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Abstract
The intersection graph of quasinormal subgroups of a group G, denoted by Γq(G), is
a graph defined as follows: the vertex set consists of all nontrivial, proper quasinormal
subgroups of G, and two distinct vertices H and K are adjacent if H ∩ K is nontrivial. In
this paper, we show that when G is an arbitrary nonsimple group, the diameter of Γq(G)
is in {0, 1, 2, ∞}. Besides, all general skew linear groups GLn(D) over a division ring D
can be classified depending on the diameter of Γq(GLn(D)).
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1. Introduction
Constructing a graph over an algebraic structure is an interesting topic that has at-

tracted several mathematicians for approximately 150 years. In this direction, we would
like to associate abstract structures, for instance, groups, rings, or modules as fairly con-
crete objects, for instance, graphs. Through characteristics of the graphs, properties of the
original structures can be indirectly surveyed. In [6], the likely first literature of its idea,
A. Cayley proposed a graphical representation of a group whose vertices are the group’s
elements. After another 100 years, in [5], J. Bosak first proposed the intersection graphs of
semigroups with vertices as proper subsemigroups. Inspired by Bosak’s work, Csákány and
Pollák researched the intersection graph of subgroups with vertices as proper subgroups
in a finite group. Recently, the intersection graphs whose vertices are sub-structures of
groups, rings, or modules are studied deeply in the works of Akbari et al. (see [1–3]).
More dated results can be found in [4, 15].

In this paper, we study a class of subgraphs of the intersection graph of a group G,
where G is not necessarily finite. The intersection graph of G, denoted by Γ(G), is a
graph whose vertices are all nontrivial proper subgroups of G, and two distinct vertices
H and K are adjacent if and only if H ∩ K 66= 〈1〉. The main object of this paper is
Γq(G), the subgraph of Γ(G) induced on the nontrivial proper quasinormal subgroups of
G. Recall that a subgroup Q of G is quasinormal (also permutable) in G if QH = HQ for
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every H ≤ G. Many interesting properties of quasinormal subgroups have already been
discovered, for example, [12, 18]. Recently, quasinormal subgroups of the general linear
group GLn(D) over a division ring is researched in [8, 9]. Continuing this topic, we study
on Γq(G) in the generality and in the case G = GLn(D), the general linear group over a
division ring D.

This paper is organized as follows. In Section 2, we recall some notions in group
and graph theory, as well as some basic properties of quasinormal subgroups and of the
general skew linear groups. In Section 3, we consider the intesection graph of quasinormal
subgroups of an arbitrary nonsimple group. Firstly, we assert that a nonsimple group G is
the direct product of two simple subgroups if and only if Γq(G) is disconnected. Secondly,
we prove that Diam(Γq(G)) ∈ {0, 1, 2, ∞} for an arbitrary nonsimple group G. Lastly, we
show that Girth(Γq(G)) = 3 if Γq(G) includes a cycle. We consider the intersection graph
of quasinormal subgroups of the general linear group GLn(D) of degree n over D in Section
4 and 5. In Section 4, we list all conditions for the graph Γq(GLn(D)) to be complete.
Finally, in Section 5, we classify all general linear groups GLn(D) by the diameter of
Γq(GLn(D)), where n ≥ 2. Also in this final section, we classify all general linear groups
GLn(F ) of degree n ≥ 1 over a field F by the diameter of the graph Γq(GLn(F )).

2. Preliminaries
In this section, we recall some basic definitions, notations, and essential lemmas that

are used throughout this paper. Let G be a group and H a subgroup. We denote by
[G, G] the commutator group, by Z(G) the center of G, and by [G : H] the index of H in
G; moreover, define HG =

〈 ⋃
g∈G

Hg
〉

and HG =
⋂

g∈G
Hg in which Hg = g−1Hg for g ∈ G.

The subgroup H is called central if H ⊆ Z(G); otherwise, H is noncentral. The group G
is called centerless if Z(G) = 〈1〉.

H is called quasinormal (also permutable) in G if HK = KH for all subgroups K of G.
We have some basic properties of quasinormal subgroups as followings.

Lemma 2.1. Let G be a group and H a quasinormal subgroup of G. Then,
(1) For each subgroup K of G, H ∩ K is a quasinormal subgroup of K;
(2) For each normal subgroup N of G, HN/N is a quasinormal subgroup of G/N ;
(3) For each element g of G, Hg is a quasinormal subgroup of G;
(4) For each quasinormal subgroup K of G, HK is a quasinormal subgroup of G.

Proof. It immediately follows from the definition of quasinormality. �

Lemma 2.2 ([18, Corollary C2]). A simple group has no nontrivial proper quasinormal
subgroup.

Lemma 2.3 ([18, Lemma 2.3]). Let G be a group and g1, g2, . . . , gn ∈ G. If H is a
quasinormal subgroup of G, then [Hg1Hg2 · · · Hgn : H] is finite.

We say that H is subnormal in G if there is a finite series of subgroups
H = Nr E Nr−1 E . . . E N1 E N0 = G.

Besides, G is called to be radical over subgroup H if for every g ∈ G, there exists a
positive integer ng such that gng ∈ H. Stonehewer says that every quasinormal subgroup
of a finitely generated group is subnormal [18]. Here, we give some connections between
quasinormality and subnormality by two following lemmas.

Lemma 2.4. Let G be a group and H a quasinormal subgroup of G. Then, either H is
subnormal in G or G is radical over H.

Proof. This result can be found in [8] or [9]. �
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Lemma 2.5. A quasinormal subgroup of finite index is subnormal.

Proof. Assume that G is a group and H is a quasinormal subgroup of G such that [G : H]
is finite. Then, the quotient group G/HG is finite. By Lemma 2.1, the subgroup H/HG

is quasinormal in G/HG. It implies that H/HG is subnormal in G/HG. Hence, H is
subnormal in G. �

Now we turn to general linear groups over division rings. Let D be a division ring. We
denoted by D∗ the multiplicative group of D and by D′ the commutator group of D∗. In
this paper, if no hypothesis is added, then GLn(D) is the general linear group of degree
n over D and SLn(D) is the special linear group, where n is a positive integer. Also, the
identity element of GLn(D) is denoted by In. The following lemma lists some interesting
properties of GLn(D) and SLn(D).

Lemma 2.6. Let D be a division ring and n ≥ 2 an integer. Then
(1) GLn(D)/SLn(D) ∼= D∗/D′;
(2) Z(GLn(D)) = {cIn|c ∈ F ∗};
(3) Z(SLn(D)) = {cIn|c ∈ F ∗ and cn ∈ D′}.

If GLn(D) 6∼= GL2(F2) and GLn(D) 6∼= GL2(F3), then
(4) SLn(D) = [GLn(D), GLn(D)] = [SLn(D), SLn(D)];
(5) SLn(D)/Z(SLn(D)) is a simple group;
(6) N is a noncentral subnormal subgroup of GLn(D) if and only if N contains SLn(D).

Proof. The statement can be established from [10, §20 and §21] and [14, Theorem 5.13].
�

In [8] and [9], authors proved some properties of quasinormal subgroups of GLn(D).
We have the following results.

Lemma 2.7 ([8, Theorem 3.3]). Every quasinormal subgroup of GLn(D) is normal, where
n ≥ 2.

Lemma 2.8 ([9, Theorem 1 and 3]). Every locally solvable subnormal or locally solvable
quasinormal subgroup of D∗ is central.

Finally, we recall some notions in graph theory. Let Γ be a graph with the vertex set
V and the edge set E. For two distinct vertices u and v in V , we denote u v v if u and
v are adjacent. The null graph is a graph that has no vertex. In a graph Γ, a path from
vertex v0 to vertex vn is a sequence of vertices v0 v v1 v · · · v vn, where v0, v1, . . ., vn−1
are distinct. If v0 = vn, then we call the sequence a cycle. The number n as above is call
the length of this path. If two vertices u and v are connected, then the distance between
u and v, denoted by dist(u, v), is the length of a shortest path from u to v; otherwise,
dist(u, v) = ∞. In particular, dist(u, u) = 0. The diameter of a graph Γ, denote Diam(Γ),
is the supremum distance between two vertices in Γ. If Γ is a graph with at least one
cycle, then the girth of Γ, denoted by Girth(Γ), is the length of shortest cycle in Γ.

3. Intersection graph of quasinormal subgroups of an arbitrary group
Let G be an arbitrary nontrivial group and Γq(G) the intersection graph of quasinormal

subgroups of G. Lemma 2.2 leads to the fact that if G is a simple group, then Γq(G) is
the null graph. In this section, we present some characteristics of Γq(G) in case G is
nonsimple. Namely, we prove that if G is nonsimple, then the diameter of Γq(G) is in
{0, 1, 2, ∞}. Moreover, if Γq(G) contains a cycle, then Γq(G) is a connected graph and
Girth(Γq(G)) = 3.

We begin with the following lemma.
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Lemma 3.1. Let G be a group and H a proper quasinormal subgroup of G. Then, H ·Hg

is also a proper quasinormal subgroup of G for every g ∈ G.
Furthermore, for a fixed g ∈ G, if H 6= Hg then either H v Hg or H v H ·Hg v Hg.

Proof. The part (4) of Lemma 2.1 follows that H·Hg is quasinormal in G for every g ∈ G.
Assume to the contrary that G = H·Hg for some g ∈ G. According to Lemma 2.3, [G : H]
is finite. Then, in view of Lemma 2.5, H is subnormal in G. Because H is proper in
G, so is HG. On the other hand, because H ·Hg ⊆ HG, we have HG = G, which is a
contradiction. Hence, H ·Hg is a proper quasinormal subgroup of G for every g ∈ G.

Now we prove the remain assertion. Suppose that H 6= Hg. Because H ·Hg includes H
and Hg, we have H v H ·Hg or Hg v H ·Hg. Hence, if Hg = H ·Hg or H = H ·Hg, then
H v Hg; and if H 6= H ·Hg and Hg 6= H ·Hg, then H v H ·Hg v Hg. �

Theorem 3.2. Let G be a nonsimple group. The following statements are equivalent:
(1) G is the direct product of two simple subgroups;
(2) Γq(G) is disconnected;
(3) Γq(G) has more than one vertex and every vertex of Γq(G) is isolated.

Proof. The implication (3) ⇒ (2) is trivial.
The implication (2) ⇒ (1): Assume that Γq(G) is disconnected. Then, there exists a

pair of disconnected vertices H and K. By Lemma 2.1, HK is a quasinormal subgroup
of G. Since H and K are disconnected, we have G = HK. Suppose that H is not normal
in G, i.e. Hg 6⊆ H for some g ∈ G. Select x ∈ Hg \ H. Since G = HK, there exist h ∈ H
and k ∈ K such that x = hk. This implies that h−1x ∈ K ∩ (H · Hg). On the other hand,
Lemma 3.1 follows that H ·Hg is a vertex of Γq(G). Since H and K is not connected,
K ∩ (H · Hg) = 〈1〉. That means x = h ∈ H, a contradiction. Thus, H is normal in
G. Similarly, K is also normal in G. Now we claim that H is simple. Deny the claim,
suppose that there exists a subgroup N E H such that N 6= 〈1〉 and N 6= H. Clearly,
NK is a nontrivial proper normal subgroup of G. This implies that H v NK v K, a
contradiction. Thus, H is simple. Similarly, K is also simple. Hence, G is the direct
product of simple subgroups H and K.

The implication (1) ⇒ (3): Assume that G = HK, the direct product of some simple
subgroups H and K. We claim that every vertex of Γq(G) is a simple subgroup. For each
vertex Q of Γq(G), if Q ∼= H, then Q is simple. Suppose that Q 6∼= H. By Lemma 2.1,
Q ∩ H is quasinormal in H. Since H is simple, Q ∩ H = 〈1〉 or Q ∩ H = H by Lemma 2.2.
If Q ∩ H = H, then H ⊆ Q. By part (2) of Lemma 2.1, Q/H is quasinormal in G/H. The
group G/H is simple because G/H ∼= K. This leads to the fact that Q = H or Q = G,
a contradiction. Thus, Q ∩ H = 〈1〉. By Lemma 2.1, QH/H is quasinormal in G/H. It
follows that QH = H or QH = G. If QH = H, then Q = 〈1〉. Thus, QH = G. Then,
Q ∼= G/H, and so Q ∼= K. Then, Q is simple. Hence, the claim is proved. It is obvious to
that all vertices of Γq(G) are isolated. We complete the proof. �

Theorem 3.3. Let G be a nonsimple group. Then, Diam(Γq(G)) ∈ {0, 1, 2, ∞}.

Proof. Clearly, Diam(Γq(G)) = ∞ if Γq(G) is disconnected; Diam(Γq(G)) = 0 if Γq(G)
has only one vertex. Assume that Γq(G) has at least two vertices and is connected.
We prove the claim: dist(H, K) ∈ {1, 2} for any pair of vertices H and K. Indeed, if
H ∩ K 6= 〈1〉 or HK 6= G, then dist(H, K) ∈ {1, 2}. Suppose that H ∩ K = 〈1〉 or
HK = G. If H is not normal in G, then Hg 6⊆ H for some g ∈ G. Lemma 3.1 tells us
H ·Hg is a vertex. Select x ∈ Hg \ H. Since G = HK, we have x = hk for some h ∈ H
and k ∈ K. This implies that k 6= 1 and k ∈ K ∩ H ·Hg. Then, either H v H ·Hg = K
or H v H ·Hg v K, that is, dist(H, K) ∈ {1, 2}. Similarly, if K is not normal in G, then
dist(H, K) ∈ {1, 2}. Now we consider that both H and K are normal in G. So G is the
direct product of H and K. Theorem 3.2 follows that H or K is nonsimple. Without loss of
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generality, it may be assumed that H is nonsimple, that is, there exists a normal subgroup
N of H such that N 6= 〈1〉 and N 6= H. Then, dist(H, K) = 2 since H v NK v K.
Thus, the claim is established. The claim is equivalent to that Diam(Γq(G)) ∈ {1, 2}. The
theorem is proved. �

Theorem 3.4. Let G be a nonsimple group. If Γq(G) contains a cycle, then Γq(G) is
connected and Girth(Γq(G)) = 3.

Proof. Assume that Γq(G) has a cycle H1 v H2 v H3 v . . . v Hk v H1 where k ≥ 3.
Then, H1, H2 and Hk are distinct and not isolated. Thank to Theorem 3.2, Γq(G) is
connected. To determine the girth of Γq(G), we consider two following cases:

Case 1. H1 or H2 is not normal in G: We can suppose H1 is not normal in G. Then,
Hg

1 6⊆ H1 for some g ∈ G. By Lemma 3.1, H1 v H1 · Hg
1 . If H1 · Hg

1 6= H2, then
H1 v H1 ·Hg

1 v H2 v H1, or else H1 v H2 v Hk v H1. Thus, Girth(Γq(G)) = 3.

Case 2. H1 and H2 are normal in G: Then H1∩H2 is a vertex of Γq(G). If H1∩H2 = H1,
i.e. H1 ⊆ H2, then H1 v H2 v Hk v H1. Similarly, if H1 ∩ H2 = H2, then H1 v H2 v
H3 v H1. If H1 ∩ H2 is different from both H1 and H2, then H1 v H1 ∩ H2 v H2 v H1.
Thus, Girth(Γq(G)) = 3.

Our proof is complete. �

4. Completeness of Γq(GLn(D))
Let GLn(D) be the general linear group of degree n ≥ 1 over a division ring D. The aim

of this section is to give necessary and sufficient conditions on D and n for Γq(GLn(D))
to be complete. More precisely, such conditions are obtained in Theorem 4.6 for the case
n = 1 and in Theorem 4.8 and 4.9 for n ≥ 2. However, out of necessity, we first present a
series of lemmas to support these results.

Lemma 4.1. Let F be a field.
(1) If F ∗ is isomorphic to an additive subgroup of the rational field Q, then F ∼= F2.
(2) If F ∗ is isomorphic to a subgroup of a quasicyclic p-group Cp∞, then either F ∼= F9

or F ∼= F2k+1, where 2k + 1 is a prime integer.

Proof. (1) Let H be an additive subgroup of Q such that F ∗
ϕ∼= H. This implies that F ∗

is torsion-free; hence, char(F ) = 2. We assume that there exists an element a ∈ F\F2 and
derive a contradiction. Let ϕ(a) = k/m and ϕ(a+1) = `/n. Since ϕ(a`m) = ϕ((a+1)kn) =
k`, we obtain that a`m = (a + 1)kn, which means that a is algebraic over F2. It follows
that the field F2(a) is finite, and so a is periodic. As F ∗ is torsion-free, it follows that
a = 1, a contradiction. This implies that F = F2, completing the proof.

(2) It follows from [7, Theorem] that F ∗ is not isomorphic to Cp∞ . This means F ∗ ∼= Cpn .
By [7, Proposition 2.6], we obtain that F ∼= F9 or F ∼= F2k+1, where char(F ) = 2k + 1. �

Lemma 4.2. Let G be an abelian group. Then, Γq(G) is complete if and only if G is
isomorphic to some subgroup of Q or of Cp∞.

Proof. Since G is abelian, Γq(G) is also the intersection graph of subgroups of G. Hence,
the statement is exactly [1, Theorem 2]. �

Three next lemmas draw some traits of quasinormal subgroups in the general linear
groups over division rings.

Lemma 4.3. Let G = GLn(D) be a noncommutative general skew linear group of degree
n ≥ 1 over division ring D. Then, the intersection of any two noncentral quasinormal
subgroups of G is nontrivial.
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Proof. First, we consider that n ≥ 2. If G ∼= GL2(F2) or G ∼= GL2(F3), then the
conclusion obviously holds. When G 6∼= GL2(F2) and G 6∼= GL2(F3), Lemma 2.6(6) and
Lemma 2.7 lead to that every noncentral quasinormal subgroup of G contains SLn(D).
This yields the conclusion.

Next, consider n = 1, that is G = D∗. Let H and K be noncentral quasinormal
subgroup of D∗ and N = H ∩ K. According to Lemma 2.4, we can naturally consider
three following cases.
Case 1. H and K are subnormal in D∗: By [17, 14.4.5], N is noncentral.
Case 2. H is subnormal in D∗, and D∗ is radical over K: The second implies that H
is radical over N . If N = 〈1〉, then H is periodic. By [13, Theorem 8], H is central, a
contradiction. Thus N is nontrivial.
Case 3. D∗ is radical over both H and K: Then, D∗ is also radical over N . By [13,
Theorem 8], N 6= 〈1〉 because D∗ is noncommutative. �

Lemma 4.4. Let D be a division ring with center F , and let G be a subgroup of D∗ such
that D∗ is radical over G. Then, every locally soluble normal subgroup of G is contained
in F .

In particular, Z(G) = G ∩ F .

Proof. We can suppose that D is noncommutative. By [9, Lemma 8], G is nonabelian
and is an absolutely irreducible subgroup in D∗, that is D = F [G]. Suppose that N is a
locally soluble normal subgroup of G. By [20, 4.Corollary], N contains an abelian normal
subgroup A of G such that N/A locally finite. Put H = CN (A). The first claim is that
H is normal in G. Indeed, for every h ∈ H, g ∈ G, and a ∈ A, ag−1hg = (ag)hg = a.
This fact leads to the fact that hg ∈ H. The next claim is that H/Z(H) is locally
finite. Because N/A is locally finite and H ⊆ N , H/A is also locally finite. Clearly,
A ⊆ Z(H). By [16, 1.4.5], (H/A)/(Z(H)/A) ∼= H/Z(H). Consequently, H/Z(H) is locally
finite. According to [19, 3.8], G/CG(H) is periodic, that is G is radical over CG(H). Since
CG(H) ⊆ CD(H), D is radical over its division subring CD(H). Then, CD(H) = D by
[11, Theorem B]. This implies that H ⊆ F , and so A ⊆ F . Then, N = CN (A) = H ⊆ F .

What is left to show that Z(G) = G ∩ F . Obviously, G ∩ F ⊆ Z(G). Since Z(G) is an
abelian normal subgroup of G, Z(G) ⊆ G ∩ F . Hence, Z(G) = G ∩ F . �

It is easy to see that Lemma 4.4 is an extension of [9, Theorem 2]. Besides, we can
extend [9, Theorem 3] as follows.
Lemma 4.5. Let D be a division ring with center F , and let Q be a quasinormal subgroup
of D∗. Then, every locally soluble normal subgroup of Q is contained in F .

In particular, Z(Q) = Q ∩ F .

Proof. Let N be a locally soluble normal subgroup of Q. If Q is subnormal in D∗, then
N is also subnormal in D∗. According to [9, Theorem 1], N ⊆ F . If Q is not subnormal
in D∗, then D∗ is radical over Q. By Lemma 4.4, N ⊆ F . �

Now we have the following theorem to describe cases that the intersection graph of
quasinormal subgroups of the multiphicative group of a division ring.
Theorem 4.6. Let D be a division ring with center F . Then, Γq(D∗) is complete if and
only if one of the following conditions holds

(1) D is isomorphic to either F9 or F2k+1, where 2k +1 is a prime integer greater than
3;

(2) D∗ is nonsimple and F ∼= F2;
(3) D is noncommutative, every nontrivial quasinormal subgroup of D∗ is not center-

less, and F is isomorphic to one of fields F9, F2k+1 or F2`, where 2k +1 and 2` − 1
are prime integers.
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Proof. Assume that Γq(D∗) is complete. If D is commutative, then Lemma 4.2 implies
that D∗ is isomorphic to some subgroup of the additive group of rationals Q or of a
quasicyclic p-group Cp∞ . Since D∗ must be nontrivial and nonsimple, in view of Lemma
4.1, D is isomorphic to either F9 or F2k+1, where 2k + 1 is a prime integer greater than 3.
Thus, (1) is proved. Suppose that D is noncommutative. If F ∗ = 〈1〉, then F ∼= F2. By
Lemma 4.3, D∗ is nonsimple, and so (2) is proved. If F ∗ 6= 〈1〉, we claim that F ∼= F9,
F ∼= F2` , or F ∼= F2k+1, where 2k + 1 and 2` − 1 are prime integers. If F ∗ is simple, i.e. F ∗

is a cyclic group of prime index, then either F ∼= F3 or F ∼= F2` , where 2` − 1 is a prime
integer. If F ∗ is nonsimple, then Γq(F ∗), an induced subgraph of Γq(D∗), is complete.
Thank to (1), F ∼= F9 or F ∼= F2k+1, where 2k + 1 is a prime integer greater than 3. Thus,
the claim is proved. Since F ∗ is a vertex of Γq(D∗), every nontrivial quasinormal subgroup
of D∗ intersects to F ∗ is nontrivial. By Lemma 4.5, every nontrivial quasinormal subgroup
of D∗ is not centerless. Thus, (3) is asserted.

Conversely, assume that D satisfies one of conditions (1), (2), or (3). If (1) holds, then
D∗ ∼= C23 or D∗ ∼= C2k for k ≥ 2. By Lemma 4.2, Γq(D∗) is complete. If (2) holds,
then Γq(D∗) is not a null graph and every vertex of Γq(D∗) is noncentral quasinormal
subgroups. By Lemma 4.3, Γq(D∗) is complete. Suppose that (3) holds. We have that
the order of F ∗ is either 2k or 2` − 1, where k ≥ 1 and 2` − 1 is a prime integer. Thus, the
subgraph induced on central quasinormal subgroups of Γq(D∗) is complete. Additionally,
every nontrivial quasinormal subgroup of D∗ is not centerless. Hence, Γq(D∗) is complete.
The proof is complete. �

Now we turn to the general linear groups GLn(D) of degree n ≥ 2. Firstly, because
GL2(F2) and GL2(F3) are quite special, they are considered independently in the following
lemma.

Lemma 4.7. (1) GL2(F2) has only one nontrivial proper normal subgroup that is
[GL2(F2), GL2(F2)]. Moreover, that is the only vertex of Γq(GL2(F2)).

(2) GL2(F3) has only three nontrivial proper normal subgroups that are

〈−I2〉,
〈(

1 1
1 −1

)
,

(
−1 1

1 1

)
,

(
0 −1
1 0

)〉
, [GL2(F3), GL2(F3)].

Moreover, Γq(GL2(F3)) is a complete graph with the vertices as above.

Proof. (1) It is a well-known fact that GL2(F2) ∼= S3, the symmetric group of degree
3. Because S3 has only three normal subgroups that are 〈1〉, A3 = [S3, S3] and
itself, [GL2(F2), GL2(F2)] is the unique normal subgroup of GL2(F2) except 〈I2〉
and the whole group. According to Lemma 2.7, Γq(GL2(F2)) has only one vertex
that is [GL2(F2), GL2(F2)].

(2) It is easy to prove that 〈−I2〉, [GL2(F3), GL2(F3)], and

N =
〈(

1 1
1 −1

)
,

(
−1 1

1 1

)
,

(
0 −1
1 0

)〉
are normal in GL2(F3). By utilizing GAP, a programming language or discrete alge-
bra computation, we can determine that GL2(F3) has only five normal subgroups
by running following commands:

gap> LoadPackage("sonata");
gap> NormalSubgroups(GL(2,3));

Consequently, GL2(F3) has only three normal subgroups apart from 〈I2〉 and
GL2(F3). By Lemma 2.7, 〈−I2〉, N and [GL2(F3), GL2(F3)] are the vertices of
Γq(GL2(F3)). Since 〈−I2〉 ≤ N ≤ [GL2(F3), GL2(F3)], the graph Γq(GL2(F3)) is
complete.

�
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Theorem 4.8. Let D be a division ring with center F and n ≥ 2 an integer. Assume that
Z(D′) 6= 〈1〉. Then, Γq(GLn(D)) is complete if and only if one of following conditions
holds

(1) F ∼= F9;
(2) F ∼= F2k+1, where 2k + 1 is a prime integer;
(3) F ∼= F2`, where 2` − 1 is a prime integer.

Proof. Assume that Γq(GLn(D)) is complete. Since Z(D′) 6= 〈1〉, there exists d ∈ D′ ∩ F
such that d 6= 1. Then, F 6∼= F2, and so F ∗ 6= 〈1〉. According to part (2) of Lemma 2.6,
Z(GLn(D)) ∼= F ∗, and so either F ∗ is a simple group or Γq(F ∗) ∼= Γq(Z(GLn(D))). We
now consider these cases:
Case 1. F ∗ is a simple group: Then F ∼= F3 or F ∼= F2` , where 2` − 1 is a prime integer.
If F ∼= F3, then we assert (2) in case that k = 1. If F ∼= F2` , then (3) is proved.
Case 2. Γq(F ∗) ∼= Γq(Z(GLn(D))): Then Γq(F ∗) is complete. By Lemma 4.3, either
F ∼= F9 or F ∼= F2k+1, where 2k + 1 is a prime integer greater than 3. Thus, (1) and (2)
are proved.

Conversely, suppose that F satisfy one of conditions (1), (2), or (3). Since Z(GLn(D)) ∼=
F ∗, either Z(GLn(D)) is simple or Z(GLn(D)) ∼= C2k , where k > 1. By Lemma 4.2, the
subgraph induced on central quasinormal subgroups of Γq(GLn(D)) is complete. On the
other hand, thank to part (3) and (6) of Lemma 2.6, the assumption Z(D′) 6= 〈1〉 leads to
the fact that every noncentral quasinormal subgroup of GLn(D) contains SLn(D) and is
not centerless. Hence, Γq(GLn(D)) is complete. �

Theorem 4.9. Let D be a division ring with center F and n ≥ 2 an integer. Assume that
Z(D′) = 〈1〉. Then, Γq(GLn(D)) is complete if and only if one of following conditions
holds

(1) n = 2 and D ∼= F2;
(2) n ≥ 2, D∗ 6= D′, and F ∼= F2;
(3) n is even and F ∼= F9;
(4) n is even and F ∼= F2k+1, where 2k + 1 is a prime integer;
(5) n is a multiple of 2` − 1 and F ∼= F2`, where 2` − 1 is a prime integer.

Proof. Assume that Γq(GLn(D)) is complete. Let us consider possible cases:
Case 1. F is isomorphic to F2: First, suppose that D ∼= F2. If n > 2, then GLn(F2) is a
simple group, and so Γq(GLn(D)) is the null graph, a contradiction. Thus, n = 2, and so
we get (1). Next, suppose that D 6∼= F2. Then, D∗ is nonabelian and Z(GLn(D)) = 〈In〉.
It follows that all nontrivial quasinormal subgroups of GLn(D) are noncentral. By part
(1) and (6) of Lemma 2.6, if D∗ = D′, then GLn(D) is a simple group, and so Γq(GLn(D))
is the null graph, a contradiction. Thus, D∗ 6= D′, and so (2) is asserted.
Case 2. F is not isomorphic to F2 and F ∗ is a simple group: Then F ∗ is a cyclic group
of prime order p. Since Γq(GLn(D)) is complete, SLn(D) ∩ Z(GLn(D)) 6= 〈In〉. Thus,
Z(SLn(D)) 6= 〈In〉. Because Z(D′) = 〈1〉, it follows from part (3) of Lemma 2.6, n must be
a multiple of p. If p = 2, then F ∼= F3 and n is an even integer, and so (4) holds in case
that k = 1. If p is an odd prime integer, then F ∼= F2` and n is a multiple of p = 2` − 1,
and so (5) is proved.
Case 3. F is not isomorphic to F2 and F ∗ is a nonsimple group: Then Γq(F ∗) is not a
null graph. Since Γq(GLn(D)) is complete, it follows from part (2) of Lemma 2.6, Γq(F ∗)
is also complete. In light of Theorem 4.6, either F ∼= F9 or F ∼= F2k+1, where 2k + 1 is
a prime integer greater than 3. Notice that, the central quasinormal subgroup 〈−In〉 of
GLn(D) is not trivial. Since Γq(GLn(D)) is complete, 〈−In〉 ⊆ SLn(D). The assumption
Z(D′) = 〈1〉 leads to the fact that n is even. Hence, (3) and (4) are proved.
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We now turn to the converse of the statement.
First, if GLn(D) satisfies (1), then Γq(GLn(D)) is complete by Lemma 4.7.
Second, suppose that GLn(D) satisfies (2). Because GLn(D)/SLn(D) ∼= D∗/D′ and

D∗ 6= D′, the group GLn(D) is nonsimple. On the other hand, the vertices of Γq(GLn(D))
are noncentral subgroups of GLn(D) because Z(GLn(D)) = 〈In〉. From Lemma 4.3,
Γq(GLn(D)) is complete.

Next, suppose that GLn(D) is under (3) or (4). If n = 2 and k = 1, then Γq(GLn(D))
is complete by Lemma 4.7. Now, we assume that if n = 2, then F 6∼= F3. Since n is even,
Z(GLn(D)) is adjacent to SLn(D) because both contain −In. Consequently, all nontrivial
quasinormal subgroups of GLn(D) contain −In. Hence, Γq(GLn(D)) is complete.

Finally, if GLn(D) is under (5), then Z(GLn(D)) is a simple group of prime order 2` −1.
Then, Z(GLn(D)) is the unique central subgroup as a vertex of Γq(GLn(D)). On the other
hand, n is a multiple of 2` − 1 and every element a ∈ F ∗ such that a 6= 1 has order 2` − 1.
By parts (2) and (3) of Lemma 2.6, Z(GLn(D)) = F ∗In = Z(SLn(D)). Thus, all nontrivial
quasinormal subgroups of GLn(D) contain F ∗In, and so Γq(GLn(D)) is complete. �

5. Diameter of Γq(GLn(D)), n ≥ 2
In this section, we seperate all general linear groups GLn(D), where n ≥ 2, according

to diameter of the graph Γq(GLn(D)). In particular, if D is a field, then we can fully
describe the diameter of this graph.

The following lemma lets us know whether GLn(D) is a simple group.

Lemma 5.1. Let D be a division ring with center F and n ≥ 2 an integer. Assume that
GLn(D) 6∼= GL2(F2). Then, GLn(D) is a simple group if and only if F ∼= F2 and D∗ = D′.

Proof. Assume that GLn(D) is a simple group. Since GLn(D) is nonabelian, we have
Z(GLn(D)) = 〈In〉 and GLn(D) = SLn(D). The parts (1) and (2) of Lemma 2.6 allow us
to conclude that F ∼= F2 and D∗ = D′.

Conversely, assume that F ∼= F2 and D∗ = D′. Then, Z(GLn(D)) = 〈In〉 and GLn(D) =
SLn(D). Clearly, if D 6= F , then GLn(D) is simple, where n ≥ 2. If D = F , then part
(5) of Lemma 2.6 yields that SLn(D) is simple, where n ≥ 3. Hence, GLn(D) is a simple
group. �

In the above lemma, whether there exists a non-commutative division ring D such that
D∗ = D′, or more generally, D∗ is radical over D′, is still an open problem up to now (see
[14]).

Now, the following lemma helps us to recognize if Diam(Γq(GLn(D))) = 0. Notice
that Lemma 2.7 follows that Diam(Γq(GLn(D))) = 0 means GLn(D) has a unique trivial
proper normal subgroup, where n ≥ 2. Thanks to this lemma, together with Theorem 4.8
and 4.9, we can infer the case Diam(Γq(GLn(D))) = 1.

Lemma 5.2. Let D be a division ring with center F and n ≥ 2 an integer. Then, GLn(D)
has exactly one nontrivial proper normal subgroup if and only if one of the following
conditions is satisfied

(1) n = 2 and D ∼= F2;
(2) F ∼= F2 and [D∗ : D′] is a prime integer;
(3) F ∼= Fp+1 and D∗ = D′ where either p = 2 or p = 2` − 1 is a prime integer.

Proof. Suppose that GLn(D) has only one normal subgroup N such that 〈1〉 6= N (
GLn(D). There are two cases to be considered:
Case 1. D is commutative: Lemma 5.1 says that GLk(F2), where k > 2, is a simple
group. Thus, GLn(D) 6∼= GLk(F2), where k > 2. Additionally, if GLn(D) 6∼= GL2(F2)
and GLn(D) 6∼= GL2(F3), then GLn(D) always contains Z(GLn(D)) and SLn(D), two
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nontrivial proper normal subgroups. This is a contradiction. So, GLn(D) ∼= GL2(F2) or
GLn(D) ∼= GL2(F3). Thanks to Lemma 4.7, GLn(D) ∼= GL2(F2) and we have the assertion
(1).

Case 2. D is noncommutative: We consider two subcases:

Subcase 2.1. N is noncentral: Then, N = SLn(D) and Z(GLn(D)) = 〈In〉. Since
Z(GLn(D)) ∼= F ∗, one has F ∼= F2. Moreover, GLn(D)/SLn(D) is a simple abelian group.
Since GLn(D)/SLn(D) ∼= D∗/D′, the index [D∗ : D′] is a prime. Thus, we have the
assertion (2).

Subcase 2.2. N is central: This yields GLn(D) = SLn(D) and N = Z(GLn(D)) such
that N is a simple abelian group. Because Z(GLn(D)) ∼= F ∗, one has F ∼= Fp+1 where
p = 2 or p = 2` − 1 a prime integer. Moreover, the fact that GLn(D) = SLn(D) leads to
D∗ = D′. Hence, this subcase leads to the assertion (3).

Now we turn to the converse direction. We prove if one of conditions (1), (2) or (3) holds,
then GLn(D) has only one subgroup N such that 〈1〉 6= N ( G. Indeed, if the condition
(1) holds, then Lemma 4.7 indicates that N = [GL2(F2), GL2(F2)]. If GLn(D) is under
the condition (2), then Z(GLn(D)) = 〈In〉 and the index [GLn(D) : SLn(D)] is a prime
integer. Thus, with this condition, we have N = SLn(D). Finally, if GLn(D) satisfies the
condition (3), then Z(GLn(D)) is an abelian group of index p and GLn(D) = SLn(D).
This follows that N = Z(GLn(D)). Hence, we complete the proof. �

The following lemma shows us whether GLn(D) is the direct product of two simple
subgroups.

Lemma 5.3. Let D be a division ring with center F and n ≥ 2 an integer. Then, GLn(D)
is the direct product of two simple subgroups if and only if the following conditions are
satisfied

(1) F is isomorphic to Fp+1, where p is a prime such that p = 2 or p = 2` − 1;
(2) n is not a multiple of p;
(3) Z(D′) = 〈1〉; and
(4) [D∗ : D′] = p.

Proof. Assume that GLn(D) = HK, the direct product of two simple normal subgroups
H and K. Since GLn(D) is nonabelian, H or K must be noncentral. Suppose that both
H and K are noncentral. By Lemma 4.7 and Lemma 5.1, we have GLn(D) 6∼= GLk(F2),
where k ≥ 2, and GLn(D) 6∼= GL2(F3). Therefore, H and K contain SLn(D). This
is a contradiction because H ∩ K = 〈In〉. Thus, without losing the generality, we can
conclude that H is central and K is noncentral. Since H and K are simple, H is a cyclic
group of prime order and K = SLn(D). Additionally, it follows from Theorem 3.2 that
H = Z(GLn(D)) ∼= F ∗. Thus, F is isomorphic to Fp+1, where either p = 2 or p = 2` − 1 a
prime integer, and so the assertion (1) is established. Because H ∩ K = 〈In〉, the assertion
(3) of Lemma 2.6 leads to the fact that n is not a multiple of p and Z(D′) = 〈1〉. Thus,
we proved assertions (2) and (3). Finally, notice that

D∗/D′ ∼= GLn(D)/SLn(D) = HK/K ∼= H ∼= F ∗.

Consequently, [D∗ : D′] = p, and so we proved the assertion (4).
We turn to the converse of the statement. The hypothesis (1) leads to the fact that

Z(GLn(D)) is a simple group. Then, Z(GLn(D)) is the only nontrivial central normal
subgroup of GLn(D). Meanwhile, [GLn(D) : SLn(D)] = p due to the condition (4). This
means SLn(D) is a maximal normal subgroup of GLn(D). According to the assertion (3) of
Lemma 2.6, conditions (2) and (3) yield that Z(GLn(D)) ∩ SLn(D) = Z(SLn(D)) = 〈In〉.
It follows from part (5) of Lemma 2.6 that SLn(D) is simple. Moreover, because of
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the maximality of SLn(D) in GLn(D), we have GLn(D) = Z(GLn(D)) · SLn(D). Hence,
GLn(D) is the direct product of Z(GLn(D)) and SLn(D), and so our proof is complete. �

Theorem 5.4. Let D be a division ring with center F and n ≥ 2 an integer. Then, the
intersection graph of quasinormal subgroups Γq(GLn(D)) is classified by the diameter as
Table 1.

Table 1. Classification of GLn(D) by Diam(Γq(GLn(D))), where n ≥ 2

No. Assumptions Diameter of
n F D Γq(GLn(D))

(1) n ≥ 2 F ∼= F2 D∗ = D′ 6= 〈1〉 Γq(GLn(D))
(2) n ≥ 3 D = F ∼= F2 is null
(3) n ≥ 2, and

p - n
F ∼= Fp+1 Z(D′) = 〈1〉,

and
[D∗ : D′] = p

∞

(4) n = 2 F ∼= F2 D ∼= F2 0
(5) n ≥ 2 F ∼= F2 [D∗ : D′] is a

prime integer
(6) n ≥ 2 F ∼= Fp+1 D∗ = D′

(7) n ≥ 2 F ∼= F9,
F2k+1, Fp+1

Z(D′) 6= 〈1〉 1

(8) n ≥ 2 F ∼= F2 D∗ 6= D′ and
[D∗ : D′] is not
a prime integer

(9) n is even F ∼= F9, F2k+1 Z(D′) = 〈1〉
(10) n ≥ 2, and

p | n
F ∼= Fp+1 Z(D′) = 〈1〉

(11) All assumptions for n ≥ 2, F and D were not listed above 2

where k is some positive integer such that 2k + 1 is prime and p is either 2 or some prime
integer of the form 2` − 1.

Proof. The cases (1) and (2) is Lemma 5.1. The case (3) is Lemma 5.3. If Γq(GLn(D))
is complete, then Diam(Γq(GLn(D))) is either 0 or 1. Lemma 5.2 fully describes the
case Diam(Γq(GLn(D))) = 0, and so we have the assertions (4), (5), and (6). Hence, by
Theorem 4.8 and 4.9, we have the assertions (7), (8), (9), and (10). �

From the above theorem, we can describe specifically the case where D = F is a field.
Furthermore, the following lemma helps us to fully enumerate GLn(F ) for all n ≥ 1.
Lemma 5.5. Let F be a field. Then,

(1) Γq(F ∗) is null if and only if F is isomorphic to either F2 or Fq+1, where q is a
prime integer;

(2) Diam(Γq(F ∗)) = ∞ if and only if one of following conditions holds
(a) |F | = c, where c is a odd prime integer such that (c− 1)/2 is also a odd prime

integer;
(b) |F | = 3k, where k is a positive integer such that (3k − 1)/2 is a prime integer;

or
(c) |F | = 2k, where k is a positive integer such that 2k − 1 is a product of two

prime integers.
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(3) Diam(Γq(F ∗)) = 0 if and only if F ∼= F5;
(4) Diam(Γq(F ∗)) = 1 if and only if F ∼= F9 or F ∼= F2k+1, where 2k + 1 is a prime

integer and k ≥ 3;

Proof. First, we prove (1). If Γq(F ∗) is null, then F is a finite field such that F ∗ is trivial
or simple, i.e. |F ∗| is 1 or q, where q is a prime integer. The converse is trivial.

Next, we consider the assertion (2). Assume that Γq(F ∗) is disconnected. By Theorem
3.2, F ∗ is the direct product of simple subgroups H and K of F ∗. Since H and K are
abelian, there exist some prime integers p and q such that |H| = p, |K| = q, and so
|F ∗| = pq. It is easy to see that p 6= q because F ∗ is cyclic. We can suppose that |F | = ck

where c is a prime integer and k is a positive integer. If k = 1, then c − 1 = pq. This
implies that c and (c − 1)/2 are odd prime integers, and so (a) holds. If k > 1, then
pq = ck −1 = (c−1)(ck−1 + · · ·+1). If c−1 = 1 then c = 2, that is |F ∗| = 2k −1 = pq, and
(c) is asserted. If c − 1 6= 1, then, without losing the generality, we can say that p = c − 1.
Since p and c are prime, we have c = 3 and p = 2. Hence, q = (3k − 1)/2 is a prime
integer, and so (b) holds.

The converse of part (2) is proved quite easily.
Finally, we prove assertions (3) and (4). Clearly, Γq(F ∗) is a complete graph if and

only if Diam(Γq(F ∗)) = 0 or Diam(Γq(F ∗)) = 1. Theorem 4.6 leads to the fact that if
Γq(F ∗) is complete, then F ∗ is a cyclic group of order 2k, where k ≥ 2. From that, we
have Diam(Γq(F ∗)) = 0 if k = 2 and Diam(Γq(F ∗)) = 1 if k > 2. Hence, the proof of
assertions (3) and (4) is complete. �

By the combination of Theorem 5.4 and Lemma 5.5, we have the following corollary.
Corollary 5.6. Let F be a field and n a positive integer. Then, the intersection graph of
quasinormal subgroups Γq(GLn(F )) is classified by the diameter as Table 2.

Table 2. Classification of GLn(F ) by Diam(Γq(GLn(F )))

No. Assumptions Diameter of
n F Γq(GLn(F ))

(1) n = 1 F ∼= F2, Fq+1, where q is
a prime integer

Γq(GLn(F )) is null

(2) n > 2 F ∼= F2
(3) n = 1 F ∼= Fq, where q and

(q − 1)/2 are odd prime
integers

∞

(4) n = 1 F ∼= F3m, where
(3m − 1)/2 is prime

(5) n = 1 F ∼= F2m, where 2m − 1
is a product of two prime
integers

(6) n ≥ 2 and p - n F ∼= Fp+1
(7) n = 1 F ∼= F5 0
(8) n = 2 F ∼= F2
(9) n = 1 F ∼= F9, F2k+1, (k ≥ 3) 1
(10) n is even F ∼= F9, F2k+1
(11) p | n F ∼= Fp+1
(12) All assumptions of n and F were not listed above 2

where k is some positive integer such that 2k + 1 is prime and p is either 2 or some prime
integer of the form 2` − 1.
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