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Abstract. In this study, we examine the Berry’s phase equation for E-M

curves in the C − direction and W − direction throughout an optic fiber via

alternative moving frame in three dimensional space. Moreover, electromag-
netic curve’s C − direction and W − direction Rytov parallel transportation

laws are defined. Finally, we examine the electromagnetic curve with anholo-

nomic co-ordinates for Maxwellian evolution by Maxwell’s equation.

1. Introduction

Electromagnetic (E-M) theory and magnetic theory are very significant topics
for the scientific world. Mathematically, at first, it started to be researched in
terms of topology [20]. Then, it was noted that a geometric perspective could be
presented with this approach and Berry made a the publication leading the way in
this regard [16]. After that, Ross studied the rotational motion of the polarization
state together with the optical fiber geometrically and gave a relationship with the
most important branch of geometry, curves [11]. Haldane examined the geometric
phase of a light wave in tangential vector space [5]. Dandoloff, Zakrzewski and
Frins, Dultz researched parallel transport with Berry’s phase and correlated the
space curve with the trajectories of the light wave along the optical fiber [4,19]. On
the other hand, there has been a very important paper that has led to the study
of this subject for geometers recently. In that paper, the relationship between the
magnetic field and Killing vector field and the connection with the classical elastic
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theory and the Hall effect were given [12, 13]. Then, the magnetic flow and field
were studied in some geometric structures, thanks to the interest in the geometric
phase and the important publications written on this subject [7, 9, 10]. With this,
the geometrical phase shift of the angular momentum and their densities were re-
searched analytically so that Frenet-Serret coordinate system and the special curve
were associated [18]. Afterward, Özdemir [27] and Ceyhan [6] calculated magnetic
and electromagnetic trajectories and they presented some motivated examples of
motion of the polarization light wave. Finally, in [17, 21], Körpınar and Gürbüz
examined the connection between electromagnetic theory and Maxwell’s equations
from a geometric perspective.

Recently optical fiber is a very important field that come into prominence in
physics and geometry. Polarized light is generally thought of as the transport of an
electromagnetic wave and its appearances. When it is assumed to propagate within
the optical fiber, it is well-defined, owing to the Maxwell’s equations. The set of
Maxwell’s equations implicitly shows how electromagnetic field vectors propagate
and explicitly tell sources of the field. In the optical fiber configuration of uni-
form, isotropic, nonconducting, free-from charge, magnetic flux, and non-dispersive
etc. The evolution of the space curve is a very influential way to understand many
physical processes such as vortex filaments, dynamics of Heisenberg spin chain,
integrable systems, soliton equation theory, sigma models, relativity, water wave
theory, fluid dynamics, field theories, linear and nonlinear optics. We give example
publications of the applications mentioned above. Authors researched the relation-
ship between non-linear Schöndinger equation rogue soliton equivalent in the spin
system [2]. In [14], authors gave a sufficient conclusion by using Da Rios vortex
filament equation and the evolution equation for the torsion is the Viscous Burger’s
equation. Then in comprehensive paper [26], Banica and Miot investigated evolu-
tion, interaction and collisions of vortex filaments. Moreover, Körpinar and et. al.
studied Binormal Schöndinger system of Heisenberg ferromagnetic equation and
flux surface by using normal direction equations [23–25]. In [22], author studied
binormal direction with magnetic flows equations for Berry’s phase applications.

In this study, we analyze the geometric phase equation for E-M curves in the
C − direction and W − direction directions throughout an optic fiber via an alter-
native moving frame in three dimensional space. At the same time, we research the
electromagnetic curve’s via anholonomic co-ordinates for Maxwellian evolution by
Maxwell’s equation. The first section includes the historical background of the work
and a description of what has been done in this paper. In the second section, equa-
tions of alternative moving frame studied in this study and anholonomic coordinate
calculations to be used in other parts are given. The third section comprises evalu-
ation of directional derivative expressions for the alternative moving frame and the
S−direction, C−direction, W −direction derivatives of Serret-Frenet relations in

matrix form. The fourth section we calculate
−→
E c and

−→
Ew electric field, magnetic

field, electromagnetic matrix form and
−→
E c,

−→
Ew Rytov curves. Finally, in the last
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section, we give mathematical approach of Maxwell equations for electromagnetic
and magnetic waves via alternative moving frame.

2. Fundamental Background

Let γ = γ(s) be an arbitrary curve in 3D Riemannian manifolds. If ⟨−→γ ′(s),−→γ ′(s)⟩ =
0 for any s ∈ I, γ is called an arc-lenght parametrized curve where ⟨, ⟩ is defined
as;

⟨ , ⟩ = du2
1 + du2

2 + du2
3

that (u1, u2, u3) is a coordinate of E3.

Alternative frame’s fields as {−→t ,−→n ,
−→
b } Frenet frame are given as below;

−→
N,

−→
C =

−→
N ′

∥
−→
N ′∥

,
−→
W =

τt+ κb√
κ2 + τ2

where
−→
N is a unit principal normal vector field and

−→
W is a Darboux vector field.

The one-parameter derivative s, which is the arc-lenght parameter of the alter-
native moving frame’s fields is as follows;

−→
N ′(s) = f(s)

−→
C (s)

−→
C ′(s) = −f(s)

−→
N (s) + g(s)

−→
W (s)

−→
W ′(s) = −g(s)

−→
C (s)

which f(s) and g(s) are curvature of the curve γ (κ and τ are the curvature and
the torsion of the curve γ in terms of Frenet’s frame, respectively); are defined as;

f = κ
√
1 +H2 g = σf

where H = τ
κ is harmonic curvature and σ = κ2

(κ2+τ2)
3
2
( τκ )

′, ( [3]).

With
−→
A being an arbitrary vector field, the gradient and the curl of this vector

field are given respectively, as ( [1])

grad
−→
A =

−→
N
−→
N · grad

−→
A +

−→
C
−→
C · grad

−→
A +

−→
W

−→
W · grad

−→
A,

curl
−→
A =

−→
N × ∂

−→
A

∂s
+
−→
C × ∂

−→
A

∂s
+

−→
W × ∂

−→
A

∂s
.
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On the other hand, the directional derivatives of arbitrary scalar f , along the

vector
−→
N , vector

−→
C and Darboux vector

−→
W , are defined in the above expression as;

∂f

∂s
=

−→
N · gradf,

∂f

∂c
=

−→
C · gradf,

∂f

∂w
=

−→
W · gradf.

Assume that a directional derivative of an arbitrary vector
−→
A with respect to

direction η where η ∈ {
−→
N,

−→
C ,

−→
W} and considering the directional derivative

∂
−→
A

∂η
which calculated as follows; the divergence operator div acting on an arbitrary

vector
−→
A is written as;

div
−→
A =

−→
N · ∂

−→
A

∂η
+
−→
C · ∂

−→
A

∂η
+
−→
W · ∂

−→
A

∂η
.

The directional derivative of the vector
−→
N can be written in a general form as

follows;

∂
−→
N

∂s
= (

−→
N · ∂

−→
N

∂s
)
−→
N + (

−→
C · ∂

−→
N

∂s
)
−→
C + (

−→
W · ∂

−→
N

∂s
)
−→
W,

∂
−→
N

∂c
= (

−→
N · ∂

−→
N

∂c
)
−→
N + (

−→
C · ∂

−→
N

∂c
)
−→
C + (

−→
W.

∂
−→
N

∂c
)
−→
W,

∂
−→
N

∂w
= (

−→
N · ∂

−→
N

∂w
)
−→
N + (

−→
C · ∂

−→
N

∂w
)
−→
C + (

−→
W · ∂

−→
N

∂w
)
−→
W.


(1)

For the other directional derivatives of the vectors which are vector
−→
C and Dar-

boux vector
−→
W , we can use the same method. Here we give various interrelationships

between directional derivatives found by solving the following sets of equations;

∂

∂s
(
−→
N ·

−→
N ) = 2

−→
N

∂
−→
N

∂s
= 0

∂

∂s
(
−→
C ·

−→
C ) = 2

−→
C

∂
−→
C

∂s
= 0

∂

∂s
(
−→
W ·

−→
W ) = 2

−→
W

∂
−→
W

∂s
= 0



(2)
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∂

∂s
(
−→
N ·

−→
C ) =

−→
N · ∂

−→
C

∂s
+

−→
C · ∂

−→
N

∂s
= 0

−→
N · ∂

−→
C

∂s
= −

−→
C · ∂

−→
N

∂s
= f(s)


(3)

∂

∂s
(
−→
N ·

−→
W ) =

−→
N · ∂

−→
W

∂s
+

−→
W · ∂

−→
N

∂s
= 0

−→
N · ∂

−→
W

∂s
= −

−→
W · ∂

−→
N

∂s


(4)

∂

∂s
(
−→
C ·

−→
W ) =

−→
C · ∂

−→
W

∂s
+

−→
W · ∂

−→
C

∂s
= 0

−→
C · ∂

−→
W

∂s
= −

−→
W · ∂

−→
C

∂s
= g(s)


(5)

The equations obtained above for the ∂
∂s are also written in the same way for

the directional derivatives ∂
∂c and ∂

∂w .
And also in [15], defined four additional terms of the directional derivatives.

These are as follows

−→
C · ∂

−→
N

∂c
= −

−→
N · ∂

−→
C

∂c
= Ψcs

−→
W · ∂

−→
N

∂w
= −

−→
N · ∂

−→
W

∂w
= Ψws

−→
W · ∂

−→
N

∂c
= −

−→
N · ∂

−→
W

∂c

=
1

2
(Φs + Λs)

−→
C · ∂

−→
N

∂w
= −

−→
N · ∂

−→
C

∂w

=
1

2
(Φs − Λs)



(6)
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The symbol Ψcs represents the normal deformation of the vector tube in the

direction of the
−→
C , Ψws represents the normal deformation of the vector tube in

the direction of the
−→
W , Φs is called the abnormality parameter of the vector s−line,

Λs is the shear deformation in the normal plane (i.e. plane containing the
−→
N and

−→
W vectors).

Note that the abnormality parameter of the vectors
−→
N,

−→
C ,

−→
W are denoted by the

symbols Λs, Λc and Λw and defined as

Λc = −g(s)− 1

2
(Φs − Λs)

= −g(s) +
−→
N · δ

−→
C

δw
,

Λw = −g(s) +
1

2
(Φs + Λs)

= −g(s)−
−→
N · δ

−→
W

δc
,

Λs = −
−→
W · δ

−→
N

δc
+
−→
C · δ

−→
N

δw
,



(7)

respectively. The three abnormalities can be written as follows upon examining the
above expression as follows

curl
−→
N ·

−→
N = Λs

curl
−→
C ·

−→
C = Λc

curl
−→
W ·

−→
W = Λw

 (8)

The abnormality parameter of the vector s − line is obtained by setting the
torsion τ in (7) equal to each other, such that,

Φs = Λw − Λc

3. Evaluation of Directional Derivative Expressions for the
Alternative Moving Frame

Here we consider that γ(s, c, w) be a curve that exists in the 3D space. Via (1)-
(8) we can write the other geometric equations in terms of anholonomic coordinates
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respectively;

div
−→
N =

−→
N · ∂

−→
N

∂s
+

−→
C · ∂

−→
N

∂c
+

−→
W · ∂

−→
N

∂w
= Ψcs +Ψws,

div
−→
C =

−→
N · ∂

−→
C

∂s
+

−→
C · ∂

−→
C

∂c
+

−→
W · ∂

−→
C

∂w

= −f(s) +
−→
W · ∂

−→
C

∂w
,

div
−→
W =

−→
N · ∂

−→
W

∂s
+

−→
C · ∂

−→
W

∂c
+

−→
W · ∂

−→
W

∂w

=
−→
C

∂
−→
W

∂c
.

Furthermore,

curl
−→
N =

−→
N × ∂

−→
N

∂s
+
−→
C × ∂

−→
N

∂c
+

−→
W × ∂

−→
N

∂w

= Λs + f(s)
−→
W,

curl
−→
C =

−→
N × ∂

−→
C

∂s
+
−→
C × ∂

−→
C

∂c
+

−→
W × ∂

−→
C

∂w

= (−div
−→
W )

−→
N + (−g(s)− 1

2
(Φs − Λs))

−→
C +Ψcs ·

−→
W,

curl
−→
W =

−→
N × ∂

−→
W

∂s
+
−→
C × ∂

−→
W

∂c
+

−→
W × ∂

−→
W

∂w

= (div
−→
C + f(s))

−→
N + (−Ψws)

−→
C + (−g(s) +

1

2
(Φs + Λs)) ·

−→
W.

Thanks to the above equations, the Serret-Frenet formulas for each direction of
the frame together with the anholonomic coordinates of the {N,C,W} frame are
obtained as the following matrix forms;

∂

∂s


−→
N
−→
C
−→
W

 =

 0 f(s) 0
−f(s) 0 g(s)

0 −g(s) 0



−→
N
−→
C
−→
W

 ,

∂

∂c


−→
N
−→
C
−→
W

 =

 0 Ψcs Λw + g(s)

−Ψcs 0 −div
−→
W

−(Λw + g(s)) div
−→
W 0



−→
N
−→
C
−→
W

 ,

∂

∂w


−→
N
−→
C
−→
W

 =

 0 −(Λc + g(s)) Ψws

Λc + g(s) 0 f(s) + div
−→
C

−Ψws −(f(s) + div
−→
C ) 0



−→
N
−→
C
−→
W

 .

(9)
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4. Relationship between anholonomic coordinates and
Electromagnetic curves

Berry’s (geometric) phase in the directions throughout C − direction and W −
direction arises with the dissemination of an E-M wave along with the optical fiber
for the alternative moving frame of curve γ. Optical fiber can be defined as a curve
γ(s, c, w) via alternative moving frame in three dimensional space. The E-M wave

dissemination is in the direction of
−→
N = (s, c, w) the polarization of the E-M wave

is mentioned by the direction of the electric field vector
−→
E = (s, c, w) and magnetic

field is described as
−→
V = (s, c, w). Here basically the electric field will be shown

perpendicular to the direction of W will be examined.

Case 1 : The derivation of the
−→
E between any two points in the C − direction

for the alternative moving frame {N,C,W} of the curve γ(s, c, w) can be defined
as

∂

∂c

−→
E (s, c, w) = λ1

−→
N + λ2

−→
C + λ3

−→
W (10)

where λi(s, c, w), i = 1, 2, 3 are sufficiently smooth arbitrary functions along the

γ. The electric field is right angle to
−→
N and if we consider that because of the

absorption, there is no mechanism loss in the optical fiber, we can write the following
equations;

⟨
−→
N,

−→
E ⟩ = 0, ⟨

−→
E ,

−→
E ⟩ = c. (11)

Taking the derivative of (11) and using the Eqs. (9)-(11), we get

⟨∂
−→
N

∂c
,
−→
E ⟩ = −λ1.

Using Eqs. (10) and (11) we can calculate,

λ1 = −(ΨcsE
C + (Λw + g(s))EW ) (12)

where EC and EW are smooth components of the
−→
C and

−→
W . If we taking derivative

of the second one in (11), we can get

⟨∂
−→
E

∂c
,
−→
E ⟩ = 0.

Therefore, using (9), (11) and (12), we obtain

−→
E c = −(ΨcsE

C + (Λw + g(s))EW )
−→
N + λ(

−→
E ×

−→
N ) (13)

that λ is a constant term.
The last equation allows us to find the rotation of the electric field in the C −
direction around the −→n . Moreover, we can assume that λ = 0, with that we can
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finalize which
−→
E is a Rytov parallel transport in the C−direction by the conditions

given above
−→
E c = −(

−→
E ·Nc)N. (14)

Furthermore, the Fermi-Walker transportation law is given as
−→
BFW

c =
−→
B c ± (

−→
B ·

−→
N c)

−→
N + (

−→
B ·

−→
N )

−→
N c. (15)

Generally, we can write
−→
E = EC−→C +EW−→

W. (16)

Deriving (16) and combining with (9) we can write,

∂

∂c

−→
E = −(ΨcsE

C+(Λw+g(s))EW )
−→
N+(EC

c +div
−→
W ·EW )

−→
C +(EW

c −div
−→
W ·EC)

−→
W.

(17)
If the electric field is assumed to be Rytov parallel transported in C − direction,
then comparing (14) and (17) satisfies that;(

EC
c

EW
c

)
=

(
0 −div

−→
W

div
−→
W 0

)(
EC

EW

)
. (18)

Therefore, we can accomplish that (18) describes the motion of the polarization
plane in the C − direction along the optical fiber thus a Berry’s phase ρ = (s, c, w)
in the c direction is defined by;

∂

∂c
ρ = div

−→
W.

Using the information provided it is found the magnetic field vector in relation to
the ingredient of the electric field as ;

−→
V = EC−→W −EW−→

C (19)

that provides the following conditions;
−→
V ⊥

−→
E

−→
V ⊥

−→
N (20)

where
V C = −EW V W = EC .

Using (20) and (9), deriving (19), we get

∂
−→
V

∂c
= (EWΨcs−EC(Λw+g(s))

−→
N+(ECdiv

−→
W−EW

c )
−→
C +(EC

c +EW div
−→
W )

−→
W (21)

which satisfies

⟨∂
−→
V

∂c
,
−→
E ⟩+ ⟨∂

−→
E

∂c
,
−→
V ⟩ = 0

and

⟨∂
−→
V

∂c
,
−→
N ⟩+ ⟨∂

−→
N

∂c
,
−→
V ⟩ = 0.
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Within the results obtained, we can make the following inference, magnetic field
and electric field have alike Berry’s phase in the same conditions as follows

−→
V c = −(

−→
V ·

−→
N c)

−→
N. (22)

We show that if
−→
E is the Rytov parallel transported the C − direction if and only

if it is Fermi-Walker parallel transported in the C − direction throughout optical
fiber via alternative moving frame of the curve γ.
The Lorentz force is the force acting on a charged particle moving in electromagnetic
field in three dimensional space. At that time, the electromagnetic field in the
C−direction along with the curve γ via alternative moving frame with concerning

anholonomic coordinates help of Lorentz equation ϕ(
−→
E ) =

−→
X ×

−→
E where

−→
X is a

Killing magnetic field in three dimensional space and (9) is given as follows;

⟨ϕc(
−→
E ),

−→
N ⟩ = −⟨ϕ(

−→
N ),

−→
EC⟩ = ⟨∂

−→
E

∂c
,
−→
N ⟩ = −ΨcsE

C − (Λw + g(s)EW .

When necessary arrangements are made, we can write;

ϕc(
−→
N ) = ΨcsE

C + (Λw + g(s))EW + a1E
N

ϕc(
−→
C ) = −λEW + a2E

N

ϕc(
−→
W ) = λEC + a3E

N .

(23)

Taking (23) and (9) into account, Lorentz force in the C−direction throughout the
optical fiber that is determined curve γ for the alternative moving frame implies
the following matrix form;

ϕc(
−→
N )

ϕc(
−→
C )

ϕc(
−→
W )

 =

 0 Ψcs (Λw + g(s)
−Ψcs 0 −λ

−(Λw + g(s) λ 0

EN

EC

EW



Case 2 : The derivation of the electric field vector
−→
E between any two points in

theW−direction for the alternative moving frame {N,C,W} of the curve γ(s, c, w)
can be defined as

∂

∂w

−→
E (s, c, w) = λ1

−→
N + λ2

−→
C + λ3

−→
W (24)

where λi(s, c, w), i = 1, 2, 3 are sufficiently smooth arbitrary functions along the

γ. The electric field is right angle to
−→
N and if we consider that because of the

absorption, there is no mechanism loss in the optical fiber, we can write the following
equations;

⟨
−→
N,

−→
E ⟩ = 0, ⟨

−→
E ,

−→
E ⟩ = c. (25)
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Taking derivative of (25) and using the Eqs. (9)-(25), we get

⟨∂
−→
N

∂w
,
−→
E ⟩ = λ1

Using Eqs. (24) and (25) we can calculate,

λ1 = ((Λc + g(s))EC −ΨwsE
W )

−→
N. (26)

If we taking derivative of the second one in (25), we can get

⟨∂
−→
E

∂w
,
−→
E ⟩ = 0.

After that we collect (9), (25) and (25) we obtain
−→
Ew = ((Λc + g(s))EC −ΨwsE

W )
−→
N + λ(

−→
E ×

−→
N ) (27)

that λ is a constant.
Considering the last equation we get the rotation of the

−→
E in the W − direction

around the
−→
N . Furthermore, we assume that λ = 0, in this manner we finalize that−→

E is a parallel transport in the W − direction with the above terms

−→
Ew = −(

−→
E ,

−→
Nw)

−→
N. (28)

Additionally, this motion can be defined through the Fermi-Walker transportation
law in three dimensional space is as follows;

−→
BFW

w =
−→
Bw ± (

−→
B ·

−→
Nw)

−→
N + (

−→
B ·

−→
N )

−→
Nw. (29)

Generally, we get
−→
E = EC−→C +EW−→

W (30)

where EC and EW are smooth components of the
−→
C and

−→
W . Deriving (30) and

combining with (9) we can write,

∂

∂w

−→
E = ((Λc + g(s))EC −ΨwsE

W )
−→
N + (EC

w − (div
−→
C + f(s))EW )

−→
C (31)

+ (EW
w + (f(s) + div

−→
C )EC)

−→
W.

If the electric field is presumed to be Rytov parallel transported in the direction
W , then comparing (28) and (31) implies that(

EC
w

EW
w

)
=

(
0 div

−→
C + f(s)

−(div
−→
C + f(s)) 0

)(
EC

EW

)
. (32)

Therefore, (32) describes the rotation of the polarization plane in the W−direction
along the optical fiber thus a Berry’s phase ρ = (s, c, w) in the W − direction
described by;

∂

∂w
ρ = div

−→
C + f(s).
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We can indicate the magnetic field vector in relation to the ingredient of the electric
field as;

−→
V = EC−→W −EW−→

C (33)

that ensures the following conditions;

−→
V ⊥

−→
E

−→
V ⊥

−→
N (34)

where

V C = EW V W = EC .

Using (9), (34) and deriving (33), we can get;

∂
−→
V

∂w
= (−ECΨws −EW (ΛC + g(s))

−→
N + (−EC(f(s) + div

−→
C )−EW

w )
−→
C (35)

+ (EC
w +EW (f(s) + div

−→
C ))

−→
W

which satisfies

⟨∂
−→
V

∂w
,
−→
E ⟩+ ⟨∂

−→
E

∂w
,
−→
V ⟩ = 0

and

⟨∂
−→
V

∂w
,
−→
N ⟩+ ⟨∂

−→
N

∂w
,
−→
V ⟩ = 0.

Consequently, we can say that magnetic field and electric field have Berry’s phase
in the same conditions as follows;

−→
V w = −(

−→
V ·

−→
Nw)

−→
N

if
−→
E is the Rytov parallel transported the W − direction if and only if it is Fermi-

Walker parallel transported in the W − direction along with optical fiber via alter-
native moving frame of the curve γ.
The electromagnetic field in the W − direction along with the curve γ via alterna-
tive moving frame with respect to anholonomic coordinates help of Lorentz equation
and (9) is given as follows;

⟨ϕw(
−→
E ),

−→
N ⟩ = −⟨ϕ(

−→
N ),

−→
EW ⟩ = ⟨∂

−→
E

∂w
,
−→
N ⟩ = (Λc + g(s)EC −ΨwsE

W . (36)

When necessary arrangements are made, we can write;

ϕw(
−→
N ) = ΨwsE

W − (Λc + g(s)EC + a1E
N

ϕw(
−→
C ) = −λEW + a2E

N

ϕw(
−→
W ) = λEC + a3E

N .

(37)
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Taking (37) and (9) into account, the Lorentz force in the direction W along with
the optical fiber that is determined curve γ for the alternative moving frame implies
the following matrix form;ϕw(

−→
N )

ϕw(
−→
C )

ϕw(
−→
W )

 =

 0 −(Λc + g(s)) Ψws

(Λc + g(s)) 0 −λ
−Ψws λ 0

EN

EC

EW

 (38)

5. Mathematical Approach of Maxwell equations for
Electromagnetic and Magnetic waves via Alternative Moving

frame

Maxwell’s equations consist of four main equations that are very important
for understanding electromagnetic theory. Maxwell’s equations, together with the
Lorentz force law, are a set of partial differential equations that form the basis
for the fields of classical electrodynamics and optics.These equations describe how
magnetic and electric fields are exchanged and produced by each other, by charges
and currents. Maxwell equations are given by,

∇ ·
−→
E = 0 (39)

∇ ·
−→
V = 0 (40)

∇×
−→
V = ϵv

∂E

∂u
(41)

∇×
−→
E = −∂V

∂u
(42)

where ϵ and v have the same values at all points and (s, c, w) and u space, time vari-
ables. If we assume that the electric field is perpendicular to the tangent direction
and (17), (31) and (39), we can obtain;

∇ ·
−→
E = (

−→
N · ∂

∂s
+

−→
C

∂

∂c
+
−→
W

∂

∂w
) ·

−→
E

=
−→
N · ∂

−→
E

∂s
+

−→
C · ∂

−→
E

∂c
+

−→
W · ∂

−→
E

∂w
= 0

that satisfies;

EC
c −EW

w = −ECdiv
−→
C +EW div

−→
W. (43)
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In the same way, we are aware that E is right angle to the tangent directional and
using (17), (31) and (40), we can compute that;

∇ ·
−→
V = (

−→
N · ∂

∂s
+

−→
C

∂

∂c
+
−→
W

∂

∂w
) ·

−→
V

=
−→
N · ∂

−→
V

∂s
+

−→
C · ∂

−→
V

∂c
−

−→
W · ∂

−→
V

∂w
= 0

which implies that,

EW
c −EC

w = ECdiv
−→
W −EW div

−→
C . (44)

If we think comprehensively (43) and (44), then it is calculated that Laplacian-like
equations through C − lines and W − lines of the electromagnetic waves are as
follows;

∂2

∂c2
EW − ∂2

∂w2
EW = EC((div

−→
W )c + (div

−→
C )w) +EW ((div

−→
W )w + (div

−→
C )c)

+ div
−→
W (EC

c +EW
w ) + div

−→
C (EW

c +EC
w)

∂2

∂c2
EC − ∂2

∂w2
EC = EC((div

−→
W )w − (div

−→
C )c) +EW ((div

−→
W )w − (div

−→
C )c)

+ div
−→
W (EC

w −EW
c ) + div

−→
C (EW

w −EC
c ).

If we consider that the electric field is right angle to the tangential direction and
(17), (31) and (41), we get;

∇×
−→
V = ϵv

∂
−→
E

∂u
= (

−→
N · ∂

∂s
+
−→
C

∂

∂c
+

−→
W

∂

∂w
)×

−→
V

= (
−→
N × ∂

∂s

−→
V +

−→
C × ∂

∂c

−→
V +

−→
W × ∂

∂w

−→
V )

which satisfies that;

ϵv
∂
−→
E

∂u
= −(EC

c +EW div
−→
W +EW

w +EC(f(s) + div
−→
C )

−→
N

+ (EC
s + ΛcE

W +ΨwsE
W )

−→
C + (−EW

s − ΛwE
C +ΨcsE

W )
−→
W.

In the same sense, we attention to the
−→
E is right angle to the tangent directional

and (17), (31) and (42), we can write that;

− ∂

∂u

−→
V = ∇×

−→
E = (

−→
N

∂

∂s
+

−→
C

∂

∂c
+

−→
W

∂

∂w
)×

−→
E

=
−→
N × ∂

∂s

−→
E +

−→
C × ∂

∂c

−→
E +

−→
W × ∂

∂w

−→
E
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which implies that,

− ∂

∂u

−→
V = (−EW

c +ECdiv
−→
W + EC

w −EW (f(s) + div
−→
C ))

−→
N

+ (−EC
s − ΛcE

C +ΨwsE
W )

−→
C + (−EW

s −ΨcsE
C − ΛwE

W )
−→
W.

6. Conclusion

In this study, we found the movement of polarized light along the optical fiber
by calculating the equations of the electric field and magnetic field in cases where
the frame of the space is at a right angle with respect to the alternative frame’s
vector fields. Thus, we had the opportunity to examine the motion of light in the
field of geometry. In this way, the relationship of the motion of light in space with
special curves, which is an important subject of geometry, can be investigated. At
the same time, we investigated the geometric phase issue and Maxwell’s equations
together. We have obtained two important cases. These situations gave us the
chance to examine the motion of light in the C − direction and in the direction
of the Darboux vector. We also give their connections with Fermi-Walker parallel
transportation laws via alternative moving frame. For further research, we aim to
study Maxwellian evolution equations relationship between spherical coordinates
to better understand the solutions of the equations.
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