
Ural Gökay ÇİÇEKLİ1 , Fatma DEMİRCAN KESKİN2 , Murat KOCAMAZ3

1 Department of Business Administration, Ege University, İzmir, Turkey, gokay.cicekli@ege.edu.tr
2 Department of Business Administration, Ege University, İzmir, Turkey, fatma.demircan.keskin@ege.edu.tr
3 Department of Business Administration, Ege University, İzmir, Turkey, murat.kocamaz@ege.edu.tr
 This paper is an extended version of the paper published in the Proceedings Book of 16th Production Research Symposium, on 12-14 October 2016.

EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW

ABSTRACT

Solving scheduling problems enables more efficient use of production capacity. It involves defining the sequence of operations,
determining the capacity of resources, and balancing workloads. Different methods, especially metaheuristics, have been
used to solve these problems. This study presents the application of Scatter Search (SS), Genetic Algorithm (GA), and Greedy
Randomized Adaptive Search Procedures (GRASP) for minimizing makespan in a permutation flow shop environment. In
this study, the performances of these methods are compared through various test problems in the literature and a real-life
problem of a company operating in the automotive sector. Study comprises 48 jobs that must be planned within a day for
eight consecutive operations. In cellular manufacturing, the sequence in which each job is processed in eight operations is the
same. In solving permutation flow shop scheduling problems (PFSP), one of the NP-hard problems, meta-heuristic methods are
widely applied due to their successful results. From this point of view, SS, GA, and GRASP are employed in this study, and their
performances are compared.

Keywords: Scheduling, Permutation Flow Shop Scheduling Problem, Makespan, Scatter Search, Genetic Algorithm, GRASP.

JEL Classification Codes: M100, M110, C630

Referencing Style: APA 7

Cilt 23 • Sayı 2 • Nisan 2023
SS. 237/246

Doi: 10.21121/eab.1246770
Başvuru Tarihi: 2.2.2023 • Kabul Tarihi: 20.2.2023

Minimizing Makespan in a Permutation Flow Shop Environment:
Comparison of Scatter Search, Genetic Algorithm and Greedy
Randomized Adaptive Search Procedures

ID ID ID

INTRODUCTION

Scheduling is the process of planning and coordinating
the production of goods or services to meet customer
demand and achieve specific goals or objectives. It involves
determining the sequence of operations, identifying and
allocating resources (such as people, equipment, and
materials), and establishing deadlines for completing
each task. Production scheduling is important because
it helps to coordinate the production process, allocate
resources effectively, and meet customer demand
in a timely and efficient manner. It also helps reduce
waste, improve production efficiency, reduce inventory
costs, and avoid production delays and bottlenecks.
Additionally, it enables better communication and
collaboration between different departments and
ensures that the production process is aligned with the
overall business strategy. Scheduling problems, which
are combinatorial optimization problems, involve finding
a schedule or assigning tasks to resources that optimize
some objective function, subject to certain constraints.
The higher the complexity, the harder it is to find the

optimal solution to the problem (Widmer et al., 2008).
Production scheduling problems have widespread
coverage in the literature and have been addressed
using different production systems, restrictions, source
types, and objective functions. This research focuses on a
particular type of scheduling problem, called the “PFSP”,
which is a subset of the more general class of scheduling
problems known as “flow shop scheduling problems”.
The study applies this concept to a real-world scenario in
the automotive industry, examining a specific company’s
operations.

PFSP contains a set of jobs that must be executed on
a set of machines. Each job’s execution should start from
the first machine and finish on machine m following
the same route of machines (Bautista et al., 2012). The
processing time of all jobs on all machines is known in
advance and can not be negative. All jobs are assumed
to be ready before processing, and the processing of
each job cannot be stopped after the processing has
started. Only one job can be assigned to a machine at
any given time. For example, to begin to process a job on

Article Type: Research Article

https://orcid.org/0000-0002-6032-9540
https://orcid.org/0000-0002-7000-4731
https://orcid.org/0000-0001-8191-0206

Ural Gökay ÇİÇEKLİ, Fatma DEMİRCAN KESKİN, Murat KOCAMAZ

238

a machine, that machine should be available, and the job
processing on the previous machine from that machine
should be completed. The aim is to sequence these n
jobs to optimize the objective function (Zhang and Wu,
2014).

FSP and PFSP are scheduling problems that involve
allocating resources to a set of tasks under certain
constraints. The FSP involves scheduling a jobs on a set
of machines such that each job must be executed on
each machine in a specific order. Every job undergoes
processing on each machine only once. (Ben-Daya
and Al-Fawzan, 1998). The PFSP is a more restrictive
version of the FSP. In the PFSP, the job order must be the
same on all machines (Yenisey and Yagmahan, 2014).
This means that the job schedule on the first machine
determines its schedule on all other machines by aiming
the makespan minimization. Therefore, the objective of
the scheduling is also to minimize the makespan and
total completion time. FSP and PFSP are combinatorial
optimizations and NP-hard problems, which are
computationally challenging. NP-hard problems are
generally considered computationally difficult because
most problems don’t have efficient algorithms for
solving them. For this reason, many metaheuristic
algorithms have been proposed to find approximate
solutions to these problems.

Various studies in the literature address PFSP using
exact and approximate algorithms to minimize the
makespan of all jobs. As the dimension and complexity
of the problems increase, it becomes impossible to solve
them within a reasonable time using exact algorithms
that guarantee the optimal solution. Today, most studies
use heuristic and meta-heuristic methods, yielding
good results within a reasonable time. In the literature,
the study by Johnson (1954), which examined a PFSP
with n jobs processed on two machines, was followed
by other studies that suggest various heuristic methods
for solving a PFSP with three or more machines. One of
these heuristic methods is the CDS algorithm proposed
by Campbell et al. (1970) by generalizing Johnson’s
(1954) algorithm to flow shop problems with m machine.
Then, Gupta (1972) proposed three heuristic algorithms
that address PFSP through makespan minimization. The
NEH algorithm is a well-known heuristic algorithm for
solving the PFSP. It was first proposed by Nawaz et al.
(1983). In comparing the performances of heuristics
for solving PFSP using Taillard’s (1993) benchmarks, the
NEH algorithm was found to have the most outstanding
performance in makespan minimization (Ruiz and
Maroto, 2005).

Various studies in the literature address FSP and
PFSP using meta-heuristic methods. This study used
three meta-heuristic methods, SS, GA, and GRASP, to
solve PFSP. The introduction part of the study contains
a literature review of production scheduling and PFSP.
The second section of this study introduces the methods
of SS, GA, and GRASP and the studies in the literature
using these methods to solve such problems. The third
section presents the problem analyzed in this study with
its details. In the fourth section, the results obtained by
the application of the addressed methods are given. This
section compared the methods’ performances using the
various benchmarks (rec31, rec33, rec35) in the literature
and then a real problem. Finally, this study finalizes by
presenting the conclusions regarding the results.

APPLIED META-HEURISTIC METHODS

In the literature, meta-heuristic methods have received
considerable attention in solving FSP. Meta-heuristic
methods are approximate optimization algorithms
designed to find near-optimal solutions to difficult
optimization problems. They do not guarantee that the
solutions they find are globally optimal, but they are
often able to find high-quality solutions. Meta-heuristic
methods are particularly useful for solving problems
that are computationally intractable, such as NP-hard
problems, for which no exact algorithm can find the
optimal solution in polynomial time. They are also useful
for solving problems with many variables or constraints
complexity, where traditional optimization methods
may struggle to find reasonable solutions. Besides, they
perform an efficient search and find a solution in a much
shorter time than the traditional methods since they do
not search the search space. Today’s intensely competitive
business environment drives companies to find quick
and reasonable solutions instead of optimum but slow
solutions (Kocamaz and Çiçekli, 2010). Therefore, faster
scheduling solutions can significantly impact the efficiency
and effectiveness of operations, overall profitability, and
competitiveness. This section presents the applied meta-
heuristic methods in this study, SS, GA, and GRASP, and
studies that applied these methods for PSFP.

Scatter Search

SS is a powerful and versatile population-based method
metaheuristic optimization algorithm. A population-
based approach commences with an initial set of solutions
referred to as the reference set. Then, it gradually enhances
them through a process of combination and modification
in each iteration. SS is designed to handle complex, high-
dimensional problems with multiple objectives and

Minimizing Makespan in a Permutation Flow Shop Environment: Comparison of Scatter Search...

239

constraints. SS flexibility can handle various optimization
problems, including mixed integer and nonlinear
problems. It has been applied to many problems, such as
scheduling, logistics, and resource allocation (Çiçekli and
Bozkurt, 2015). SS is a robust algorithm that can handle
a wide range of problem characteristics and quickly
adapt to different problem domains. Compared to other
optimization methods, scatter search has a relatively
simple implementation process and does not require
much fine-tuning of parameters.

Additionally, it can be integrated with other optimization
algorithms and methods to improve performance and
find more accurate solutions. It finds reasonable solutions
to these problems in a relatively short computation
time. Unlike other evolutionary algorithms, SS combines
solutions through strategic designs to create a new one
instead of relying on randomization (Haq et al., 2007).

SS aims to create new solutions by combining reference
solutions. The logic behind combining solutions is to
create a new solution using a linear (convex or concave)
combination of at least two reference solutions (Laguna
and Marti, 2003). The new reference set is developed until
SS is finished by deleting the old solutions.

The fundamental steps of the SS algorithm include:

1. Initialization: Initial population of solutions is
created.

2. Solution combination: New solutions are generated
by combining existing solutions in the reference set.

3. Solution evaluation: The quality of the new solutions
is evaluated using a suitable objective function.

4. Solution selection: The best solutions are selected
to form the new reference set.

5. Iteration: The process is done again till satisfying a
stopping criterion.

Various studies use this algorithm to solve FSP and PFSP
in the literature. Nowicki and Smutnicki (2006) addressed
PFSP using a new algorithm they proposed by combining
some properties of neighborhoods, SS, and path relinking.
Bozejko and Wodecki (2008) considered an FSP that aims to
minimize the completion time using an SS-based parallel
algorithm. Finally, Çiçekli and Bozkurt (2015) developed
a model using SS to solve PFSP. To test their model, they
used the PFSP called rec41, consisting of 75 jobs and 20
machines, developed by Reeves (1995).

Genetic Algorithm

As an optimization technique, GA reflects the principles
of natural evolution. Michalewicz (1992) considers
GAs as stochastic optimization techniques that mimic
genetic inheritance and Darwin’s principles of natural
selection. GAs are population-based algorithms inspired
by nature (Goldberg, 1989). They rely on the biological
evolution models, which simulate survival of the fittest
among individuals. This principle provides a mechanism
to search for near-optimal solutions without trying all
potential solutions. GAs do not guarantee the optimal
solution, as it is often not possible to guarantee that the
global optimum will be found (Çiçekli and Kaymaz, 2016).
However, they can often find reasonable solutions close
to optimal, especially when the search space is large
and complex. The independent evaluation of candidate
solutions allows for parallel processing, which can
significantly speed up the optimization process.

The procedure for implementing a GA to solve a
problem can be summarized as follows (Goldberg, 1989):

1. Encoding: The first step is encoding the problem
as a set of binary strings or chromosomes
representing the potential solutions. Each bit or
gene in the chromosome represents a decision
variable or feature of the problem.

2. Initialization: A population of chromosomes is
randomly generated to represent the initial set of
solutions.

3. Evaluation: The fitness value of each chromosome
is evaluated with a suitable objective function. The
objective function should be defined such that
it assigns a higher fitness value to chromosomes
that represent better solutions.

4. Selection: The selection method is usually
grounded in the concept of natural selection,
wherein chromosomes possessing higher fitness
values have a greater probability of being selected.

5. Crossover: Chromosomes are combined to
generate new offspring through a process called
crossover. Crossover involves exchanging genetic
information between chromosomes to create new
genetic diversity.

6. Mutation: A small probability of mutation is
applied to the offspring, introducing random
changes in the genetic information. This helps to
maintain genetic diversity and preserve getting
stuck in local optima.

Ural Gökay ÇİÇEKLİ, Fatma DEMİRCAN KESKİN, Murat KOCAMAZ

240

7. Replacement: The new offspring replace the
previous population, and the process is done
again till satisfying a stopping criterion.

8. Decoding: The final solution is obtained by
decoding the best chromosome in the final
population back into the original problem space.

The first step of GA involves finding the proper
encoding methodology suitable for the problem. In each
scheduling problem, the encoding of the chromosomes,
mutation methods, and representation methodology is
entirely different. Therefore, finding the proper encoding
method before applying a GA to a problem is essential.
Permutation coding is the most suitable approach for
problems related to ordering (Borovska, 2006).

There are various important genetic operators in
permutation coding, including crossover, selection,
mutation, and elitism. These operations are utilized on
the starting generation to uncover improved solutions in
subsequent generations. The Genetic Algorithm begins
by selecting parent individuals from the population
(Kocamaz et al., 2009). Then, operators are used to select
suitable parents. The selection of the most suitable
parents and the next generation’s production depends
on the crossover operators. In most GA methods,
crossover operators use two parents to create offspring.
The new offspring always use the fittest alternative, thus
ensuring the best ordering compared to the current one
(Huang et al., 1997). The mutation is another genetic
algorithm operator. Mutation relies on a random search
for the optimal solution, while the initial generation
does not impact the solution. In permutation coding, a
mutation happens by swapping the place of the genes
in the chromosomes. After that, GA repeats, generating
new offspring until the expected number of iterations is
achieved.

GA is an approach known to be effective in solving
combinatorial optimization problems like scheduling
problems. Various studies are using GA in solving PFSP.
These studies investigated the problem of minimizing
the total finishing time (Ruiz et al., 2005), total tardiness
(Vallada and Ruiz, 2010) and total earliness and tardiness
(Schaller and Valente, 2013). In the literature of GA-based
solutions to the FSP, Babaei et al. (2012) dealt with the
issue of lot sizing and scheduling in a flow shop setup
with n-products and m-machines, considering factors
such as sequence-dependent setup times, inventory
costs, and the expenses associated with production
delays and product waiting. Shahsavari Pour et al. (2013)
also tackled the FSP using a GA-based strategy aimed

at minimizing completion time, total waiting time, and
overall tardiness.

Grasp

GRASP is a metaheuristic optimization technique
combining greedy search and randomization elements
to find near-optimal solutions. The basic idea behind
GRASP is to iteratively construct solutions by selecting
the best candidate among a set of randomly generated
options while incorporating a local search component to
improve the solution’s value. GRASP can be easily adapted
to different problem domains and can be combined with
other heuristics to form hybrid algorithms. GRASP is a fast
and effective algorithm that has been shown to produce
good results on a wide range of problems. The GRASP
iteration consists of two stages: the construction phase
and the local search phase. The adaptive randomized
greedy function is utilized during the construction phase
to generate a feasible solution. Then, this solution is
improved using local search algorithms in the following
local search phase (Feo and Resende, 1995).

At each iteration, all candidate elements are evaluated
based on a greedy evaluation function, and a new
element selected from the ground set is included in the
solution. This process ends when a feasible solution is
found. The greedy evaluation function usually represents
the change occurring in the objective function value
when a new element is incorporated into the partial
solution (Resende and Ribeiro, 2014).

A greedy parameter α [0,1] is used in a greedy
evaluation function. GRASP is adaptive because the
effects of each remaining element on the objective
function are updated to reflect the effect brought on
by choosing the last element at each iteration. GRASP
is randomized because elements are selected randomly
from a restricted candidate list, including the best
candidates (Shahul Hamid Khan et al., 2007).

Locally optimality of the solutions produced during
GRASP’s construction phase is not exact. Therefore,
GRASP’s second phase, local search, is applied to improve
these solutions (Festa and Resende, 2002). The studies
applying GRASP indicate that different approaches are
adopted in the construction and local search phases. In
this study, we used the procedure proposed by Feo and
Resende (1995) in the construction phase and the block
insertion proposed by Allahverdi (2003) in the local search
phase. The procedures are given step by step below:

Minimizing Makespan in a Permutation Flow Shop Environment: Comparison of Scatter Search...

241

general pairwise interchange, and two jobs insertion
neighborhood during the local search phase. Finally,
Molina-Sánchez and González-Neira (2016) used GRASP
to solve PFSP to minimize the total weighted tardiness.

PROBLEM

This study analyzed the scheduling problem of a
company that manufactures different-size pressure plates,
discs, and release bearings for automobiles. The company
has been operating in Izmir for nearly forty years. For the
company using cellular manufacturing technologies
during the manufacturing phase, a manufacturing cell
consisting of eight consecutive machines which produce
215-430 mm rigid and pre-damper hub-type discs with
organic bearings was analyzed. A total of 48 jobs in the
manufacturing program of the manufacturing cell at a
randomly selected shift were used in the study to create
a manufacturing plan. All 48 jobs are processed on eight
machines in the cell in the same order with different
processing times. For this reason, it is seen that the
company has a PFSP problem. Table 1 presents the codes
of these jobs and the processing times of the machines.

There is no return and repetition between the
operations. As a result, processing times are known for all
jobs, and no setup is necessary during the transition from
one product to another.

APPLICATION

In evaluating the performances of meta-heuristic
methods, the extent to which the solutions created
by these methods are close to the optimal solution is
crucial. Unfortunately, the optimal solution to the real-
life problem used in this study is unknown, and it takes
too long to obtain it. Therefore, it may be challenging to
evaluate the performances of meta-heuristic methods in
solving large-scale scheduling problems whose optimal
solution cannot be estimated. Therefore, to assess the
performances of the meta-heuristic methods used in this
study, we solved the test problems called rec31, rec33,
and rec35 proposed by Reeves (1995) since these test
problems consisting of 50 jobs and ten machines were
closest to the real-life problem used in this study in terms
of scale. The correlation between test data and real-
world data is crucial in securing the results’ validity and
dependability. A higher degree of similarity between the
two leads to more precise and representative results.

We used the Analytic Solver Platform developed by
Frontline Systems, which can work with Microsoft Office
Excel, to apply the SS and GA methods. The GRASP
algorithm was coded using the VBA language. We used

GRASP- The Steps of the Construction Phase

Step1 - Compute each job’s objective function value
separately

Step2 - Estimate the objective function’s minimum and
maximum values

Step3 - Calculate Width=[α x (Max-Min)]

Step4 - Calculate the threshold values of the Restricted
Candidate List (RCL)

RCL={ min, min + width}

Step5 - Randomly choose a candidate element from the
RCL

Step6 - Repeat steps 1-5 till all jobs’ assignments are
completed

GRASP- The Steps of the Local Search Phase

Step 1: Take the job sequence (π) obtained in the
constructing phase

Step 2: Assign as K=1. Generate alternative sequences
of the first two jobs in π. Save the sequence, which has
the best objective function value, as the best solution

Step 3: Assign as k=k+1. Take the following two jobs in
π. Insert the kth block, which includes these two jobs, to
all steps of the existing optimal solution both as it is and
by changing the sequence of the jobs in the block. Out
of all the candidate solutions, save the one with the best
objective function values as the best solution.

Step 4: Repeat Step 3 till assignments of all jobs in π are
completed.

GRASP is particularly useful for problems with many
possible solutions and can be computationally expensive
to solve. GRASP can be employed in a range of scheduling
scenarios to optimize objectives such as makespan, total
flow time, or total tardiness. There are studies in the
literature that address FSP and PFSP using GRASP. For
example, Considering FSP to minimize the makespan
and maximum tardiness, Shahul Hamid Khan et al. (2007)
used a semi-greedy heuristic in the construction phase
and block insertion and random insertion perturbation in
the local search phase. On the other hand, Arroyo and de
Souza Pereira (2011) used a multi-objective GRASP-based
heuristic to solve PFSP. They aimed to simultaneously
minimize the completion time, maximum tardiness,
and makespan and total flowtime. They used an NEH-
based heuristic in the construction phase and insertion,

Table 1: Jobs in the Shift Production Schedule and Their Processing Times

Machines in the Manufacturing Cell

Job RPr-O1 RPr-O2 RPr-O3 RPr-O4 RPr-O5 RPr-O6 RPr-O7 RPr-O8

J01 1’10” 2’20” 2’00” 2’10” 2’25” 3’55” 2’30” 0’45”

J02 0’50” 2’20” 1’30” 2’10” 2’45” 2’50” 1’40” 0’25”

J03 2’00” 1’40” 3’40” 1’30” 2’25” 3’55” 2’30” 0’45”

J04 2’00” 1’40” 3’40” 1’30” 2’25” 3’55” 2’30” 0’45”

J05 2’00” 1’40” 3’40” 1’30” 2’25” 3’55” 2’30” 0’45”

J06 0’50” 1’40” 1’30” 1’30” 2’45” 3’00” 1’40” 0’45”

J07 1’10” 2’20” 2’00” 2’10” 3’45” 3’55” 2’30” 0’45”

J08 1’30” 2’20” 3’20” 2’10” 5’50” 2’20” 1’30” 0’25”

J09 1’30” 2’20” 3’20” 2’10” 5’50” 2’20” 1’30” 0’25”

J10 2’00” 1’40” 3’40” 1’30” 2’25” 2’50” 1’40” 0’25”

J11 1’10” 2’20” 2’00” 2’10” 2’45” 3’55” 2’30” 0’45”

J12 1’10” 2’20” 2’00” 2’10” 2’45” 3’55” 2’30” 0’45”

J13 1’10” 2’20” 2’00” 2’10” 2’45” 3’55” 2’30” 0’45”

J14 0’50” 2’20” 1’30” 2’10” 5’30” 3’55” 2’30” 0’45”

J15 2’00” 2’20” 3’40” 2’10” 3’50” 3’55” 2’30” 0’45”

J16 2’00” 2’20” 3’40” 2’10” 3’50” 2’50” 1’40” 0’25”

J17 1’30” 2’20” 3’20” 2’10” 5’50” 2’50” 1’40” 0’25”

J18 0’50” 2’20” 1’20” 2’10” 3’50” 3’55” 2’30” 0’45”

J19 1’30” 2’20” 3’20” 2’10” 5’50” 3’00” 1’40” 0’45”

J20 1’10” 1’40” 2’00” 1’30” 5’30” 2’50” 1’40” 0’25”

J21 1’30” 2’20” 3’20” 2’10” 3’50” 3’00” 1’40” 0’45”

J22 1’30” 2’20” 3’20” 2’10” 3’50” 2’50” 1’40” 0’25”

J23 2’00” 2’20” 3’40” 2’10” 2’45” 2’50” 1’40” 0’25”

J24 1’10” 1’40” 2’00” 1’30” 3’50” 2’50” 1’40” 0’25”

J25 0’50” 2’20” 1’20” 2’10” 3’50” 2’50” 1’40” 0’25”

J26 0’50” 2’20” 1’20” 2’10” 3’50” 2’50” 1’40” 0’25”

J27 0’50” 2’20” 1’20” 2’10” 3’50” 3’00” 1’40” 0’45”

J28 1’10” 1’40” 2’00” 1’30” 4’45” 3’55” 2’30” 0’45”

J29 1’10” 1’40” 2’00” 1’30” 5’50” 3’00” 1’40” 0’45”

J30 1’30” 2’20” 3’20” 2’10” 2’25” 3’00” 1’40” 0’45”

J31 2’00” 1’40” 3’40” 1’30” 3’50” 2’50” 1’40” 0’25”

J32 0’50” 1’40” 1’20” 1’30” 4’45” 3’00” 1’40” 0’45”

J33 0’50” 1’40” 1’20” 1’30” 4’45” 3’00” 1’40” 0’45”

J34 0’50” 1’40” 1’20” 1’30” 4’45” 3’00” 1’40” 0’45”

J35 0’50” 1’40” 1’20” 1’30” 4’45” 3’00” 1’40” 0’45”

J36 1’10” 2’20” 2’00” 2’10” 5’50” 2’50” 1’40” 0’25”

J37 1’10” 1’40” 2’00” 1’30” 5’30” 2’50” 1’40” 0’25”

J38 1’30” 2’20” 3’20” 2’10” 4’45” 3’00” 1’40” 0’45”

J39 1’10” 1’40” 2’00” 1’30” 3’45” 3’55” 2’30” 0’45”

J40 1’10” 1’40” 2’00” 1’30” 3’45” 3’55” 2’30” 0’45”

J41 1’10” 1’40” 2’00” 1’30” 3’45” 3’55” 2’30” 0’45”

J42 0’50” 2’20” 1’20” 2’10” 2’25” 3’00” 1’40” 0’45”

J43 1’10” 2’20” 2’00” 2’10” 3’45” 3’00” 1’40” 0’45”

J44 1’30” 1’40” 3’20” 1’30” 3’45” 3’00” 1’40” 0’45”

J45 1’30” 1’40” 3’20” 1’30” 3’45” 3’55” 2’30” 0’45”

J46 0’50” 1’40” 1’20” 1’30” 4’45” 2’50” 1’40” 0’25”

J47 1’10” 1’40” 2’00” 1’30” 2’25” 2’50” 1’40” 0’25”

J48 1’10” 1’40” 2’00” 1’30” 2’25” 2’20” 1’30” 0’25”

Minimizing Makespan in a Permutation Flow Shop Environment: Comparison of Scatter Search...

243

run 50 times for both methods.

Table 2 gives the findings from solving the test
problems using SS, GA, and GRASP.

The best sequences obtained for rec31, rec33, and
rec35 using SS, GA, and GRASP are given in Table 3.

Although the three methods used differed in the
results of the test problems, they reached the same
results in real-life problem. When the real-life problem
is solved using SS, GA, and GRASP, the makespan time
of all jobs was found to be 11830 seconds by all three
methods. Two alternative arrays give the best solution
with all methods. These series are as follows:

the procedure prosed by Feo and Resende (1995) during
the construction of the algorithm and the block insertion
procedure proposed by Allahverdi (2003) during the local
search phase. For all problems, 0, 0.2, 0.4, 0.6, 0.8, and 1
were tested as parameter α in the GRASP algorithm and
the best solutions obtained after ten repetitions were
presented.

During the application of GA and SS, constraint
precision was taken as 0.00001, and the convergence
value was taken as 0.0001. In the models, the population
size was taken as 300, the mutation ratio was taken as
0.15, the random seed was taken as 25, and the tolerance
limit was taken as 0.01. The models were finished when
no progress occurred after 60 seconds. The model was

Table 2: Performance Summary of SS, GA, and GRASP for the Problems rec31-rec33-rec35

Problem Opt. Min Mean Max Dev (%)

SS rec31 50’45” 54’11” 55’09” 62’35” 6,77%

rec33 51’54” 52’20” 53’38” 55’02” 0,83%

rec35 53’47” 55’42” 56’48” 60’35” 3,56%

GA rec31 50’45” 51’21” 51’30” 53’00” 1,18%

rec33 51’54” 52’20” 52’29” 53’40” 0,83%

rec35 53’47” 54’37” 54’39” 54’53” 1,55%

GRASP rec31 50’45” 53’00” 53’40” 54’06” 4,43%

rec33 51’54” 53’45” 54’01” 54’10” 3,56%

rec35 53’47” 55’26” 56’00” 56’21” 3,07%

Table 3: Best Job Sequences of SS, GA, and GRASP for the Problems rec31-rec33-rec35

rec31 SS: J02-J48-J16-J40-J49-J10-J39-J24-J11-J38-J23-J37-J06-J29-J36-J17-J41-J19-J45-J50-J08-J44-J21-J18-J32-J30-
J46-J07-J34-J22-J35-J25-J28-J12-J31-J05-J14-J42-J04-J33-J26-J01-J27-J13-J09-J03-J47-J15-J43-J20

GA: J18-J16-J34-J05-J23-J48-J06-J46-J17-J08-J36-J49-J40-J35-J37-J10-J11-J38-J26-J24-J42-J31-J03-J04-J39-J02-
J44-J41-J28-J15-J14-J29-J32-J30-J21-J09-J22-J12-J33-J07-J50-J25-J19-J45-J13-J20-J47-J43-J27-J01

GRASP: J18-J16-J06-J40-J23-J48-J14-J50-J37-J11-J49-J04-J39-J38-J46-J25-J10-J34-J31-J42-J09-J03-J41-J19-J17-J29-
J47-J05-J15-J02-J32-J08-J44-J24-J12-J36-J30-J21-J26-J45-J22-J01-J35-J07-J28-J27-J13-J33-J43-J20.

rec33 SS: J31-J07-J44-0J3-J39-J14-J47-J36-J40-J22-J04-J08-J10-J37-J19-J02-J18-J21-J45-J42-J20-J15-J27-J30-J48-J11-
J05-J25-J32-J38-J26-J29-J46-J06-J43-J49-J41-J13-J01-J28-J23-J09-J33-J12-J50-J16-J34-J35-J24-J17

GA: J31-J7-J45-J14-J47-J36-J27-J34-J39-J3-J42-J22-J43-J40-J04-J41-J15-J1-J48-J32-J30-J29-J2-J25-J50-J18-J8-
J46-J38-J10-J44-J11-J37-J21-J26-J6-J19-J23-J5-J35-J9-J28-J12-J13-J33-J20-J49-J16-J24-J17

GRASP: J31-J03-J42-J07-J37-J27-J34-J39-J36-J18-J48-J25-J47-J22-J38-J15-J46-J10-J44-J29-J43-J26-J21-J13-J04-J20-
J05-J06-J32-J11-J08-J30-J49-J40-J41-J01-J12-J02-J35-J28-J24-J23-J50-J09-J33-J14-J19-J16-J45-J17

rec35 SS: J13-J50-J40-J10-J38-J37-J42-J17-J36-J26-J12-J19-J39-J5-J14-J11-J22-J3-J46-J48-J47-J45-J25-J4-J21-J44-
J49-J6-J27-J43-J2-J8-J35-J7-J9-J1-J15-J18-J41-J34-J33-J28-J23-J20-J32-J30-J16-J29-J24-J31

GA: 13-J14-J40-J2-J39-J50-J42-J25-J12-J10-J3-J36-J29-J21-J9-J17-J23-J45-J4-J44-J19-J41-J26-J27-J6-J46-J5-J33-
J20-J35-J47-J15-J8-J37-J11-J38-J43-J22-J16-J18-J34-J1-J30-J7-J48-J49-J32-J28-J24-J31

GRASP: J13-J2-J14-J29-J5-J47-J36-J40-J37-J38-J50-J42-J4-J26-J9-J46-J30-J22-J43-J10-J8-J33-J48-J3-J34-J39-J6-J41-
J19-J23-J35-J20-J18-J21-J15-J12-J11-J27-J16-J1-J25-J32-J24-J17-J44-J45-J7-J31-J49-J28.

Ural Gökay ÇİÇEKLİ, Fatma DEMİRCAN KESKİN, Murat KOCAMAZ

244

CONCLUSION

The use of meta-heuristics in scheduling within the
manufacturing sector in Turkey is likely to have gained
significant attention in recent years. As companies strive
to improve their production processes, they are looking
for effective scheduling methods that can help optimize
their operations. Effective scheduling leads to improved
productivity, increased customer satisfaction, better
resource management, and reduced costs, making it an
essential aspect of operations management and business
success. As a result, meta-heuristics, with their ability to
provide flexible, efficient, and high-quality solutions to
scheduling problems, are becoming increasingly popular
among Turkish manufacturing companies. This study
addressed PFSP with a real-life problem of a company
that adopted cellular manufacturing technologies. The
PFSP, a widely researched topic in the field for many
years, is recognized as an NP-hard problem. As a result,
meta-heuristic techniques are often utilized to address
this challenging issue. The PFSP was tackled using
SS, GA, and GRASP, and the efficiency of these meta-
heuristic methods was then compared to one another.
Furthermore, to evaluate the performances of these
methods, the test problems called rec31, rec33, and
rec35 proposed by Reeves (1995) were solved since these
test problems were closest to the real-life problem used
in this study in terms of scale.

SS uses a set of reference solutions to guide the
search process, GA uses genetic operations to evolve
a population of solutions, and GRASP uses a greedy
strategy combined with randomization to generate
solutions incrementally. GA was the most successful
method in solving all test problems. GRASP was more
successful for rec31 and rec35 than SS; however, SS
obtained the same result as GA for rec33, yielding a
solution with only a 0.83% deviation from the optimal
solution. The analysis of the methods’ performances in
solving the real problem shows that all methods yielded
the same result because the problem included jobs with
similar processing times that were categorized based on

certain features. GRASP is deemed superior as it strikes a
balance between exploring new solutions and utilizing
the best solution discovered thus far, thereby increasing
the likelihood of uncovering the optimal solution.

PFSPs are common and can be found in real-world
production environments often. Therefore, optimizing
the PFSP impacts production efficiency and makes them
an important area of research and development. The
findings demonstrate the potential benefits of adopting
this approach and can serve as a valuable reference for
other companies considering similar solutions.

In conclusion, this study revealed that successful
results could be obtained using SS, GA, and GRASP to
solve PFSP. In future studies, the success of the methods
can be retested by taking longer-term data from the
company. Also, this problem can be tested by changing
the parameters of the methods and using them in a
hybrid way, or other metaheuristic algorithms can be
developed for PFSP solutions in future studies.

Table 4: Best Alternative Job Sequences of SS, GA, and GRASP for the Real-Life Problem

Real-Life
Problem

Alternative
Sequence 1:

J32-J14-J37-J27-J43-J23-J40-J33-J29-J19-J41-J18-J38-J48-J02-J17-J46-
J30-J34-J45-J39-J24-J25-J4-J35-J3-J28-J10-J13-J44-J20-J16-J8-J5-J6-
J26-J42-J12-J15-J47-J11-J7-J21-J31-J36-J1-J22-J9

Alternative
Sequence 2:

J32-J2-J12-J9-J3-J13-J31-J14-J29-J41-J37-J46-J26-J45-J11-J34-J39-J23-
J20-J1-J15-J27-J19-J6-J42-J48-J4-J38-J24-J28-J21-J25-J30-J18-J33-J07-
J43-J35-J40-J44-J05-J16-J17-J10-J47-J36-J22-J8

Minimizing Makespan in a Permutation Flow Shop Environment: Comparison of Scatter Search...

245

REFERENCES

Allahverdi, A. (2003). The two and m-machine flow shop
scheduling problem with bi-criteria of makespan
and mean flow time. European Journal of Operational
Research, 147: 373–396.

Arroyo, J.E.C. and de Souza Pereira, A. A. (2011). A GRASP
heuristic for the multi-objective permutation flowshop
scheduling problem. International Journal of Advanced
Manufacturing Technology, 55(5): 741-753.

Babaei, M., Mohammadi, M., Ghomi, S. M. T. F. and
Sobhanallahi, M. A. (2012). Two parameter-tuned
metaheuristic algorithms for the multi-level lot sizing
and scheduling problem. International Journal of
Industrial Engineering Computations, 3(5): 751–766.

Bautista, J., Cano, A., Companys, R., & Ribas, I. (2012).
Solving the FmI blockI Cmax problem using bounded
dynamic programming. Engineering Applications of
Artificial Intelligence, 25(6), 1235-1245.

Ben-Daya, M. and Al-Fawzan, M. (1998). A tabu search
approach for the flow shop scheduling problem.
European Journal of Operational Research, l09, 88-95.

Borovska, P. (2006, June). Solving the travelling salesman
problem in parallel by genetic algorithm on
multicomputer cluster. In International Conference on
Computer Systems and Technologies-CompSysTech (Vol.
6, No. 2.11).

Bozejko, W. and Wodecki, M. (2008). Parallel Scatter Search
Algorithm for the Flow Shop Sequencing Problem.
Wyrzykowski, R., Dongarra, J., Karczewski K. and
Wasniewski, J. (Eds.). Parallel Processing and Applied
Mathematics (pp.180-188). Springer-Verlag Berlin
Heidelberg.

Campbell, H. G., Dudek, R. A. and Smith, M. L. (1970).
A Heuristic Algorithm for the n job, m Machine
Sequencing Problem. Management Science, 16(10):
B630-B637.

Çiçekli, U. G. and Bozkurt, S. (2015). Permütasyon Akış
Tipi Çizelgeleme Probleminin Dağınık Arama İle
Optimizasyonu. 15. Üretim Araştırmaları Sempozyumu,
pp: 443-452, İzmir, 14-16 Ekim, 2015.

Çiçekli, U. G. and Kaymaz, Y. (2016). A Genetic Algorithm
For The Allocation of Dangerous Goods Containers
In A Storage Yard For Freight Villages and Dry Ports.
Gazi University Journal of Faculty of Economics and
Administrative Sciences, 18(1): 264-282.

Feo, T. and Resende, M.G.C. (1995). Greedy Randomized
Adaptive Search Procedures. Journal of Global
Optimization, 6: 109–134.

Festa, P. and Resende, M. G. (2002). GRASP: An
annotated bibliography. In Essays and surveys in
metaheuristics (pp. 325-367). Springer, Boston, MA.

Goldberg D.E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley,
USA.

Gupta, J. (1972). Heuristic algorithms for multistage
flowshop scheduling problem. AIIE Transactions,
4(1):11–18.

Haq, A..N., Saravanan, M., Vivekraj A. R. and Prasad
T. (2007). A Scatter Search Approach for General
Flowshop Scheduling Problem. The International
Journal of Advanced Manufacturing Technology, 31(7-
8): 731–736.

Huang, M. W., Hsieh, C. C. and Arora, J. S. (1997). A
genetic algorithm for sequencing type problems
in engineering design. International Journal for
Numerical Methods in Engineering, 40(17), 3105-3115.

Johnson, S.M. (1954). Optimal two- and three-stage
production schedules with setup times included.
Naval Research Logistics Quarterly, 1(1): 61-68.

Shahul Hamid Khan, B. S. H., Prabhaharan, G. and Asokan,
P. (2007). A Grasp algorithm for m-machine flowshop
scheduling problem with bicriteria of makespan
and maximum tardiness. International Journal of
Computer Mathematics, 84(12): 1731-1741.

Kocamaz, M. and Çiçekli, G. (2010). Paralel Makinaların
Genetik Algoritma İle Çizelgelenmesinde Mutasyon
Oranının Etkinliği [Efficiency of Mutation Rate for
Parallel Machine Scheduling with Genetic Algorithm].
Ege Academic Review, 10(1): 199-210.

Kocamaz, M., Cicekli, U. G. and Soyuer, H. (2009, July). A
developed encoding method for parallel machine
scheduling with permutation genetic algorithm.
In European and Mediterranean Conference on
Information Systems EMCIS.

Laguna, M. and Marti, R. (2003). Scatter search:
methodology and implementations in C. Springer
Science & Business Media.

Ural Gökay ÇİÇEKLİ, Fatma DEMİRCAN KESKİN, Murat KOCAMAZ

246

Michalewicz, Z. (1992). Genetic algorithms + data
structures = evolution programs, Berlin: Springer.

Molina-Sánchez, L. and González-Neira, E. (2016).
GRASP to minimize total weighted tardiness in a
permutation flow shop environment. International
Journal of Industrial Engineering Computations, 7(1),
161-176.

Nawaz, M., Enscore Jr., E.E. and Ham, I. (1983). A heuristic
algorithm for the m-machine, n-job flow-shop
sequencing problem. OMEGA, The International
Journal of Management Science, 11(1): 91–95.

Nowicki, E. and Smutnicki, C. (2006). Some aspects of
scatter search in the flow-shop problem. European
Journal of Operational Research, 169 (2): 654–666.

Reeves, C. R. (1995). A genetic algorithm for flowshop
sequencing. Computers & operations research, 22(1),
5-13.

Resende, M. G. and Ribeiro, C. C. (2014). GRASP: Greedy
randomized adaptive search procedures. In Search
methodologies (pp. 287-312). Springer, Boston, MA.

Ruiz, R. and Maroto, C. (2005). A comprehensive review
and evaluation of permutation flowshop heuristics.
European Journal of Operational Research, 165: 479–494.

Ruiz, R., Maroto, C. and Alcara, J. (2005). Solving the
flowshop scheduling problem with sequence
dependent setup times using advanced
metaheuristics. European Journal of Operational
Research, 165: 34–54.

Schaller, J. and Valente, J. M.S. (2013). A comparison
of metaheuristic procedures to schedule jobs in a
permutation flow shop to minimise total earliness
and tardiness. International Journal of Production
Research, 51(3): 772-779.

Shahsavari Pour, N., Tavakkoli-Moghaddam, R. and Asadi,
H. (2013). Optimizing a multi-objectives flow shop
scheduling problem by a novel genetic algorithm.
International Journal of Industrial Engineering
Computations, 4(3): 345–354.

Taillard, E. (1993). Benchmarks for basic scheduling
problems. European Journal of Operational Research,
64(2), 278-285.

Vallada, E. and Ruiz, R. (2010). Genetic algorithms
with path relinking for the minimum tardiness
permutation flowshop problem. Omega, 38(1-2): 57-
67.

Widmer, M., Hertz, A. and Costa, D. (2008). Metaheuristics
and Scheduling, in Production Scheduling (eds
P. Lopez and F. Roubellat), ISTE, London, UK.
doi: 10.1002/9780470611050.ch3

Yenisey, M. M., & Yagmahan, B. (2014). Multi-objective
permutation flow shop scheduling problem:
Literature review, classification and current trends.
Omega, 45, 119-135.

Zhang, L. and Wu, J. (2014). A PSO-Based Hybrid
Metaheuristic for Permutation Flowshop Scheduling
Problems. Hindawi Publishing Corporation The
Scientific World Journal, 1-8.

