uj) ∈ P2 and δλ−

2
(ui, uj) ̸= rλ−

2
(G), for some

(ui, uj) ∈ P1 and δλ+
2
(ui, uj) ̸= dλ+

2
(G), for some (ui, uj) ∈ P2. By using Lemma-1,

the above inequality becomes δλ−
1
(ui, uj) ̸= rλ−

1
(G), for some (ui, uj) ∈ P1 and

δλ+
1
(ui, uj) ̸= dλ+

1
(G), for some (ui, uj) ∈ P2 and δλ−

2
(ui, uj) ̸= rλ−

2
(G), for some

(ui, uj) ∈ P1 and δλ+
2
(ui, uj) ̸= dλ+

2
(G), for some (ui, uj) ∈ P2. Then eλ−

1
(ui) ̸=

rλ−
1
(G), eλ+

1
(ui) ̸= rλ+

1
(G) and eλ−

2
(ui) ̸= rλ−

2
(G), eλ+

2
(ui) ̸= rλ+

2
(G) for some

ui ∈ Q, which implies G̃ is not self centered IVIFG, which is contradiction. Hence,
δλ−

1
(ui, uj) = rλ−

1
(G), ∀ (ui, uj) ∈ P1 and δλ+

1
(ui, uj) = dλ+

1
(G), ∀ (ui, uj) ∈ P2

and δλ−
2
(ui, uj) = rλ−

2
(G), ∀ (ui, uj) ∈ P1 and δλ+

2
(ui, uj) = dλ+

2
(G), ∀ (ui, uj) ∈

P2.
Sufficient Condition: We now assume that equation 9 holds and we have to
prove that G̃ is a self centered IVIFG. If equation 9 holds, then we’ve eλ−

1
(ui) =

δλ−
1
(ui, uj), for all (ui, uj) ∈ P1, eλ+

1
(ui) = δλ+

1
(ui, uj), for all (ui, uj) ∈ P2

and eλ−
2
(ui) = δλ−

2
(ui, uj), for all (ui, uj) ∈ P1, eλ+

2
(ui) = δλ+

2
(ui, uj), for all

(ui, uj) ∈ P2. Which implies eλ−
1
(ui) = rλ−

1
(G), eλ+

1
(ui) = rλ+

1
(G) and eλ−

2
(ui) =

rλ−
2
(G), eλ+

2
(ui) = rλ+

2
(G) for all ui ∈ Q. Hence, G̃ is not self centered IVIFG. □
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Corollary 2. If G̃ = (µ, λ) is a connected IVIFG of graph G∗ = (Q,R) with an

edge cover E of G̃. Then the necessary and sufficient condition for an IVIFG to
be self centered IVIFG is δλ−

1
(ui, uj) = rλ−

1
(G), ∀ (ui, uj) ∈ E1, δλ+

1
(ui, uj) =

dλ+
1
(G), ∀ (ui, uj) ∈ E2 and δλ−

2
(ui, uj) = rλ−

2
(G), ∀ (ui, uj) ∈ E1,

δλ+
2
(ui, uj) = dλ+

2
(G), ∀ (ui, uj) ∈ E2. (10)

Theorem 4. Embedding Theorem: Let H̃ = (µ
′
, λ

′
) is a connected self centered

IVIFG. Then there exist a connected IVIFG G̃ such that < C(G̃) > is isomorphic to

H̃. Also dλ−
1
(G) = 2rλ−

1
(G), dλ+

1
(G) = 2rλ+

1
(G) and dλ−

2
(G) = 2rλ−

2
(G), dλ+

2
(G) =

2rλ+
2
(G).

Proof. Given that H̃ = (µ
′
, λ

′
) is a connected self centered IVIFG. Let dλ−

1
(H) =

p1, dλ+
1
(H) = q1 and dλ−

2
(H) = p2, dλ+

2
(H) = q2. Then construct G̃ = (µ, λ) from

H̃ as follows:
Take two vertices ui, uj ∈ Q with µ−

1 (ui) = µ−
1 (uj) =

1
p1
, µ+

1 (ui) = µ+
1 (uj) =

1
2q1

and µ−
2 (ui) = µ−

2 (uj) = 1
p2
, µ+

2 (ui) = µ+
2 (uj) = 1

2q2
and join all the vertices of

H̃ to both ui and uj with λ−
1ik = λ−

1jk = 1
p1
, λ+

1ik = λ+
1jk = 1

2q1
and λ−

2ik =

λ−
2jk = 1

p2
, λ+

2ik = λ+
2jk = 1

2q2
for all uk ∈ Q

′
. Put µ−

1i = (µ−
1i)

′
, µ+

1i = (µ+
1i)

′
and

µ−
2i = (µ−

2i)
′
, µ+

2i = (µ+
2i)

′
for all vertices in H̃. and λ−

1ij = (λ−
1ij)

′
, λ+

1ij = (λ+
1ij)

′

for all edges in H̃ and λ−
2ij = (λ−

2ij)
′
, λ+

2ij = (λ+
2ij)

′
for all edges in H̃.

Claim: G̃ is an IVIFG. First note that µ−
1i ≤ µ−

1k, µ−
2i ≤ µ−

2k for all uk ∈ H̃.

If possible, let µ−
1i > µ−

1k and µ−
2i > µ−

2k for at least one vertex uk ∈ H̃. Then
1
p1

> µ−
1k,

1
p2

> µ−
2k, that is p1 < 1

µ−
1k

≤ 1
λ−
1kl

, p2 < 1
µ−
2k

≤ 1
λ−
2kl

, where the last

inequality holds for every ul ∈ Q
′
, since H̃ is an IVIFG. That is 1

λ−
1kl

> p1,
1

λ−
2kl

> p2

for all uk ∈ H̃ which contradicts that dλ−
1
(H̃) = p1, dλ−

2
(H̃) = p2. Therefore

µ−
1i ≤ µ−

1k, µ
−
2i ≤ µ−

2k for all uk ∈ Q
′
and λ−

1ik ≤ min{µ−
1i, µ

−
1k} = 1

p1
, λ−

2ik ≤
max{µ−

2i, µ
−
2k} = 1

p2
, similarly, λ−

1jk ≤ min{µ−
1j , µ

−
1k} = 1

p1
, λ−

2jk ≤ max{µ−
2j , µ

−
2k} =

1
p2

for all uk ∈ Q
′
. Note that µ+

1i ≤ µ+
1k, µ+

1j ≤ µ−
1k and µ+

2i ≤ µ+
2k, µ+

2j ≤ µ−
2k for

all uk ∈ Q
′
, since dλ+

1
(H) = q1 and dλ+

2
(H) = q2. Therefore λ

+
1ik ≤ min{µ+

1i, µ
+
1k} =

1
2q1

, λ+
2ik ≤ max{µ+

2i, µ
+
2k} = 1

2q2
, similarly, λ+

1jk ≤ min{µ+
1j , µ

+
1k} = 1

2q1
and λ+

2jk ≤
max{µ+

2j , µ
+
2k} = 1

2q2
. Hence, G̃ is an IVIFG. Also, eλ−

1
(uk) = p1, eλ−

1
(uk) = p2 for

all uk ∈ Q
′
and eλ−

1
(ui) = eλ−

1
(uj) =

1
λ−
1ik

+ 1
λ−
1kl

= 2p1, rλ−
1
(G) = p1, dλ−

1
(G) = 2p1

and eλ−
2
(ui) = eλ−

2
(uj) =

1
λ−
2ik

+ 1
λ−
2kl

= 2p2, rλ−
2
(G) = p2, dλ−

2
(G) = 2p2. Next,

eλ+
1
(uk) = q1, eλ+

2
(uk) = q2 for all uk ∈ Q

′
and eλ+

1
(ui) = eλ+

1
(uj) = 1

λ+
1lk

=

2q1, eλ+
2
(ui) = eλ+

2
(uj) = 1

λ+
2lk

= 2q2 for all uk ∈ Q
′
. Therefore, rλ+

1
(G) =
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q1, dλ+
1
(G) = 2q1 and rλ+

2
(G) = q2, dλ+

2
(G) = 2q2. Hence, < C(G̃) > is isomorphic

to H̃. □

Theorem 5. An IVIFG G̃ = (µ, λ) is a self centered if and only if δλ−
1
(ui, uj) ≤

rλ−
1
(G), δλ+

1
(ui, uj) ≥ rλ+

1
(G) and δλ−

2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G) for

all ui, uj ∈ Q.

Proof. We assume that G̃ = (µ, λ) is a self centered IVIFG. That is, eλ−
1
(ui) =

eλ−
1
(uj), eλ+

1
(ui) = eλ+

1
(uj) and eλ−

2
(ui) = eλ−

2
(uj), eλ+

2
(ui) = eλ+

2
(uj) for all ui, uj ∈

Q, rλ−
1
(G) = eλ−

1
(ui), rλ+

1
(G) = eλ+

1
(ui) and rλ−

2
(G) = eλ−

2
(ui), rλ+

2
(G) = eλ+

2
(ui)

for all ui ∈ Q. Now we wish to show that δλ−
1
(ui, uj) ≤ rλ−

1
(G), δλ+

1
(ui, uj) ≥

rλ+
1
(G) and δλ−

2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G) for all ui, uj ∈ Q. By

the definition of eccentricity, we obtain, δλ−
1
(ui, uj) ≤ eλ−

1
(ui), δλ+

1
(ui, uj) ≥

eλ+
1
(ui) and δλ−

2
(ui, uj) ≤ eλ−

2
(ui), δλ+

2
(ui, uj) ≥ eλ+

2
(ui) for all ui, vi ∈ Q. This

is possible only when eλ−
1
(ui) = eλ−

1
(uj), eλ+

1
(ui) = eλ+

1
(uj) and eλ−

2
(ui) =

eλ−
2
(uj), eλ+

2
(ui) = eλ+

2
(uj) for all ui, uj ∈ Q. Since, G̃ is a self centered IV-

IFG, the above inequality becomes δλ−
1
(ui, uj) ≤ rλ−

1
(G), δλ+

1
(ui, uj) ≥ rλ+

1
(G)

and δλ−
2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G).

Conversely, we now assume that δλ−
1
(ui, uj) ≤ rλ−

1
(G), δλ+

1
(ui, uj) ≥ rλ+

1
(G) and

δλ−
2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G) for all ui, uj ∈ Q. Then we have to

prove that G̃ is a self centered IVIFG. Suppose that G̃ is not self centered IV-
IFG. Then rλ−

1
(G) ̸= eλ−

1
(ui), rλ+

1
(G) ̸= eλ+

1
(ui) and rλ−

2
(G) ̸= eλ−

2
(ui), rλ+

2
(G) ̸=

eλ+
2
(ui) for some ui ∈ Q. Let us assume that eλ−

1
(ui), eλ+

1
(ui) and eλ−

2
(ui), eλ+

2
(ui)

is the least value among all other eccentricity. That is, rλ−
1
(G) = eλ−

1
(ui), rλ+

1
(G) =

eλ+
1
(ui) and

rλ−
2
(G) = eλ−

2
(ui), rλ+

2
(G) = eλ+

2
(ui). (11)

where eλ−
1
(ui) < eλ−

1
(uj), eλ+

1
(ui) < eλ+

1
(uj) and eλ−

2
(ui) < eλ−

2
(uj), eλ+

2
(ui) <

eλ+
2
(uj) for some ui, uj ∈ Q and δλ−

1
(ui, uj) = eλ−

1
(uj) > eλ−

1
(ui), δλ+

1
(ui, uj) =

eλ+
1
(uj) > eλ+

1
(ui) and δλ−

2
(ui, uj) = eλ−

2
(uj) > eλ−

2
(ui),,

δλ+
2
(ui, uj) = eλ+

2
(uj) > eλ+

2
(ui) for some ui, uj ∈ Q. (12)

Hence, from equation 11 and 12, we have, δλ−
1
(ui, uj) > rλ−

1
(G), δλ+

1
(ui, uj) >

rλ+
1
(G), and δλ−

2
(ui, uj) > rλ−

2
(G), δλ+

2
(ui, uj) > rλ+

2
(G), for some ui, uj ∈ Q,

which is a contradiction to the fact that δλ−
1
(ui, uj) ≤ rλ−

1
(G), δλ+

1
(ui, uj) ≥ rλ+

1
(G)

and δλ−
2
(ui, uj) ≤ rλ−

2
(G), δλ+

2
(ui, uj) ≥ rλ+

2
(G) for all ui, uj ∈ Q. Hence, G̃ =

(µ, λ) is a self centered IVIFG. □
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4. Application of IVIFG

Application in this paper are applied in detecting instability in human life and in
all fields. The findings of this study can be used to prevent crime and foster peace in
our nation. Using the security forces of our nation, we will defend the areas where
the majority of unlawful operations occur. In order to stop illicit operations in our
country, we will first deploy security forces there. Through the use of uncertainty
values, we will determine the extent of unlawful activity in the cities of our nation
and adjust the deployment of our security troops accordingly. Think of Q as the
country and u1, u2, u3, u4 as the cities within Q. We shall examine this study using
IVIFG.We define the most terrible terrorist crimes as µ−

1 , and let’s define the special
forces protecting the country from terrorist threats as µ+

1 . Other criminal activity
will be considered as µ−

2 by those involved. (Examples include the transfer of ill-
gotten gains, the smuggling of precious metals, the smuggling of endangered species,
and the illegal carrying of weapons). Let’s treat troops who guard against other
criminal actions as µ+

2 . Let’s have a look at the vertex set Q = {u1, u2, u3, u4} in

Table 2.

Cities [terrorist acts, protection] [other illegal acts, other protection]
u1 [0.3,0.5] [0.2,0.4]
u2 [0.4,0.6] [0.3,0.4]
u3 [0.1,0.3] [0.3,0.6]
u4 [0.3,0.4] [0.4,0.5]

IVIFG. Any two city-connected highway that borders G̃ is defined by R as G∗ =
(Q,R). Let us consider the edge set R = {u1u2, u2u3, u2u4, u3c4, c4c5} in G∗ as
shown in Figure-1. IVIFG calculates the value of the security forces, the value
of the unlawful activities, and the value of the security forces from terrorist acts
that take place on highways connecting two cities. used in the definition -9. We

Table 3.

highway [terrorist acts, protection] [other illegal acts, other protection]
u1u2 [0.3,0.5] [0.3,0.4]
u2u3 [0.1,0.3] [0.3,0.6]
u2u4 [0.3,0.4] [0.4,0.5]
u3u4 [0.1,0.3] [0.4,0.6]
u1u4 [0.3,0.4] [0.4,0.5]

can estimate the cost of terrorist attacks spreading to other cities by using the
symbols dλ−

1ij
and dλ+

1ij
, respectively. We can also estimate the cost of security

forces’ protection by using the symbols dλ−
2ij

and dλ+
2ij

. In the Example-1, we take
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into consideration that u1, u2, u3, u4 are cities in Q and R is any two-city connected
highway that is located on the boundaries of G̃. Let us consider the edge set
R = {u1u2, u2u3, u2u4, u3u4, u1u4} in G∗ as shown in Figure-1 in Example-1. We

Table 4.

One city relation to distance between others city ([dλ−
1ij

, dλ+
1ij

], [dλ−
2ij

, dλ+
2ij

])

u1u4 ([0.3,0.4],[0.4,0.5])
u1u2 ([0.3,0.5],[0.3,0.4])
u1u3 ([0.4,0.7],[0.6,1.0])
u2u3 ([0.1,0.3],[0.3,0.6])
u2u4 ([0.2,0.4],[0.4,0.5])
u3u4 ([0.1,0.3],[0.4,0.6])

can estimate the impacts and protections a city has on others by comparing it to
those cities. From the table-4,5 we find that dλ1,λ2(G) = ([0.4, 0.7], [0.6, 1.0]) has

Table 5.

eλ1,λ2
(ui) maximum value of impacts and protection

eλ1,λ2(u1) ([0.4,0.7],[0.6,1.0])
eλ1,λ2

(u2) ([0.3,0.5],[0.4,0.6])
eλ1,λ2

(u3) ([0.4,0.7],[0.6,1.0])
eλ1,λ2(u4) ([0.3,0.4],[0.4,0.6])

the highest number of vulnerabilities and defenses and from the table-4,5 above we
find that rλ1,λ2

(G) = ([0.3, 0.4], [0.4, 0.6]) has the lowest number of vulnerabilities
and defenses. The purpose of these applications is to strengthen our country’s
defenses to the extent of it’s vulnerabilities.

5. Conclusion

The researcher has developed the idea of an IVIFG in this study article. It has
an impact on a lot of different industries. It is common for some features of a
graph-theoretical problem to be unclear or ambiguous. This article analyses the
concepts of strength, length, distance, eccentricity, radius, and diameter as well as
self-centerednes and centeredness and introduces the idea of an IVIFG. We also
investigate into some of the properties of a self-centered IVIFG with illustration.
Finally, we investigated into an application in IVIFG.
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