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ABSTRACT

Solving scheduling problems enables more efficient use of production capacity. It involves defining the sequence of operations, 
determining the capacity of resources, and balancing workloads. Different methods, especially metaheuristics, have been 
used to solve these problems. This study presents the application of Scatter Search (SS), Genetic Algorithm (GA), and Greedy 
Randomized Adaptive Search Procedures (GRASP) for minimizing makespan in a permutation flow shop environment. In 
this study, the performances of these methods are compared through various test problems in the literature and a real-life 
problem of a company operating in the automotive sector. Study comprises 48 jobs that must be planned within a day for 
eight consecutive operations. In cellular manufacturing, the sequence in which each job is processed in eight operations is the 
same. In solving permutation flow shop scheduling problems (PFSP), one of the NP-hard problems, meta-heuristic methods are 
widely applied due to their successful results. From this point of view, SS, GA, and GRASP are employed in this study, and their 
performances are compared.
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INTRODUCTION

Scheduling is the process of planning and coordinating 
the production of goods or services to meet customer 
demand and achieve specific goals or objectives. It involves 
determining the sequence of operations, identifying and 
allocating resources (such as people, equipment, and 
materials), and establishing deadlines for completing 
each task. Production scheduling is important because 
it helps to coordinate the production process, allocate 
resources effectively, and meet customer demand 
in a timely and efficient manner. It also helps reduce 
waste, improve production efficiency, reduce inventory 
costs, and avoid production delays and bottlenecks. 
Additionally, it enables better communication and 
collaboration between different departments and 
ensures that the production process is aligned with the 
overall business strategy. Scheduling problems, which 
are combinatorial optimization problems, involve finding 
a schedule or assigning tasks to resources that optimize 
some objective function, subject to certain constraints. 
The higher the complexity, the harder it is to find the 

optimal solution to the problem (Widmer et al., 2008). 
Production scheduling problems have widespread 
coverage in the literature and have been addressed 
using different production systems, restrictions, source 
types, and objective functions. This research focuses on a 
particular type of scheduling problem, called the “PFSP”, 
which is a subset of the more general class of scheduling 
problems known as “flow shop scheduling problems”. 
The study applies this concept to a real-world scenario in 
the automotive industry, examining a specific company’s 
operations.

PFSP contains a set of jobs that must be executed on 
a set of machines. Each job’s execution should start from 
the first machine and finish on machine m following 
the same route of machines (Bautista et al., 2012). The 
processing time of all jobs on all machines is known in 
advance and can not be negative. All jobs are assumed 
to be ready before processing, and the processing of 
each job cannot be stopped after the processing has 
started. Only one job can be assigned to a machine at 
any given time. For example, to begin to process a job on 
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a machine, that machine should be available, and the job 
processing on the previous machine from that machine 
should be completed. The aim is to sequence these n 
jobs to optimize the objective function (Zhang and Wu, 
2014).

FSP and PFSP are scheduling problems that involve 
allocating resources to a set of tasks under certain 
constraints. The FSP involves scheduling a jobs on a set 
of machines such that each job must be executed on 
each machine in a specific order. Every job undergoes 
processing on each machine only once. (Ben-Daya 
and Al-Fawzan, 1998). The PFSP is a more restrictive 
version of the FSP. In the PFSP, the job order must be the 
same on all machines (Yenisey and Yagmahan, 2014). 
This means that the job schedule on the first machine 
determines its schedule on all other machines by aiming 
the makespan minimization. Therefore, the objective of 
the scheduling is also to minimize the makespan and 
total completion time. FSP and PFSP are combinatorial 
optimizations and NP-hard problems, which are 
computationally challenging. NP-hard problems are 
generally considered computationally difficult because 
most problems don’t have efficient algorithms for 
solving them. For this reason, many metaheuristic 
algorithms have been proposed to find approximate 
solutions to these problems.

Various studies in the literature address PFSP using 
exact and approximate algorithms to minimize the 
makespan of all jobs. As the dimension and complexity 
of the problems increase, it becomes impossible to solve 
them within a reasonable time using exact algorithms 
that guarantee the optimal solution. Today, most studies 
use heuristic and meta-heuristic methods, yielding 
good results within a reasonable time. In the literature, 
the study by Johnson (1954), which examined a PFSP 
with n jobs processed on two machines, was followed 
by other studies that suggest various heuristic methods 
for solving a PFSP with three or more machines. One of 
these heuristic methods is the CDS algorithm proposed 
by Campbell et al. (1970) by generalizing Johnson’s 
(1954) algorithm to flow shop problems with m machine. 
Then, Gupta (1972) proposed three heuristic algorithms 
that address PFSP through makespan minimization. The 
NEH algorithm is a well-known heuristic algorithm for 
solving the PFSP. It was first proposed by Nawaz et al. 
(1983). In comparing the performances of heuristics 
for solving PFSP using Taillard’s (1993) benchmarks, the 
NEH algorithm was found to have the most outstanding 
performance in makespan minimization (Ruiz and 
Maroto, 2005).

Various studies in the literature address FSP and 
PFSP using meta-heuristic methods. This study used 
three meta-heuristic methods, SS, GA, and GRASP, to 
solve PFSP. The introduction part of the study contains 
a literature review of production scheduling and PFSP. 
The second section of this study introduces the methods 
of SS, GA, and GRASP and the studies in the literature 
using these methods to solve such problems. The third 
section presents the problem analyzed in this study with 
its details. In the fourth section, the results obtained by 
the application of the addressed methods are given. This 
section compared the methods’ performances using the 
various benchmarks (rec31, rec33, rec35) in the literature 
and then a real problem. Finally, this study finalizes by 
presenting the conclusions regarding the results.

APPLIED META-HEURISTIC METHODS 

In the literature, meta-heuristic methods have received 
considerable attention in solving FSP. Meta-heuristic 
methods are approximate optimization algorithms 
designed to find near-optimal solutions to difficult 
optimization problems. They do not guarantee that the 
solutions they find are globally optimal, but they are 
often able to find high-quality solutions. Meta-heuristic 
methods are particularly useful for solving problems 
that are computationally intractable, such as NP-hard 
problems, for which no exact algorithm can find the 
optimal solution in polynomial time. They are also useful 
for solving problems with many variables or constraints 
complexity, where traditional optimization methods 
may struggle to find reasonable solutions. Besides, they 
perform an efficient search and find a solution in a much 
shorter time than the traditional methods since they do 
not search the search space. Today’s intensely competitive 
business environment drives companies to find quick 
and reasonable solutions instead of optimum but slow 
solutions (Kocamaz and Çiçekli, 2010). Therefore, faster 
scheduling solutions can significantly impact the efficiency 
and effectiveness of operations, overall profitability, and 
competitiveness. This section presents the applied meta-
heuristic methods in this study, SS, GA, and GRASP, and 
studies that applied these methods for PSFP.

Scatter Search 

SS is a powerful and versatile population-based method 
metaheuristic optimization algorithm. A population-
based approach commences with an initial set of solutions 
referred to as the reference set. Then, it gradually enhances 
them through a process of combination and modification 
in each iteration. SS is designed to handle complex, high-
dimensional problems with multiple objectives and 
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constraints. SS flexibility can handle various optimization 
problems, including mixed integer and nonlinear 
problems. It has been applied to many problems, such as 
scheduling, logistics, and resource allocation (Çiçekli and 
Bozkurt, 2015). SS is a robust algorithm that can handle 
a wide range of problem characteristics and quickly 
adapt to different problem domains. Compared to other 
optimization methods, scatter search has a relatively 
simple implementation process and does not require 
much fine-tuning of parameters.

Additionally, it can be integrated with other optimization 
algorithms and methods to improve performance and 
find more accurate solutions. It finds reasonable solutions 
to these problems in a relatively short computation 
time. Unlike other evolutionary algorithms, SS combines 
solutions through strategic designs to create a new one 
instead of relying on randomization (Haq et al., 2007). 

SS aims to create new solutions by combining reference 
solutions. The logic behind combining solutions is to 
create a new solution using a linear (convex or concave) 
combination of at least two reference solutions (Laguna 
and Marti, 2003). The new reference set is developed until 
SS is finished by deleting the old solutions.

The fundamental steps of the SS algorithm include:

1. Initialization: Initial population of solutions is 
created.

2. Solution combination: New solutions are generated 
by combining existing solutions in the reference set.

3. Solution evaluation: The quality of the new solutions 
is evaluated using a suitable objective function.

4. Solution selection: The best solutions are selected 
to form the new reference set.

5. Iteration: The process is done again till satisfying a 
stopping criterion.

Various studies use this algorithm to solve FSP and PFSP 
in the literature. Nowicki and Smutnicki (2006) addressed 
PFSP using a new algorithm they proposed by combining 
some properties of neighborhoods, SS, and path relinking. 
Bozejko and Wodecki (2008) considered an FSP that aims to 
minimize the completion time using an SS-based parallel 
algorithm. Finally, Çiçekli and Bozkurt (2015) developed 
a model using SS to solve PFSP. To test their model, they 
used the PFSP called rec41, consisting of 75 jobs and 20 
machines, developed by Reeves (1995).

Genetic Algorithm

As an optimization technique, GA reflects the principles 
of natural evolution. Michalewicz (1992) considers 
GAs as stochastic optimization techniques that mimic 
genetic inheritance and Darwin’s principles of natural 
selection. GAs are population-based algorithms inspired 
by nature (Goldberg, 1989). They rely on the biological 
evolution models, which simulate survival of the fittest 
among individuals. This principle provides a mechanism 
to search for near-optimal solutions without trying all 
potential solutions. GAs do not guarantee the optimal 
solution, as it is often not possible to guarantee that the 
global optimum will be found (Çiçekli and Kaymaz, 2016). 
However, they can often find reasonable solutions close 
to optimal, especially when the search space is large 
and complex. The independent evaluation of candidate 
solutions allows for parallel processing, which can 
significantly speed up the optimization process. 

The procedure for implementing a GA to solve a 
problem can be summarized as follows (Goldberg, 1989):

1. Encoding: The first step is encoding the problem 
as a set of binary strings or chromosomes 
representing the potential solutions. Each bit or 
gene in the chromosome represents a decision 
variable or feature of the problem.

2. Initialization: A population of chromosomes is 
randomly generated to represent the initial set of 
solutions.

3. Evaluation: The fitness value of each chromosome 
is evaluated with a suitable objective function. The 
objective function should be defined such that 
it assigns a higher fitness value to chromosomes 
that represent better solutions.

4. Selection: The selection method is usually 
grounded in the concept of natural selection, 
wherein chromosomes possessing higher fitness 
values have a greater probability of being selected.

5. Crossover: Chromosomes are combined to 
generate new offspring through a process called 
crossover. Crossover involves exchanging genetic 
information between chromosomes to create new 
genetic diversity.

6. Mutation: A small probability of mutation is 
applied to the offspring, introducing random 
changes in the genetic information. This helps to 
maintain genetic diversity and preserve getting 
stuck in local optima.



Ural Gökay ÇİÇEKLİ, Fatma DEMİRCAN KESKİN, Murat KOCAMAZ

240

7. Replacement: The new offspring replace the 
previous population, and the process is done 
again till satisfying a stopping criterion.

8. Decoding: The final solution is obtained by 
decoding the best chromosome in the final 
population back into the original problem space.

The first step of GA involves finding the proper 
encoding methodology suitable for the problem. In each 
scheduling problem, the encoding of the chromosomes, 
mutation methods, and representation methodology is 
entirely different. Therefore, finding the proper encoding 
method before applying a GA to a problem is essential. 
Permutation coding is the most suitable approach for 
problems related to ordering (Borovska, 2006).

There are various important genetic operators in 
permutation coding, including crossover, selection, 
mutation, and elitism. These operations are utilized on 
the starting generation to uncover improved solutions in 
subsequent generations. The Genetic Algorithm begins 
by selecting parent individuals from the population 
(Kocamaz et al., 2009). Then, operators are used to select 
suitable parents. The selection of the most suitable 
parents and the next generation’s production depends 
on the crossover operators. In most GA methods, 
crossover operators use two parents to create offspring. 
The new offspring always use the fittest alternative, thus 
ensuring the best ordering compared to the current one 
(Huang et al., 1997). The mutation is another genetic 
algorithm operator. Mutation relies on a random search 
for the optimal solution, while the initial generation 
does not impact the solution. In permutation coding, a 
mutation happens by swapping the place of the genes 
in the chromosomes. After that, GA repeats, generating 
new offspring until the expected number of iterations is 
achieved.

GA is an approach known to be effective in solving 
combinatorial optimization problems like scheduling 
problems. Various studies are using GA in solving PFSP. 
These studies investigated the problem of minimizing 
the total finishing time (Ruiz et al., 2005), total tardiness 
(Vallada and Ruiz, 2010) and total earliness and tardiness 
(Schaller and Valente, 2013). In the literature of GA-based 
solutions to the FSP, Babaei et al. (2012) dealt with the 
issue of lot sizing and scheduling in a flow shop setup 
with n-products and m-machines, considering factors 
such as sequence-dependent setup times, inventory 
costs, and the expenses associated with production 
delays and product waiting. Shahsavari Pour et al. (2013) 
also tackled the FSP using a GA-based strategy aimed 

at minimizing completion time, total waiting time, and 
overall tardiness.

Grasp

GRASP is a metaheuristic optimization technique 
combining greedy search and randomization elements 
to find near-optimal solutions. The basic idea behind 
GRASP is to iteratively construct solutions by selecting 
the best candidate among a set of randomly generated 
options while incorporating a local search component to 
improve the solution’s value. GRASP can be easily adapted 
to different problem domains and can be combined with 
other heuristics to form hybrid algorithms. GRASP is a fast 
and effective algorithm that has been shown to produce 
good results on a wide range of problems. The GRASP 
iteration consists of two stages: the construction phase 
and the local search phase. The adaptive randomized 
greedy function is utilized during the construction phase 
to generate a feasible solution. Then, this solution is 
improved using local search algorithms in the following 
local search phase (Feo and Resende, 1995). 

At each iteration, all candidate elements are evaluated 
based on a greedy evaluation function, and a new 
element selected from the ground set is included in the 
solution. This process ends when a feasible solution is 
found. The greedy evaluation function usually represents 
the change occurring in the objective function value 
when a new element is incorporated into the partial 
solution (Resende and Ribeiro, 2014).

A greedy parameter α [0,1] is used in a greedy 
evaluation function. GRASP is adaptive because the 
effects of each remaining element on the objective 
function are updated to reflect the effect brought on 
by choosing the last element at each iteration. GRASP 
is randomized because elements are selected randomly 
from a restricted candidate list, including the best 
candidates (Shahul Hamid Khan et al., 2007). 

Locally optimality of the solutions produced during 
GRASP’s construction phase is not exact. Therefore, 
GRASP’s second phase, local search, is applied to improve 
these solutions (Festa and Resende, 2002). The studies 
applying GRASP indicate that different approaches are 
adopted in the construction and local search phases. In 
this study, we used the procedure proposed by Feo and 
Resende (1995) in the construction phase and the block 
insertion proposed by Allahverdi (2003) in the local search 
phase. The procedures are given step by step below:
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general pairwise interchange, and two jobs insertion 
neighborhood during the local search phase. Finally, 
Molina-Sánchez and González-Neira (2016) used GRASP 
to solve PFSP to minimize the total weighted tardiness.

PROBLEM

This study analyzed the scheduling problem of a 
company that manufactures different-size pressure plates, 
discs, and release bearings for automobiles. The company 
has been operating in Izmir for nearly forty years. For the 
company using cellular manufacturing technologies 
during the manufacturing phase, a manufacturing cell 
consisting of eight consecutive machines which produce 
215-430 mm rigid and pre-damper hub-type discs with 
organic bearings was analyzed. A total of 48 jobs in the 
manufacturing program of the manufacturing cell at a 
randomly selected shift were used in the study to create 
a manufacturing plan. All 48 jobs are processed on eight 
machines in the cell in the same order with different 
processing times. For this reason, it is seen that the 
company has a PFSP problem. Table 1 presents the codes 
of these jobs and the processing times of the machines.

There is no return and repetition between the 
operations. As a result, processing times are known for all 
jobs, and no setup is necessary during the transition from 
one product to another.

APPLICATION

In evaluating the performances of meta-heuristic 
methods, the extent to which the solutions created 
by these methods are close to the optimal solution is 
crucial. Unfortunately, the optimal solution to the real-
life problem used in this study is unknown, and it takes 
too long to obtain it. Therefore, it may be challenging to 
evaluate the performances of meta-heuristic methods in 
solving large-scale scheduling problems whose optimal 
solution cannot be estimated. Therefore, to assess the 
performances of the meta-heuristic methods used in this 
study, we solved the test problems called rec31, rec33, 
and rec35 proposed by Reeves (1995) since these test 
problems consisting of 50 jobs and ten machines were 
closest to the real-life problem used in this study in terms 
of scale. The correlation between test data and real-
world data is crucial in securing the results’ validity and 
dependability. A higher degree of similarity between the 
two leads to more precise and representative results.

We used the Analytic Solver Platform developed by 
Frontline Systems, which can work with Microsoft Office 
Excel, to apply the SS and GA methods. The GRASP 
algorithm was coded using the VBA language. We used 

GRASP- The Steps of the Construction Phase

Step1 - Compute each job’s objective function value 
separately

Step2 - Estimate the objective function’s minimum and 
maximum values

Step3 - Calculate Width=[α x (Max-Min)] 

Step4 - Calculate the threshold values of the Restricted 
Candidate List (RCL)

RCL={ min, min + width}

Step5 - Randomly choose a candidate element from the 
RCL

Step6 - Repeat steps 1-5 till all jobs’ assignments are 
completed

GRASP- The Steps of the Local Search Phase

Step 1: Take the job sequence (π) obtained in the 
constructing phase

Step 2: Assign as K=1. Generate alternative sequences 
of the first two jobs in π. Save the sequence, which has 
the best objective function value, as the best solution

Step 3: Assign as k=k+1. Take the following two jobs in 
π. Insert the kth block, which includes these two jobs, to 
all steps of the existing optimal solution both as it is and 
by changing the sequence of the jobs in the block. Out 
of all the candidate solutions, save the one with the best 
objective function values as the best solution.

Step 4: Repeat Step 3 till assignments of all jobs in π are 
completed.

GRASP is particularly useful for problems with many 
possible solutions and can be computationally expensive 
to solve. GRASP can be employed in a range of scheduling 
scenarios to optimize objectives such as makespan, total 
flow time, or total tardiness. There are studies in the 
literature that address FSP and PFSP using GRASP. For 
example, Considering FSP to minimize the makespan 
and maximum tardiness, Shahul Hamid Khan et al. (2007) 
used a semi-greedy heuristic in the construction phase 
and block insertion and random insertion perturbation in 
the local search phase. On the other hand, Arroyo and de 
Souza Pereira (2011) used a multi-objective GRASP-based 
heuristic to solve PFSP. They aimed to simultaneously 
minimize the completion time, maximum tardiness, 
and makespan and total flowtime. They used an NEH-
based heuristic in the construction phase and insertion, 



Table 1: Jobs in the Shift Production Schedule and Their Processing Times

Machines in the Manufacturing Cell

Job RPr-O1 RPr-O2 RPr-O3 RPr-O4 RPr-O5 RPr-O6 RPr-O7 RPr-O8

J01 1’10” 2’20” 2’00” 2’10” 2’25” 3’55” 2’30” 0’45”

J02 0’50” 2’20” 1’30” 2’10” 2’45” 2’50” 1’40” 0’25”

J03 2’00” 1’40” 3’40” 1’30” 2’25” 3’55” 2’30” 0’45”

J04 2’00” 1’40” 3’40” 1’30” 2’25” 3’55” 2’30” 0’45”

J05 2’00” 1’40” 3’40” 1’30” 2’25” 3’55” 2’30” 0’45”

J06 0’50” 1’40” 1’30” 1’30” 2’45” 3’00” 1’40” 0’45”

J07 1’10” 2’20” 2’00” 2’10” 3’45” 3’55” 2’30” 0’45”

J08 1’30” 2’20” 3’20” 2’10” 5’50” 2’20” 1’30” 0’25”

J09 1’30” 2’20” 3’20” 2’10” 5’50” 2’20” 1’30” 0’25”

J10 2’00” 1’40” 3’40” 1’30” 2’25” 2’50” 1’40” 0’25”

J11 1’10” 2’20” 2’00” 2’10” 2’45” 3’55” 2’30” 0’45”

J12 1’10” 2’20” 2’00” 2’10” 2’45” 3’55” 2’30” 0’45”

J13 1’10” 2’20” 2’00” 2’10” 2’45” 3’55” 2’30” 0’45”

J14 0’50” 2’20” 1’30” 2’10” 5’30” 3’55” 2’30” 0’45”

J15 2’00” 2’20” 3’40” 2’10” 3’50” 3’55” 2’30” 0’45”

J16 2’00” 2’20” 3’40” 2’10” 3’50” 2’50” 1’40” 0’25”

J17 1’30” 2’20” 3’20” 2’10” 5’50” 2’50” 1’40” 0’25”

J18 0’50” 2’20” 1’20” 2’10” 3’50” 3’55” 2’30” 0’45”

J19 1’30” 2’20” 3’20” 2’10” 5’50” 3’00” 1’40” 0’45”

J20 1’10” 1’40” 2’00” 1’30” 5’30” 2’50” 1’40” 0’25”

J21 1’30” 2’20” 3’20” 2’10” 3’50” 3’00” 1’40” 0’45”

J22 1’30” 2’20” 3’20” 2’10” 3’50” 2’50” 1’40” 0’25”

J23 2’00” 2’20” 3’40” 2’10” 2’45” 2’50” 1’40” 0’25”

J24 1’10” 1’40” 2’00” 1’30” 3’50” 2’50” 1’40” 0’25”

J25 0’50” 2’20” 1’20” 2’10” 3’50” 2’50” 1’40” 0’25”

J26 0’50” 2’20” 1’20” 2’10” 3’50” 2’50” 1’40” 0’25”

J27 0’50” 2’20” 1’20” 2’10” 3’50” 3’00” 1’40” 0’45”

J28 1’10” 1’40” 2’00” 1’30” 4’45” 3’55” 2’30” 0’45”

J29 1’10” 1’40” 2’00” 1’30” 5’50” 3’00” 1’40” 0’45”

J30 1’30” 2’20” 3’20” 2’10” 2’25” 3’00” 1’40” 0’45”

J31 2’00” 1’40” 3’40” 1’30” 3’50” 2’50” 1’40” 0’25”

J32 0’50” 1’40” 1’20” 1’30” 4’45” 3’00” 1’40” 0’45”

J33 0’50” 1’40” 1’20” 1’30” 4’45” 3’00” 1’40” 0’45”

J34 0’50” 1’40” 1’20” 1’30” 4’45” 3’00” 1’40” 0’45”

J35 0’50” 1’40” 1’20” 1’30” 4’45” 3’00” 1’40” 0’45”

J36 1’10” 2’20” 2’00” 2’10” 5’50” 2’50” 1’40” 0’25”

J37 1’10” 1’40” 2’00” 1’30” 5’30” 2’50” 1’40” 0’25”

J38 1’30” 2’20” 3’20” 2’10” 4’45” 3’00” 1’40” 0’45”

J39 1’10” 1’40” 2’00” 1’30” 3’45” 3’55” 2’30” 0’45”

J40 1’10” 1’40” 2’00” 1’30” 3’45” 3’55” 2’30” 0’45”

J41 1’10” 1’40” 2’00” 1’30” 3’45” 3’55” 2’30” 0’45”

J42 0’50” 2’20” 1’20” 2’10” 2’25” 3’00” 1’40” 0’45”

J43 1’10” 2’20” 2’00” 2’10” 3’45” 3’00” 1’40” 0’45”

J44 1’30” 1’40” 3’20” 1’30” 3’45” 3’00” 1’40” 0’45”

J45 1’30” 1’40” 3’20” 1’30” 3’45” 3’55” 2’30” 0’45”

J46 0’50” 1’40” 1’20” 1’30” 4’45” 2’50” 1’40” 0’25”

J47 1’10” 1’40” 2’00” 1’30” 2’25” 2’50” 1’40” 0’25”

J48 1’10” 1’40” 2’00” 1’30” 2’25” 2’20” 1’30” 0’25”
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run 50 times for both methods. 

Table 2 gives the findings from solving the test 
problems using SS, GA, and GRASP. 

The best sequences obtained for rec31, rec33, and 
rec35 using SS, GA, and GRASP are given in Table 3.  

Although the three methods used differed in the 
results of the test problems, they reached the same 
results in real-life problem. When the real-life problem 
is solved using SS, GA, and GRASP, the makespan time 
of all jobs was found to be 11830 seconds by all three 
methods. Two alternative arrays give the best solution 
with all methods. These series are as follows:

the procedure prosed by Feo and Resende (1995) during 
the construction of the algorithm and the block insertion 
procedure proposed by Allahverdi (2003) during the local 
search phase. For all problems, 0, 0.2, 0.4, 0.6, 0.8, and 1 
were tested as parameter α in the GRASP algorithm and 
the best solutions obtained after ten repetitions were 
presented. 

During the application of GA and SS, constraint 
precision was taken as 0.00001, and the convergence 
value was taken as 0.0001. In the models, the population 
size was taken as 300, the mutation ratio was taken as 
0.15, the random seed was taken as 25, and the tolerance 
limit was taken as 0.01. The models were finished when 
no progress occurred after 60 seconds. The model was 

Table 2: Performance Summary of SS, GA, and GRASP for the Problems rec31-rec33-rec35

Problem Opt. Min Mean      Max Dev (%)

SS rec31 50’45” 54’11” 55’09” 62’35” 6,77%

rec33 51’54” 52’20” 53’38” 55’02” 0,83%

rec35 53’47” 55’42” 56’48” 60’35” 3,56%

GA rec31 50’45” 51’21” 51’30” 53’00” 1,18%

rec33 51’54” 52’20” 52’29” 53’40” 0,83%

rec35 53’47” 54’37” 54’39” 54’53” 1,55%

GRASP rec31 50’45” 53’00” 53’40” 54’06” 4,43%

rec33 51’54” 53’45” 54’01” 54’10” 3,56%

rec35 53’47” 55’26” 56’00” 56’21” 3,07%

Table 3: Best Job Sequences of SS, GA, and GRASP for the Problems rec31-rec33-rec35

rec31 SS: J02-J48-J16-J40-J49-J10-J39-J24-J11-J38-J23-J37-J06-J29-J36-J17-J41-J19-J45-J50-J08-J44-J21-J18-J32-J30-
J46-J07-J34-J22-J35-J25-J28-J12-J31-J05-J14-J42-J04-J33-J26-J01-J27-J13-J09-J03-J47-J15-J43-J20

GA: J18-J16-J34-J05-J23-J48-J06-J46-J17-J08-J36-J49-J40-J35-J37-J10-J11-J38-J26-J24-J42-J31-J03-J04-J39-J02-
J44-J41-J28-J15-J14-J29-J32-J30-J21-J09-J22-J12-J33-J07-J50-J25-J19-J45-J13-J20-J47-J43-J27-J01

GRASP: J18-J16-J06-J40-J23-J48-J14-J50-J37-J11-J49-J04-J39-J38-J46-J25-J10-J34-J31-J42-J09-J03-J41-J19-J17-J29-
J47-J05-J15-J02-J32-J08-J44-J24-J12-J36-J30-J21-J26-J45-J22-J01-J35-J07-J28-J27-J13-J33-J43-J20.

rec33 SS: J31-J07-J44-0J3-J39-J14-J47-J36-J40-J22-J04-J08-J10-J37-J19-J02-J18-J21-J45-J42-J20-J15-J27-J30-J48-J11-
J05-J25-J32-J38-J26-J29-J46-J06-J43-J49-J41-J13-J01-J28-J23-J09-J33-J12-J50-J16-J34-J35-J24-J17

GA: J31-J7-J45-J14-J47-J36-J27-J34-J39-J3-J42-J22-J43-J40-J04-J41-J15-J1-J48-J32-J30-J29-J2-J25-J50-J18-J8-
J46-J38-J10-J44-J11-J37-J21-J26-J6-J19-J23-J5-J35-J9-J28-J12-J13-J33-J20-J49-J16-J24-J17 

GRASP: J31-J03-J42-J07-J37-J27-J34-J39-J36-J18-J48-J25-J47-J22-J38-J15-J46-J10-J44-J29-J43-J26-J21-J13-J04-J20-
J05-J06-J32-J11-J08-J30-J49-J40-J41-J01-J12-J02-J35-J28-J24-J23-J50-J09-J33-J14-J19-J16-J45-J17

rec35 SS: J13-J50-J40-J10-J38-J37-J42-J17-J36-J26-J12-J19-J39-J5-J14-J11-J22-J3-J46-J48-J47-J45-J25-J4-J21-J44-
J49-J6-J27-J43-J2-J8-J35-J7-J9-J1-J15-J18-J41-J34-J33-J28-J23-J20-J32-J30-J16-J29-J24-J31

GA: 13-J14-J40-J2-J39-J50-J42-J25-J12-J10-J3-J36-J29-J21-J9-J17-J23-J45-J4-J44-J19-J41-J26-J27-J6-J46-J5-J33-
J20-J35-J47-J15-J8-J37-J11-J38-J43-J22-J16-J18-J34-J1-J30-J7-J48-J49-J32-J28-J24-J31

GRASP: J13-J2-J14-J29-J5-J47-J36-J40-J37-J38-J50-J42-J4-J26-J9-J46-J30-J22-J43-J10-J8-J33-J48-J3-J34-J39-J6-J41-
J19-J23-J35-J20-J18-J21-J15-J12-J11-J27-J16-J1-J25-J32-J24-J17-J44-J45-J7-J31-J49-J28. 
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CONCLUSION

The use of meta-heuristics in scheduling within the 
manufacturing sector in Turkey is likely to have gained 
significant attention in recent years. As companies strive 
to improve their production processes, they are looking 
for effective scheduling methods that can help optimize 
their operations. Effective scheduling leads to improved 
productivity, increased customer satisfaction, better 
resource management, and reduced costs, making it an 
essential aspect of operations management and business 
success. As a result, meta-heuristics, with their ability to 
provide flexible, efficient, and high-quality solutions to 
scheduling problems, are becoming increasingly popular 
among Turkish manufacturing companies. This study 
addressed PFSP with a real-life problem of a company 
that adopted cellular manufacturing technologies. The 
PFSP, a widely researched topic in the field for many 
years, is recognized as an NP-hard problem. As a result, 
meta-heuristic techniques are often utilized to address 
this challenging issue. The PFSP was tackled using 
SS, GA, and GRASP, and the efficiency of these meta-
heuristic methods was then compared to one another. 
Furthermore, to evaluate the performances of these 
methods, the test problems called rec31, rec33, and 
rec35 proposed by Reeves (1995) were solved since these 
test problems were closest to the real-life problem used 
in this study in terms of scale.

SS uses a set of reference solutions to guide the 
search process, GA uses genetic operations to evolve 
a population of solutions, and GRASP uses a greedy 
strategy combined with randomization to generate 
solutions incrementally. GA was the most successful 
method in solving all test problems. GRASP was more 
successful for rec31 and rec35 than SS; however, SS 
obtained the same result as GA for rec33, yielding a 
solution with only a 0.83% deviation from the optimal 
solution. The analysis of the methods’ performances in 
solving the real problem shows that all methods yielded 
the same result because the problem included jobs with 
similar processing times that were categorized based on 

certain features. GRASP is deemed superior as it strikes a 
balance between exploring new solutions and utilizing 
the best solution discovered thus far, thereby increasing 
the likelihood of uncovering the optimal solution.

PFSPs are common and can be found in real-world 
production environments often. Therefore, optimizing 
the PFSP impacts production efficiency and makes them 
an important area of research and development. The 
findings demonstrate the potential benefits of adopting 
this approach and can serve as a valuable reference for 
other companies considering similar solutions.

In conclusion, this study revealed that successful 
results could be obtained using SS, GA, and GRASP to 
solve PFSP. In future studies, the success of the methods 
can be retested by taking longer-term data from the 
company. Also, this problem can be tested by changing 
the parameters of the methods and using them in a 
hybrid way, or other metaheuristic algorithms can be 
developed for PFSP solutions in future studies.

Table 4: Best Alternative Job Sequences of SS, GA, and GRASP for the Real-Life Problem

Real-Life 
Problem

Alternative 
Sequence 1:

J32-J14-J37-J27-J43-J23-J40-J33-J29-J19-J41-J18-J38-J48-J02-J17-J46-
J30-J34-J45-J39-J24-J25-J4-J35-J3-J28-J10-J13-J44-J20-J16-J8-J5-J6-
J26-J42-J12-J15-J47-J11-J7-J21-J31-J36-J1-J22-J9 

Alternative 
Sequence 2:

J32-J2-J12-J9-J3-J13-J31-J14-J29-J41-J37-J46-J26-J45-J11-J34-J39-J23-
J20-J1-J15-J27-J19-J6-J42-J48-J4-J38-J24-J28-J21-J25-J30-J18-J33-J07-
J43-J35-J40-J44-J05-J16-J17-J10-J47-J36-J22-J8
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