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Abstract 

Brain tumors are among the illnesses that, if not treated promptly, can lead to death. It is extremely difficult to detect tumor 
tissue using only eye examination methods. As a result, Magnetic Resonance (MR) imaging is used to diagnose brain tumors. 
T1, T1c, T2, and FLAIR MRI sequences provide detailed information about brain tumors. If the segmentation procedure is 
performed correctly, patients' chances of survival improve. This paper describes an automated brain tumor segmentation 
for FLAIR sequences in MR images using U-NeT method. The study has been carried out on the BraTS 2018 data set. The 
models' correctness has been assessed using the binary accuracy, dice coefficient, and IOU assessment criteria. The results 
of the comparison between the tumor regions identified by the expert physicians and the tumor regions calculated by the 
U-Net model are as follows: The model has been completed with 99.26% accuracy, and the Dice Coefficient value, which 
expresses the similarity on the basis of pixels for the test data, has been found to be 73.99%. Furthermore, the IOU value of 
0.59 demonstrated that the model provided accurate estimates for the study. 
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U-NET İLE FLAIR MR GÖRÜNTÜLERİNDE BEYİN TÜMÖR BÖLÜTLEMESİ 

Özet 

Beyin tümörleri, zamanında tedavi edilmediği takdirde ölümle sonuçlanabilecek hastalıklar arasında yer alır. Sadece göz 
muayenesine dayalı yöntemler ile tümör dokusunu tespit etmek son derece zordur. Bu nedenle, beyin tümörlerini teşhis 
etmek için Manyetik Rezonans (MR) görüntüleme kullanılır. T1, T1c, T2 ve FLAIR MR sekansları beyin tümörleri hakkında 
detaylı bilgi vermekte ve bölütleme işlemi doğru yapıldığında hastaların yaşam şansı artmaktadır. Bu makale, U-Net 
yöntemi kullanılarak MR görüntülerinde FLAIR dizileri için otomatik bir beyin tümörü bulunan bölgelerin bölütlenmesini 
açıklamaktadır. Bu çalışma, halka açık BraTS 2018 veri seti üzerinde gerçekleştirilmiştir. Modellerin doğruluğu, binary 
accuracy, dice coefficient ve IOU ölçütleri kullanılarak değerlendirildi. Uzman doktorların tespit ettiği tümör bölgeleri ile 
U-Net modeli ile tahmin edilen tümör bölgeleri karşılaştırıldığında şu bulgular elde edilmiştir: Model %99.26 doğrulukla 
tamamlanmış ve benzerliği ifade eden Dice katsayısı değeri test verileri için piksel bazında, %73.99 olarak bulunmuştur. 
Ayrıca çalışmada IOU değeri 0.59 ile modelin iyi bir tahminde bulunduğunu göstermiştir. 

Anahtar Kelimeler: Beyin Tümörleri, Derin Öğrenme, U-Net, Bölütleme 
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1. Introduction 
Brain tumors are classified into four types by the World 

Health Organization (WHO) based on their location, 

resemblance to other cells, growth rate, vascularity, and 

aggressiveness. Low-grade glioma (LGG) refers to grade I 

and II tumors, whereas high-grade glioma (HGG) refers to 

grade III and IV tumors [1].  

It is challenging to distinguish between normal brain 

parenchyma and tumor tissue using only visual inspection 

methods. On the other hand, MRI is widely used in clinics to 

establish potential diagnoses and available treatments 

However, due to the unique characteristics of MR data as 

well as the high variability in tumor sizes or shapes, this 

remains a very difficult task [2]. The edema region from 

cerebrospinal fluid can be identified using the FLAIR (Fluid-

Attenuated Inversion Recovery) sequence produced by MRI 

[3]. 

Accurate brain tumor segmentation from surrounding tissues 

is a critical step in using FLAIR MRI images in brain tumor 

research. In the literature, computer-based semi-automatic or 

fully automated segmentation approaches have been 
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presented to save clinicians time and eliminate human-based 

subjectivity [4]. To achieve an effective segmentation result, 

semi-automated methods still require human interaction, 

whereas automated systems require anatomical information 

such as tumor shape, size, regularity, appearance, and 

localization to build a model and perform the task [5]. In this 

context, developing a fully automated brain tumor 

segmentation system remains difficult due to the inability to 

determine which elements to choose. Machine learning and 

artificial intelligence techniques have recently been used to 

address these issues. An automatic brain tumor segmentation 

model based on the Greedy Snake Model and Fuzzy C-

Means (FCM) algorithms was proposed by Sheela and 

Suganthi [6]. A dataset of T1-weighted contrast images was 

used for the study. For the glioma, meningioma, and pituitary 

tumors, the specificity of the suggested method was found to 

be 0.94, 0.96, and 0.91, respectively. Kalaivani et al. [7] 

demonstrated the segmentation accuracy of ML classifiers 

like K-Means, FCM, and K-Nearest Neighbor (K-NN). 

These classifier algorithms were tested using real-world data 

from 150 patients from various hospitals. According to the 

study, K-Means achieved 79.9% accuracy, K-NN achieved 

89.96% accuracy, and FCM achieved 98.97% accuracy. 

Deep learning techniques, such as CNN networks, have 

proven to be extremely effective in medical image 

segmentation [3]. The most popular CNN models are U-Net, 

SegNet, and ResNet [4]. According to the results of 

experiments performed on the BraTS2015 dataset, ResNet 

reduces average calculation time by three times when 

compared to other DNN approaches, and it has accuracy of 

83%, 90%, and 85% for the entire, core, and enhancing 

regions, respectively [8]. In order to improve tumor 

segmentation, Alqazzaz et al. [9] investigated SegNet 

performance. In the study, four separately trained SegNet 

architectures were merged using post-processing. Dong et al. 

[10] evaluated the DSC performance of the U-net model 

using 2D images from the BraTS2015 dataset. The study 

discovered that 0.88, 0.87, and 0.81 were obtained for HGG 

and 0.84 and 0.85 for LGG for the entire, core, and 

enhancing tumor regions, respectively. 

This study proposes an automated segmentation method for 

FLAIR brain tumor images by using the U-Net model. In this 

study, 155 layers of images from the publicly available 

multimodal Brain Tumor Segmentation Challenge (BraTS) 

2018 dataset were used. The size of the input images in the 

generated model is determined by the GPU capacity of the 

computer used, which is 128x128 pixels. The adaptive 

moment estimation (Adam) algorithm was used to optimize 

the U-Net model, and the Rectified Linear Unit (ReLU) 

activation function was used in each learning unit. 

The study is divided into the following sections: Section 2 

provides technical background on U-Net architecture, 

evaluation measures, and the dataset. While the proposed 

models' configuration is explained in Section 3, the test 

results are evaluated in Section 4. 

2. Technical Background 

2.1. Auto-encoder 
An auto-encoder is designed as a symmetrical artificial 

neural network which utilizes an unsupervised learning 

algorithm for efficient data encoding [11, 12]. Auto-encoders 

having more hidden layers than one can be said to be deep 

[13]. It is used for size reduction by encoding high-

dimensional data with low-dimensional properties. 

 

Figure 1. Basic structure of an auto-encoder. 

The purpose of an auto-encoder is to ensure that input data is 

equal to output data [12]. For this purpose, an auto-encoder 

tries to learn an approximation in the hidden layer so that the 

input data can be perfectly reconfigured in the output layer 

[14]. Fig. 1 shows the basic structure of an auto-encoder. 

Where; the weights of each layer represent different 

reconstructions of input variables. An auto-encoder must 

capture the most important features to recover input signals. 

In addition, by placing restrictions on the network, such as 

limiting the number or activation of hidden units, the size of 

inputs can be reduced [13]. If skip connections are removed, 

U-Net can be considered a type of auto-encoder [11]. 

2.2. U-Net 
A type of architecture called U-Net has been proposed for 

the semantic segmentation of biomedical images. It is used 

when it is difficult to access a large number of training 

images. In order to provide more accurate segmentation and 

to require fewer training sets, U-net is created by altering the 

fully connected layer [15]. It is an end-to-end fully 

convolutional network (FCN), which can accept images of 

any size because it only has convolutional layers and doesn't 

have any dense layers. 

The original paper states that the U-net architecture has two 

paths. These components consist of a symmetric expanding 

path called a decoder and a contraction path called an 

encoder. Traditional convolutional layers and max pooling 

layers are used in the encoder to capture context in the image. 

Transposed convolution method sensitive localization is 

made possible by decoder. U-net can determine from a 

picture not only whether or not there is an infection, but also 

its location. 
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Figure 2. The original U-Net architecture [15]. 

Since the success of a network depends on both semantic and 

spatial information, the missing spatial information must be 

recovered in the segmentation process. This is accomplished 

by the U-Net network model's decoder, which uses skip links 

to reassemble higher-resolution feature extractions directly 

from the encoder using semantic information from the lowest 

point of the "U"-shaped structure [16]. The architectural 

layout of the neural network model is depicted in Fig. 2. In 

accordance with Fig. 2, skip connections are used to combine 

the feature maps on the left and right. This method allows for 

the coding-based recovery of lost information. This reduces 

information loss, particularly in the deeper layers of the 

coding path for medical images with small target tissues 

[11]. 

2.2.1. Activation Functions 
DNN models rely heavily on activation functions [16]. It is 

in charge of converting the weighted input collected in a 

node into node activation or output for that input. It 

determines the output of a DNN model, its accuracy, and the 

computational efficiency of the training process. In this 

article, the ReLU function is used as an activation function 

in the output layer between U-Net learning units and the 

sigmoid function. 

With its ease of use and performance, ReLU is a popular 

activation function. It is a useful function for dealing with 

gradient vanishing and exploding problems [17, 11]. The 

output of a ReLU-based layered neural network is always a 

piecewise linear function of the input [18]. Eq. (1) defines 

the mathematical expression of ReLU. 

𝑦𝑖 =  {
𝑥𝑖 ,   𝑖𝑓 𝑥𝑖 > 0

0, 𝑖𝑓 𝑥𝑖  ≤ 0
 (1) 

where xi and yi are the ReLU's input and output. In ReLU, if 

the input is greater than 0, the output is equal to the input by 

activating it. When the input is less than 0, the output is set 

to 0 and is not activated. As a result, the linearity of ReLU is 

obtained with a constant threshold of 0 [19]. 

On the other hand, nodes are able to learn more complex data 

structures thanks to the use of nonlinear activation functions. 

Sigmoid, also known as the logistic function, is one of the 

frequently employed nonlinear activation functions. The 

function converts the input to a number between 0 and 1. 

Values much smaller than 0 are converted to 0, while inputs 

significantly larger than 1 are converted to 1. The function 

has an S-shape from 0 up through 0.5 to 1.0 for all potential 

inputs. Eq. (2) provides the definition of the sigmoid 

mathematical expression [20]. 

𝜎(𝑥) =  
1

1 + 𝑒−𝑥
 (2) 

2.2.2. Adam Optimizer Algorithm 
To ensure a healthy learning process in deep learning 

applications, the absolute minimum value of the error 

function must be identified. This procedure is carried out 

using optimization methods [21]. The Adam algorithm was 

used to optimize the U-Net model in this article.  

Kingma and Ba [22] proposed the Adam algorithm as the 

main optimization algorithm for large datasets and high 

dimensional parameters in 2015. It requires little memory 

and is efficient computationally. Additionally, Adam has a 

bias redress system. As a result, it makes up for the first 

minor iteration in which the velocity is biased toward zero 

when they are started at zero [23]. The Adam optimization 

algorithm's steps can be outlined as follows [22]: 

1. Calculate the gradient 𝑔𝑡 at time t. 

2. Update exponential moving averages of the gradient 

(𝑚𝑡) according to the Eq. (3). Where; β1 and β2 are 

hyper-parameters and control the exponential decay 

rates of first-order momentum and second-order 

momentum respectively. 

𝑚𝑡 = 𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡  (3) 

3. Update the squared gradient (𝑣𝑡) according to the Eq. 

(4). 

𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2 (4) 

4. Compute bias-corrected first moment estimates 

according to the Eq. (5). Where; 𝑚�̂� corresponding 

modifications of the 𝑚𝑡. 

𝑚�̂� =
𝑚𝑡

(1 − 𝛽1
𝑡)

 (5) 

5. Compute bias-corrected second raw moment estimates 

according to the Eq. (6). Where; 𝑣�̂�  corresponding 

modifications of the 𝑣�̂� . 

𝑣�̂� =
𝑣𝑡

(1 − 𝛽2
𝑡)

 (6) 

6. Update parameters according to the Eq. (7). Where; α 

indicates the learning rate. ɛ is a very small constant to 

avoid denominator to be zero [24] 

𝜃𝑡 =  𝜃𝑡−1 −
𝛼 . 𝑚�̂�

√𝑣�̂� +  𝜀
 (7) 

It is offered that good default settings for the tested machine 

learning problems are α = 0.001, β1 = 0.9, β2 = 0.999 and ɛ = 

10-8 [22, 23]. 
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2.3. Model Evaluation Metrics 
This section explains how the methods of Binary Accuracy, 

Dice Coefficient, and Intersection Over Union (IOU) were 

used to assess the study's findings. 

The Binary Accuracy metric is widely used in image 

classification, and it represents the percentage of predicted 

values that match actual values for binary labels [25]. If the 

probability value is greater than a certain threshold, a 1 value 

is assigned; otherwise, a 0 value is assigned. It is considered 

true if the assigned value equals the true value [26].   

Dice Coefficient is a similarity measure used to compare two 

samples. It expresses how much an automatically segmented 

image overlaps with a manually segmented image as a 

percentage. 0% indicates no overlap, while 100% indicates 

perfect overlap [27]. Eq. (8) calculates the Dice Coefficient 

(similarity) between input set X and output set Y. 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 .  |𝑋 ∩  𝑌|

|𝑋| +  |𝑌|
 (8) 

where; |X| and |Y| represent the number of elements in sets 

X and Y. ∩ is used to show the intersection of X and Y sets. 

Where i and j are the positions of the bits on the image; If Xij 

is equal to Yij, |X∩Y|ij
 become 1, otherwise 0. 

IOU is an evaluation metric which divides the area of overlap 

to total accumulated area for two bounding boxes. The first 

bounding box (original) is obtain from the labelled training 

set, while the second bounding box (predicted) is obtain from 

the trained model. An IOU score greater than 0.5 is generally 

considered a good estimate [28]. IOU score is calculated 

with defined in Eq. (9). 

𝐼𝑂𝑈 =  |
𝑋 ∩  𝑌

𝑋 ∪  𝑌
| (9) 

 

2.4. Dataset 

In general, pre-made data sets are preferred at first when 

working with medical images. Following the experts' 

labeling of the images, these data sets are presented to the 

researchers. The "Multimodal Brain Tumour Segmentation 

Challenge" dataset from BraTS 2018 is one of them. The data 

set consists of 3-dimensional brain MR images and tumor 

labeling in these images. The BraTS2018 training dataset 

contains 285 3D MR images (210 HGG, 75 LGG), each with 

four different sequences (T1, T1c, T2, FLAIR). There are 

segmented images with 155 layers in 240x240 size in the 

data set designated as the training data set. The deep neural 

network model created by these images will realize learning. 

66 non-segmented test data with identical sequences in the 

data set are also included [29-33]. 

3. U-Net Model to Brain Tumor Segmentation 
Four steps have been taken to automatically segment brain 

tumors in MRI FLAIR data using U-Net. Figure 3 depicts the 

model's overall flowchart. These steps include preprocessing 

data, training data, testing, and evaluation. 

 
Figure 3. The general flow chart of the proposed system 

3.1. Data Preprocessing 
In the study, the nibabel library has been used to read and 

convert data, because the 3D images in the Brats2018 dataset 

were in nifti format. Thanks to this library, which is used 

with the Python programming language, 3D patient-based 

images in 240x240x155 structure have been collected into a 

different folder together with their tags. All images 

belonging to 4 different sequences in the dataset have been 

labelled to match the patient information. The resulting 

images has been reduced to 128x128 pixels, taking into 

account the machine GPU capacity to be used during the 

training phase. The segmentation images corresponding to 

these images that will be used as input data have been also 

labelled and reduced to 128x128 pixel in the same way. In 

the study, 23436 of 32550 images of 128x128 pixels 

belonging to 210 patients in the FLAIR sequence were 

reserved for training, 5859 for validation and 3255 for 

testing. 

3.2. U-Net Model 
The architecture used in the study consists of 4 block levels. 

Each block has 2 CNN layers with ReLU activation function, 

and the encoder section contains maxpooling layers. In the 

decoding section, they were replaced by up-CNN layers. 

In the offered model, the input data is set to 128x128 pixels, 

and the batch size value was also set to 16 due to the GPU 

limitation of the computer where the training was taking 

place (Intel i7-8550, 8GB Ram, NVIDIA GeForce930 MX). 

In addition, the number of CNN layer filters in each block 

was set at 16, 32, 64, and 128. The layer in the lowest block 

has 256 filters. From the encoder layers, connections were 

made to the layers corresponding to the decoder sections. 

Clipping was required due to the loss of edge pixels in each 

evolution. In the last layer, the 1x1 convolution was used to 

map each 64-component property vector to the desired 

number of classes. 
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The performance of the U-Net model, as with other deep 

learning methods, depends largely on the optimum values of 

the hyper parameters used. Hyper parameter refers to all 

parameters of a model used to achieve the best accuracy. 

They cannot be updated at the learning stage. In the study, 

Training parameters were changed and updated manually to 

achieve the best results. Since the performance and loss 

values of the offered model did not change significantly after 

150 epoch, it was selected as 150. 

The model was trained by using the Adam optimization 

algorithm with a learning rate of 0.001. ReLU activation 

function was chosen among the layers, since it is efficient to 

gradient vanishing and exploding problems. Moreover, the 

sigmoid activation function was used in the output layer. 

4. Experimental Results and Discussion 
Fig. 4 and Fig. 5 display the changes in accuracy and loss 

values during the duration of the model's training. Fig. 4 

shows training and testing success, whereas Fig. 6 shows 

training and testing loss. The total number of errors produced 

for each instance in the training or validation sets is called 

loss. The loss value indicates how well or poorly a model 

performs after each optimization cycle. Training was limited 

to 150 epochs since there was no significant cost reduction 

and no gain in success after 150 epochs. The decrease in 

training loss over time indicates that the model is well-suited 

to the dataset. Training and test accuracy values increase 

almost simultaneously, while training and test loss values fall 

and continue to decrease at the same time, indicating that the 

model is not overfitting. 

 
Figure 4. The accuracy performance of the U-Net model. 

 
Figure 5. The loss performance of the U-Net model. 

The model's accuracy was measured using Binary Accuracy, 

Dice Coefficient, and IOR assessment metrics. Table 1 

below shows the performance results for 3255 test data.  

Table 1. Test data performance results. 

Binary Accuracy Dice Loss Dice Coefficient IOU 

0.9979 -0.7533 0.7513 0.6238 

 

Table 1 shows that the generated model's training was 

finished with 99 percent accuracy. Furthermore, the Dice 

Coefficient value, which refers to the similarity of test results 

on a pixel basis, was 73.95 percent. The value of the IOU 

was discovered to be 0.6238. If the IOU value is more than 

0.5, the model is making a good prediction. 

The identification of the tumor location for test data was 

done with extremely good accuracy utilizing only FLAIR 

images, according to the results obtained from the 

assessment criteria. Fig. 6 shows several sample pictures of 

the actual tumor region and the tumor regions predicted 

using the U-Net model, based on the test results. 

 
Figure 7. Tumor regions estimated with the U-Net model. 

The FLAIR images from 14 of the 66 test results were 

analyzed in the BraTS 2018 dataset using expert physicians 

and the areas of tumors were identified. Table 2 shows the 

results of comparing the images of the tumor region 

identified by the expert physicians with the tumor regions 

predicted by the U-Net model. 

Fig. 7 shows several sample images of marked tumor regions 

by specialists and predicted tumor regions using the U-Net 

model, based on Table 2 results.  

Table 2. Results of comparing tumor regions 

Binary Accuracy Dice Loss Dice Coefficient IOU 

0.9926 -0.8457 0.7399 
0.592

2 
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Figure 7. Tumor regions estimated from the U-Net model 

and marked by specialist doctors. 
Table 3 shows a comparison of the proposed approach 

to the literature. Demir et al [34] proposed a method for 

segmenting 3D MRI images based on a deep learning 

strategy. The 3D Attention Convolutional LSTM (3ACL) 

model was used in the study to extract deep features from 

MRI data using the sequences T1, T1gd, T2, FLAIR. The 

weighted majority was then used to improve the model's 

overall performance. The accuracy of the SVM algorithm, 

which provides the best performance in the weighted 

majority process, was 98.90% (BRATS2015) and 99.29% 

(BRATS2016) (BRATS2018). Mzoughi et al [34] classified 

HGG and LGG using the CNN method. On 3D MR images, 

the method achieved 96.49% accuracy using T1gd 

sequences. Pedada et al [36], on the other hand, attempted to 

improve overall performance by replacing the encoder of the 

classical U-Net model with that of a ResNet-34 model. On 

the BRATS 2018 dataset, it achieved 92.20% accuracy and 

0.854 dice score. A study was conducted on the BRATS 

2020 dataset, comparing the MM-Link-Net model proposed 

by Ramasamy et al [37] with SeNet and U-Net deep learning 

methods. The multi-modal MRI features are fused together 

in the sudy and fed into an encoder-decoder based LinkNet 

Architecture. The backbone discriminator architecture for 

segmentation is a pre-trained ResNET152 architecture. Only 

FLAIR images were the subject of Zeineldin et al's [38] 

study. A DeepSeg Framefork with various deep learning 

models has been created for this purpose. With an average 

DS value ranging from 0.80 to 0.83, the proposed deep 

learning architectures were successful in detecting tumor 

regions in the validation set. Jwaid et al. [39] suggested a 

new U-Net architecture to increase 3D MRI image detection 

performance. The upper/lower sampling module in the new 

U-Net architecture has been altered by the removal of the 

upper/layer pooling layer from the original U-Net 

architecture. Although the new U-Net model requires more 

training time, it outperformed the SegNet5 architecture with 

98.9% accuracy and 0.69 IoU values. The proposed study, 

like the studies of Mzoughi et al [34] and Zeineldin et al [38], 

focuses on a single sequence (FLAIR) and 2D images rather 

than the model. The main goal here is to demonstrate that 

high-performance segmentation can be accomplished on 2D 

images by reducing the amount of high-dimensional data in 

Table 3. Comparison of proposed method with state-of-the-art methods 

Ref Authors Segmentation  Dataset Metrics (Acc, DS, IoU) Modalities 

[34] Demir et al (2023)  3ACL, Weighted 

Majority (SVM) 

BRATS 2015, 

BRATS 2018 

98.90% (Acc) 

99.29% (Acc) 

T1, T1gd, T2, 

FLAIR  

[35] Mzoughi et al (2020) CNN BRATS 2018 96.49% (Acc) T1gd 

[36] Pedada et al (2023) Modified  

U-Net 

BRATS 2017, 

BRATS 2018 

93.40% (Acc), 0.821 (DS) 

92.20% (Acc), 0.854 (DS) 

T1, T1gd, T2, 

FLAIR, 

[37] Ramasamy et al (2023) MM-Link-Net 

SeNet 

U-Net 

BRATS 2020 0.777 (DS) 

0.7320 (DS) 

0.75 (DS) 

T1, T1gd, T2, 

FLAIR, 

[38] Zeineldin et al (2020) UNet,  

Modified U-Net,  

VGGNet,  

ResNet,  

DenseNet 

BRATS 2019 0.80 (DS) 

0.81 (DS) 

0.83 (DS) 

0.81 (DS) 

0.83 (DS) 

FLAIR 

[39] Jwaid (2021) 3D U-Net CNN, 

SegNet5 

BRATS 2017 98.9% (Acc), 0.69 (IoU) 

96.2% (Acc), 0.55 (IoU) 

T1, T1gd, T2, 

FLAIR, 

 Proposed model 2D U-Net BRATS 2018 99.26% (Acc), 73.99 (DS), 

0.59 (IoU) 

FLAIR 
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the 3D structure. The study's accuracy, DS, and IoU values 

support the literature studies, taking into account the 

parameters used in the U-Net model's training. 

5. Conclusion 
A U-Net model for 3D brain tumor detection and 

segmentation is given in this study. In this investigation, 155 

layers of images from the publically accessible multimodal 

BraTS2018 dataset containing solely the FLAIR MRI were 

utilized. The major objective for this is to see how well the 

tumor region can be segmented using the U-net deep learning 

approach using only one sequence type from multimodal 

MRI data. Thus, it has been demonstrated to what extent the 

performance rate of data with only one sequence can change 

in environments where the ready data set is not used and 

proper records cannot be obtained. According to the results 

of the study; the model created was completed with 99.26% 

accuracy, 73.99 Dice Coefficient value, and 0.5922 IOU 

value. The findings demonstrate that the model is generating 

an accurate prediction.  

This investigation concentrated on raw FLAIR images. In 

other words, there has been no image processing performed 

to the FLAIR images. Pre-processing techniques on the 

image can improve the work's accuracy. Moreover, it is 

possible to add dense module, inception module and etc. to 

the encoding path of the U-Net model. The effects of the 

improvements will also be explored in future studies. 

Notes 

This paper is resulted from the doctoral (PhD) thesis study 

of the first author. 
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