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Abstract 

In this study, the length biassed weighted Lomax (LBWLo) distribution's reliability and hazard 

functions, as well as the population characteristics, are evaluated using progressively Type II 

censored samples. The proposed estimators are obtained by combining the maximum likelihood 

and Bayesian approaches.  The posterior distribution of the LBWLo distribution is derived from 

the Gamma and Jeffery's priors, which, respectively, act as informative and non-informative 

priors. The Metropolis-Hasting (MH) algorithm is also utilized to get the Bayesian estimates. 

Based on the Fisher information matrix, we derive asymptotic confidence intervals. We create 

the intervals with the highest posterior density using the sample the MH technique generated. 

Numerical simulation research is done to evaluate the effectiveness of the approaches. Through 

Monte Carlo simulation, we compare the proposed estimates in terms of mean squared error. It is 

possible to get coverage probability and average interval lengths of 95%. The study's findings 

supported the idea that, in the majority of the cases, Bayes estimates with an informative prior are 

more appropriate than other estimates. Additionally, one set of actual data supported the findings 

of the study. 
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1. INTRODUCTION 
 

Among other areas, the field of life testing has given the Lomax (Pareto II) distribution a great deal of 

attention [1]. Data on income and wealth were modelled using the Lomax distribution (see [2] and [3]).  In 

accordance with information in [4], it has also found use in biological science. In reliability and life testing 

investigations, it has been employed (see [5−9]).    
  

 

The length biassed weighted Lomax (LBWLo) distribution was proposed as a more flexible option for 

modelling data in a range of domains, including lifetime analysis, engineering, and biomedical sciences. 

When observations from a sample are recorded with uneven probability, the LBWLo distribution manifests 

in practise and provides a unifying solution for the problems that arise when the observations fall into the 

non-experimental, non-replicated, and non-random categories. The LBWLo distribution was proposed in 

[10] and some of its statistical features were covered. The following is the formula for the probability 

density function (PDF) of the LBWLo distribution with shape parameter 1  and scale parameter 0 :   

( 1)

2

( 1)
( ) 1 , 0, 1.

x x
f x x


 

 
 

− +
−  

= +   
 

                                                                                             (1) 

The cumulative distribution function (CDF) of the LBWLo distribution is given by: 
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( ) 1 1 1 , , 0, 1.
x x

F x x
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= − + +     

   
                                                                                           (2) 

The LBWLo distribution's reliability function (RF) and hazard rate function (HRF) are described as 

follows:  

( ) 1 1 , , 0, 1,
x x

S x x




 
 

−

   
= + +     
     

and, 

( 1)
( ) , , 0, 1.

( ) ( )

x
h x x

x x

 
 

  

−
=  

+ +
 

 

Plots of the PDF and HRF are represented in Figure 1. As seen, the PDF and HRF of the LBWLo 

distribution take different shapes. There are several helpful forms for the PDF in Figure 1. The HRF of the 

LBWLo distribution can take on a number of shapes, including expanding, decreasing, and upside-down, 

as shown graphically in Figure 1. 

 
 

  

Figure 1. The distribution's LBWLo PDF and HRF plots 

 

[11] examined the LBWLo distribution's stress strength reliability estimator in the presence of outliers. [12] 

discussed Bayesian estimator of accelerated life tests for LBWLo distribution. Therefore, this study was 

carried out considering that in [11] and [12], the LBWLo distribution is suitable for reliability and life tests 

and the progressive Type II censoring (PT2C) scheme is very important in these areas. Suppose n identical 

units are placed on a life testing experiment and the progressive censoring scheme 1 2( , ,..., )mR R R R=  is 

pre-fixed such that after the first failure R1 surviving items are extracted from remaining ( 1)n − live items 

and after the second failure R2 surviving items are eliminated from remaining 1( 2)n R− − live items, and 

so on. After mth failure, this process is repeated until all 1 1...m mR n m R R −= − − −  remaining items are 

eliminated (see [13]). Consequently, a PT2C scheme includes m and 1 2, ,..., ;mR R R such that
1

.
m

i

i

R m n
=

+ =

Take note of the fact that the PT2C scheme is reduced to complete sampling scheme, for 

1 2 ... 0.mR R R= = = =  Additionally, PT2C offers the type II censoring method for 1 2 1... 0mR R R −= = = =

and mR n m= −  (see [14]). For more studies and application for progressive censoring, the reader can refer 

to [15−19]. 
 

 

The estimation of the LBWLo distribution is considered in the current work utilising PT2C data. The 

parameters, RF, and HRF are estimated using maximum likelihood (ML) and Bayesian methods. ACIs and 

BCIs, also known as approximate confidence intervals, are created. Here is a suggested structure for this 
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essay. In section 2, you will find the ML estimators and ACIs. We present Bayesian estimation using 

uniform and gamma priors, together with their BCIs, in sections 3 and 4, respectively.  Studies and findings 

related to numbers are covered in section 5. The study of one actual data set is discussed in section 6.  A 

few concluding remarks are made in section 7. 

 

2. MAXIMUM LIKELIHOOD ESTIMATION 

 

The ML estimator of the population parameters, RF, and HRF of the LBWLo distribution are derived in 

this section.  

Let (1) (2) ( ), ,..., mx x x be an ordered PT2C sample, according to [20], the likelihood function of the observed 

sample is given by: 

( ) ( )

1

( ) ( ) 1 ( ) ,
i

m
R

i i

i

l x C f x F x
=

 = −                                                                  (3) 

where
1 1 2 1( 1) ... ( 1).mC n n R n R R R m−= − − − − − − − +  Consider a random sample of size n from PDF 

(1) and CDF (2), the likelihood function of the LBWLo distribution under PT2C using (3) is as follows: 

( 1)

2
1

( 1)
( , ) 1 1 1 ,

iR
m

i i i i

i

x x x x
l x C

 
  

 
   

− + −

=

 −      
= + + +      

       
   (4) 

for simplicity write xi instead of x(i.) . The log likelihood function, denoted by ln ,l is given by: 

1 1

1 1

ln ln ln ln( 1) 2 ln ln ( 1) ln 1+

ln 1+ ln 1+ .

m m
i

i

i i

m m
i i

i i

i i

x
l C m m m x

x x
R R

   





 

= =

= =

 
= + + − − + − +  

 

   
+ −   

   

 

 
   (5) 

The following non-linear equations must be simultaneously solved to provide the ML estimators, say ̂

and ˆ,  

2 2 2
1 1 1

ln 2
( 1) ,

( ) ( ) ( )

m m m
i i i i i

i i ii i i

l m x R x R x

x x x

 


       = = =

 −
= + + − +

 + + +
    

and, 

( )
i i

1 1 1 i

ln
ln 1+ ln 1+ .

1 + x

m m m
i

i i

i i i

l m m x x x
R R

      = = =

    
= + − − +   

 −    
  

 
By simultaneously solving the likelihood equations, the ML estimators ̂ and ̂  for the PT2C sample are 

obtained: 

ˆ

ln
0

l
  =


=


 and  ˆ

ln
0

l
  =


=


. 

The estimators will be numerically derived using non-linear optimization software because the equations 

lack a closed form solution. The RF and HRF estimators are assessed based on the invariance property of 

the ML estimators, as illustrated below: 

ˆ
ˆ

ˆ( ) 1 1 ,   
ˆ ˆ

t t
S t




 

−
  

= + +  
    

               

and, 

ˆ ˆ( 1)ˆ( ) .
ˆ ˆ ˆ( ) ( )

t
h t

t t

 

  

−
=

+ +
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Additionally, the type II censoring method is used to derive the ML estimators of , , ( )S t   and ( )h t  for 

1 2 1... 0 and m mR R R R n m−= = = = = − . The ML estimators of , , ( )S t   and ( )h t  are produced from 

complete sample for
1 2 1... 0 and 0m mR R R R−= = = = =  as well. 

 

Additionally, the asymptotic variance-covariance matrix (VCM) for the estimators ̂  and ̂  can be 

obtained by inverting Fisher information matrix (FIM) where its elements are the negative of second order 

derivatives of the natural logarithm of likelihood function (5) 

2 2

2

2 2

2

ˆ ˆ( , )

ln ln

ˆ ˆˆ( , ) .
ln ln

l l

I E
l l

   

  
 

  
= =

  
 
   = −

  
 
    

                 

 

 

Unfortunately, it is challenging to find exact closed forms for the aforementioned requirements. 

Consequently, the observed FIM ˆ ˆˆ( , ),I   which is derived by removing the expectation operator E, will be 

used to create confidence intervals of the parameters (see [21]). The second partial derivatives of the log-

likelihood function, which are simple to construct, are the entries in the observed FIM. Consequently, the 

observed FIM is represented by: 

2 2

2

2 2

2

ˆ ˆ( , )

ln ln

ˆ ˆˆ( , ) .
ln ln

l l

I
l l

   

  
 

  
= =

  
 
   = −

  
 
    

 

The elements of the FIM are obtained as follows:

 22

11 2 2 2 2 2 2 2 2
1 1 1

2 (2 ) (2 )ln 2
( 1) ,

( ) ( ) ( )

m m m
i i i i i i i i

i i ii i i

x x x R x x R xl m
I

x x x

     


        = = =

+ + +
= = − + + −

 + + +
    

22

22 2 2 2 2
1

ln
,

( 1) ( )

m
i

i

i i

xl m m
I R

x    =

 −
= = − −

 − +
  

and 
2

12 21 2 2
1 1

(1 )ln
.

( ) ( )

m m
i i i i

i ii i

x R R xl
I I

x x     = =

+
= = = −

  + +
   

In order to construct the asymptotic VCM ˆ[ ],V  for the ML estimators, the observed FIM ˆ ˆˆ( , ),I    is inverted 

as follows: 

1
ˆ ˆ ˆvar( ) cov( , )ˆ ˆˆ ˆ[ ] ( , ) .
ˆ ˆ ˆcov( , ) var( )

V I
  

 
  

−
 

= = −  
  

     (6) 

 

Again, a numerical technique using R and computer facilities are used to obtain the VCM. According to 

[22], under particular regularity conditions, ˆ ˆ( , )    roughly follow a bivariate normal distribution with their  

mean  of ˆ ˆ( , )  and VCM 
1ˆ ( , ).I  −  Hence, the two-sided 100(1 )%−

 
ACI  for   and  can be constructed 

based on the asymptotic normality conditions of the ML estimators as: 

2
ˆ ˆ ˆACI_UL( ) =  var( ) ,Z  +

   

 2
ˆ ˆ ˆACI_LL( ) =  var( ) ,Z  −    

2
ˆ ˆ ˆACI_UL( ) =  var( ) ,Z  +       2

ˆ ˆ ˆACI_LL( ) =  var( ),Z  −
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where AIL= ACI_UL − ACI_LL, and AIL is average width, the first and the second elements on the main 

diagonal of the asymptotic VCM (6) are ˆvar( )  and ˆvar( ) respectively, and the right tail probability 2  

when 2Z   is the percentile of the standard normal distribution. 

 

Additionally, we must ascertain their variations in order to derive the ACI for RF and HRF. We employ the 

delta approach described in [23] to derive a rough estimate of 
1

( )S t and ( ),h t  This methodology allows us to 

approximate the variance of ( )S t  and ( ),h t  respectively, as follows: 

 

1 1
ˆ ˆ ˆˆvar ( ( ) ) [ ( )] [ ] [ ( )],TS t S t V S t=    and 2 2

ˆ ˆ ˆˆvar ( ( ) ) [ ( )] [ ] [ ( )],Th t h t V h t=    

where 1

( ) ( )ˆ( ) , ,
S t S t

S t
 

  
 =  

  
 and 

2

( ) ( )ˆ( ) , .
h t h t

h t
 

  
 =  

  
 Thus, the two-sided 100(1 )%−

 
ACI 

of ˆ( )S t  and ˆ( )h t can be constructed as follows: 

 

2
ˆ ˆ ˆACI_UL( ( )) = ( )  var( ( )) ,S t S t Z S t+

                 
2

ˆ ˆ ˆACI_UL( ( )) = ( )  var( ( ))S t S t Z S t+
 

2
ˆ ˆ ˆACI_UL( ( )) = ( )  var( ( )) ,h t h t Z h t+

                 
2

ˆ ˆ ˆACI_UL( ( )) = ( )  var( ( ))h t h t Z h t+
          

 

3. BAYESIAN ESTIMATORS USING DIFFERENT PRIORS 

 

The squared error loss function (SELF) will be used in this section to analyses Bayesian estimators (BAEs) 

under the assumption that   and   have informative prior (IFP) and non-informative prior (NIFP) 

distributions. 

 

First, the gamma prior distributions of the LBWLo distribution parameters based on PT2C are assumed to 

be true in order to obtain the BAEs. We assumed that the gamma distribution of   and  exists. If   and 

  are separately distributed, then the following formula gives the combined prior distribution of 

parameters: 

1 2 1 21 1

1( , ) .
a a b b

g e
    − − − −

     (7) 

Given the data x  based on the likelihood function (4) and the joint prior distribution (7), the joint posterior 

density of   and   is calculated as follows: 

1 2 1 2

1

1

2 1 1 ( 1)

1

( , ) ( , )
( , ) 

( , ) ( , )

( 1) ,
i

m
R

a m a m b bm

i i i i

i

l x g
x

l x g d d

e x

 

   

   
  

     

     − − + − − − − + −

=

=

  −  

 



 

where 1 i
i

x




 
= + 
 

and 1 i
i

x




 
= + 
 

. The following are the forms of and  marginal posterior 

distributions: 

1 1 2 22 1 1 ( 1)

11

10

( ) ( 1) ,
i

m
R

a m b a m bm

i i i i

i

g x e e x d
          


− − − + − − − + −

=

  −  
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2 2 1 11 2 1 ( 1)

12

10

( ) ( 1) .
i

m
R

a m b a m bm

i i i i

i

g x e e x d
          


+ − − − − − − + −

=

  −    

The following steps are taken to obtain the BAEs for and ,  under SELF, symbolised by 1 and 1 ,  
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1 2 1 22 11 ( 1)

1 1

10 0

( 1) ,
i

m
R

a m a m b bm

i i i i

i

D e x d d
           

 

− + − − −− − + −

=

 = −    
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2 1 1 22 11 ( 1)

1 1

10 0

( 1) ,
i

m
R
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i i i i

i

D e x d d
           

 

+ − − − −− − + −

=
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where, 1 2 1 22 1 1 ( 1)

1
0 0

1

( 1) .
i

m
R

a m a m b bm

i i i i

i

D e x d d
          

 
− − + − − − − + −

=

 = −     

The BAEs of  
1 1

( ) and ( )S t h t  are given by: 

1 2 1 22 1 11 ( 1)

1 1

10 0

( ) ( 1) 1 1 ,
i

m
R

a m a m b bm

i i i i

i

t t
S t D e x d d



   
       

 

− 

− − + − − −− − + −

=

  
 = − + +    
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2

1 1 2

1
2 11 ( 1)

1 1

10 0

( 1)
( ) .

( ) ( )

i

a m m m
R

a m b b

i i i i

i

t
h t D e x d d

t t

    
     

  

  + +
− − − −− − + −

=

−
 =  + +

  

The above BAEs 1 1 1, , ( )S t  and 1( )h t can be quantitatively assessed for the provided values of 

1 1 2 2, , , , , , anda b a b n m x R  even though they are not in closed forms. 

 

Second, assuming the hyper-parameters to be zero on Equation (7), the joint prior distribution for   and 

in the case of NIPF is defined as follows: 

2

1
( , ) 0 , 1.g    

 
      

The joint posterior distribution of parameters   and  in this case is given by: 

1 2 1 ( 1)

1

1

π ( , ) ( 1) .
i

m
R

m m m

i i i i

i

x x         − − − − + −

=

  −                                                                  (8) 

As a result, the   and  marginal posterior distributions have the following shapes:  

1 2 1 ( 1)

21

10

( )  ( 1) ,
i

m
R

m m m

i i i i

i

g x x d        


− − − − + −

=

  −    

and 

1 2 1 ( 1)

22

10

( ) ( 1) .
i

m
R

m m m

i i i i

i

g x x d        


− − − − + −

=

  −    

The BAEs of   and   denoted by 1 and 1 ,  under SELF are obtained as follows: 

1 1 2 ( 1)

2 2

10 0

( 1) ,
i

m
R

m m m

i i i i

i

D x d d         
 

− − − − + −

=

 = −   
 

and, 

1 2 1 ( 1)

2 2
0 0

1

( 1) ,
i

m
R

m m m

i i i i

i

D x d d         
 

− − − − + −

=

 = −     

where 1 2 1 ( 1)

2
0 0

1

( 1) .
i

m
R

m m m

i i i i

i

D x d d        
 

− − − − + −

=

 = −     

The BAEs of 
1

( )S t  and 
1

( )h t are given by:

 
1 1 2 1 ( 1)

2 2

10 0

( ) ( 1) 1 1 ,
i

m
R

m m m

i i i i

i

t t
S t D t d d



 
       

 

− 

− − − − − + −

=

   
 = − + +     

   
   

and, 
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1
1 2 1 ( 1)

2 2

10 0

( 1)
( ) .

( ) ( )

i

m m m
R

m

i i i i

i

t
h t D t d d

t t

  
     

  

  +
− − − − + −

=

−
 =  + +

   

The above BAEs 2 2 2, , ( ),S t  and 2 ( )h t  have no closed forms but can be evaluated numerically for the given 

values of , , and .n m x R
  

 

4. BAYESIAN CREDIBLE INTERVALS  
 

The BCI is an interval with a specific subjective probability that an unobserved parameter value will fall 

within. It is a range inside the scope of either a predictive or a posterior probability distribution. The BCIs 

of   and   denoted by, 1 and
 

1  are acquired under IFP as follows: 

1 2 1 22 1 11 ( 1)

1 1

10

( 1) 0.95,
i

U m
R

a m a m b bm

i i i i

iL

D e x d d
           



− − + − − −− − + −

=

 = − =    

and, 

1 2 1 22 1 11 ( 1)

1 1

10

( 1) 0.95.
i

U m
R

a m a m b bm

i i i i

iL

D e x d d
           



− − + − − −− − + −

=

 = − =    

These integrals are extremely difficult to resolve analytically, hence the Metropolis-Hasting (MH) 

technique will be used to do so. Additionally, the NIFP is used to obtain the BCIs of and   symbolized 

by 2  and 2 as follows: 

1 1 2 1 ( 1)

2 2

10

( 1) 0.95,
i

U m
R

m m m

i i i i

iL

D x d d         


− − − − − + −

=

 = − =  
 

and, 

1 1 2 1 ( 1)

2 2

10

( 1) 0.95 .
i

U m
R

m m m

i i i i

iL

D x d d         


− − − − − + −

=

 = − =  
 

Since it is quite challenging to evaluate these integrals analytically, the MH technique will be used to solve 

them. 

 

5. NUMERICAL STUDIES & RESULTS  

 

In this section, a simulation is run to get the maximum likelihood estimates (MLEs) and Bayesian estimates 

(BEs) of , , ( )S t  and ( )h t for the LBWLo distribution under two PT2C-based schemes. We see the 

strategies as follows: 
 

• Scheme 1 (Sc. 1): 1 2 3, ... 0mR n m R R R= − = = = = . 

• Scheme 2 (Sc. 2): 1 2 3 4( ) / 2, ... 0mR R n m R R R= = − = = = = . 

The following steps are done via R 3.6.1 program. 

Step 1: Using the same algorithm offered in [24], a random sample 1 2, ,..., nx x x  is generated from the 

LBWLo distribution with the following steps: 

1. Generate m independent and identically (iid) random numbers 1 2, ,..., mP P P from uniform distribution U 

(0,1). 

2. Set 1 1(1 ... )m m m ii R R R

i iV P − − ++ + + +
= for i = 1, 2,…, m.  

3. Set 1 11 ...i m m m iU V V V− − += − and for i = 1, 2,…, m. Then 1 2, ,..., mU U U  is the PT2C sample from uniform 

(0,1) distribution. 

4. Finally, set 1( )i ix F U−= for i = 1, 2,…, m , where 1(.)F −  is the inverse LBWLo CDF. Then 1 2, ,..., nx x x  
is the required PT2C from LBWLo distribution with censoring scheme 1 2( , ,..., ).mR R R R=  
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The MH is one of the Markov chain Monte Carlo methods that is most frequently used in real-world 

applications today to simulate deviations from the posterior density and generate accurate approximations. 

The MH algorithm's proposed distribution ( )q    and beginning values 
(0)  for the unidentified 

parameters were defined. Consider a bivariate normal distribution for the proposal distribution. To do this, 

choose 2( ) ( , )q N S   • =  where ( , )  =  and S 

•  denotes the VCM. It should be highlighted that the 

bivariate normal distribution could result in undesirable negative findings (see [25]). The MH algorithm's 

steps for selecting a sample from the posterior density are as follows: 

a. Set beginning values of   as (0) . =  

b. For i = 1, 2,…, M repeat the following steps: 

a) Set 
( 1)i  −= . 

b) Generate a new candidate parameter value  from 1

2 0(ln , ( , ))N I  − . 

c) Set exp( ).  =  

d) Calculate 
( )

min 1, .
( )

x

x

  


  

  
=  

  

 

e) Update 
( )i = with probability  ; otherwise set 

( ) .i =  

The choice of 1( , )I  −  in the MH algorithm, where the acceptance rate depends on it, is a crucial decision. 

In the case where (.)I  is the FIM, it is thought to be the asymptotic VCM 1ˆ ( )I − . The MLE of   is 

regarded as the beginning value for .  

Finally, some of the initial samples (burn-in) can be removed from the random samples of size M derived 

from the posterior density, and remaining samples can be used to calculate BEs. The BE is given by the 

SELF and depends on: 

1
( ) ( ),

B

M

MH

iB

g g
M 

 
 =

=
−

  

where 
B  reflects the quantity of samples used for burn-in. 

Step 2: For the propose of generating random samples, the following parameter values are chosen:   

(i)  0.5 = , 1.5 =  and (ii) 2, =  1.5. =  

Step 3: For each set of parameters, the MLEs and BEs of   and   are calculated using different censoring 

schemes 1 2( , ,..., )mR R R R=  and stage counts (m) for each sample size of n = 50, 100, and 150. We use t 

= 0.8 for the estimates of the HRF and RF.   

Step 4: According to [26], the mean and variance of ˆ ˆ and i i   are equated with the mean and variance 

of the gamma distributions to determine the hyper-parameters for gamma priors, 

2

1 1

1 1
1 12 2

1 1 1 1

1 1 1 1

ˆ ˆ

, ,

ˆ ˆ ˆ ˆ( 1) ( 1)

N N
i i

i i

N N N N
i i i i

i i i i

N N

a b

N N N N

 

   

− −

= =

− − − −

= = = =

 
 
 

= =
      

− − − −      
         

 

   

  

and, 
2

1 1

1 1
2 22 2

1 1 1 1

1 1 1 1

ˆ ˆ

, ,

ˆ ˆ ˆ ˆ( 1) ( 1)

N N
i i

i i

N N N N
i i i i

i i i i

N N

a b

N N N N

 

   

− −

= =

− − − −

= = = =

 
 
 

= =
      

− − − −      
         

 

   

 



987  Amal HASSAN, Samah ATIA, Hiba MUHAMMED/ GU J Sci, 37(2): 979-1002 (2024) 

 
 

where N is the number of samples and 1,2,..., .i N=  

Step 5: Using the MH approach, the deviations from the posterior density are simulated (see [26]). 

Step 6: The bias, mean squared error (MSE), AIL, and coverage probability (CP) for two schemes are used 

to compare results for different sample sizes, with 10000 repeated samples. 
 

The numerical outcomes are displayed in Figures 2−7 and reported in Tables A1−A4 in the Appendix.  The 

effectiveness of different estimates is revealed in the following observations.  
 

 In the majority of the cases, the MSEs, biases, and AILs for all estimates (ML and Bayesian) decrease 

with n and m. 

 The CPs of HRF estimates increase as n and m increase. 
 

 The MSEs of parameter estimates at true value 0.5, 1.5 = =  get the largest values in Sc.1and Sc.2, 

while the MSEs of 1  and 1  get the smallest value under Sc.1and Sc.2 (see Figure 2). 

 

 

1 2
ˆ , ,    1 2

ˆ, ,    
 

Figure 2.  MSEs for parameter estimates at 0.5, 1.5 = =   for all values of m 

 

 For both schemes, the MSEs of ̂  and̂  at 2, 1.5 = = have the biggest value, whereas the MSEs of

1̂  and 1̂  take the least value (see Figure 3). 

 

 

1 2
ˆ , ,    1 2

ˆ, ,    

 

Figure 3. MSEs for parameter estimates at 2, 1.5 = =  for all values of m 

 

 As shown in Figure 4, the MSEs of 1( )S t and 1( )h t have the least values for the two schemes, where as 

ˆ( )S t and ( )h t have the biggest values for Sc. 1 and Sc. 2 at 0.5, 1.5 = = . 
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1 2
ˆ ( ) , ( ), ( )S t S t S t  

1 2
ˆ( ), ( ), ( )h t h t h t  

 

Figure 4. MSEs at 0.5, 1.5 = =  for all values of m for RF and HRF estimates 

 The values of 1( )S t and 2 ( )h t MSEs are the least in Sc.1 and Sc.2, respectively. The biggest values in 

both schemes' MSEs are found for 
1

ˆ ( )S t  and ˆ ( )h t  (see Figure 5). 

 

 

1 2
ˆ ( ) , ( ), ( )S t S t S t  

1 2
ˆ( ), ( ), ( )h t h t h t  

 

Figure 5. MSEs at 2, 1.5 = =  for all values of m for RF and HRF estimates  
 

 The MSEs of parameters under IFP generally take the smallest values in all schemes in roughly the 

majority of circumstances, it may be said.   
      

 The biases of 1  and 1 for LBWLo distribution are smaller than that the corresponding of 2
ˆ ˆ, ,  

and 2 .  
 

 The AILs for BCI estimates of the LBWLo distribution under IFP are smaller than that the 

corresponding of the MLEs and BEs under NIFP. 
 

 The CPs of the BEs for the LBWLo distribution under gamma priors are greater than that the 

corresponding of the MLEs and BEs under IFPs. 
 

 Figure 6 shows history graphs for various   and   estimaties in NIFP situations. The plots of the 

parameters of the chains   and   resemble a horizontal band without any obvious extended upward 

or downward trends, which are evidence of convergence. 
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(a) 2  and 2 at n=100, m=50 for 0.5 = , 1.5 =  

 
 

(b) 2  and 2 at n=100, m=50 for =2, 1.5  =  

Figure 6.  Different BEs for   and  under uniform priors 

 

 For IFPs, Figure 7 displays history plots for several estimates of   and .   Without any discernible 

long-term rising or falling trends, which are indications of convergence, the plots of the chains for the 

parameters create a horizontal band. 



990  Amal HASSAN, Samah ATIA, Hiba MUHAMMED/ GU J Sci, 37(2): 979-1002 (2024) 

 
 

 

(a)
 

1 and 1 at n=100, m=50 for 0.5 = , 1.5 =  

 

(b) 1 and 1 at n=100, m=50 for =2, 1.5  =  

Figure 7. Different BEs for   and  under gamma priors 
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6. DATA ANALYSIS   

 

The data set is connected to the period between failures for three repairable objects and is presented below. 

The data set are provided in [27] and explored later by [28]. 

 

1.43 0.11 0.71 0.77 2.63 1.49 3.46 2.46 0.59 0.74 

1.23 0.94 4.36 0.40 1.74 4.73 2.23 0.45 0.70 1.06 

1.46 0.30 1.82 2.37 0.63 1.23 1.24 1.97 1.86 1.17 

 

To assess if the data distribution is suitable for the LBWLo distribution or not, the Kolmogorov-Smirnov 

(K-S) test was applied. The K-S distance is calculated to be 0.065072, and the P-value is 0.996. The 

estimated PDF, CDF, and probability-probability (PP) plots are displayed in Figure 8. 

 

Figure 8. The estimated PDF,  CDF and PP plots for the LBWLo distribution   

 

Now, let us examine what occurs if the data set is censored. Using the uncensored data set, we produce 

two artificial PT2C sets in the ways described below (see Table 1): 

 

• Sc.1: 
1 2 3, ... 0mR n m R R R= − = = = = . 

• Sc.2: 
1 2 3 4( ) / 2, ... 0mR R n m R R R= = − = = = = . 

 

Table 1 discusses MLEs and BEs along with their standard errors (SEs) based on PT2C samples. We 

employed a NIFP to calculate the BEs because we have no knowledge of the priors; thus, we chose.  

 

Table 1. The MLEs and BEs under the PT2C 

Scheme m  ML Bayesian 

Estimate SE Estimate SE 

1 

10 

  33.116 73.435 131.651 34.607 

  21.801 50.746 87.265 41.757 

1

( )S t  0.753 0.050 0.739 0.047 

1

( )h t  0.266 0.030 0.290 0.027 

20 

  31.120 27.108 104.367 24.179 

  34.400 29.793 107.602 21.628 

1

( )S t  0.578 0.053 0.593 0.051 

1

( )h t  0.569 0.032 0.548 0.029 

2 10   27.116 50.650 145.010 48.942 
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Scheme m  ML Bayesian 

Estimate SE Estimate SE 

  30.935 59.721 127.989 45.024 

1

( )S t  0.569 0.048 0.647 0.040 

1

( )h t  0.588 0.019 0.443 0.018 

20 

  75.000 56.737 112.992 47.187 

  80.199 64.818 128.974 54.747 

1

( )S t  0.582 0.050 0.556 0.049 

1

( )h t  0.571 0.029 0.633 0.027 

 

The Bayesian estimation strategy, which has the lowest SE values, is the best choice for estimating the 

parameters, RF, and HRF for the LBWLo distribution based on PT2C. Additionally, it is noted that Scheme 

2 fits the data better than other schemes because it has the lowest value among SE. 

 
 

7. SUMMARY AND CONCLUSION 
 

This paper investigates parameter estimators, reliability function estimators, and hazard rate function 

estimators for the LBWLo distribution under PT2C samples using ML and Bayesian methodologies. The 

SELF is used to derive the BAEs while accounting for gamma and uniform priors. ACIs and BCIs are built 

using IFP and NIFP as a foundation. Simulation study is carried out to compare the performance of 

estimates. According to simulation study, BEs perform better than MLEs in the majority of situations. When 

adopting gamma and uniform priors, respectively, the MSEs of BEs typically take the largest value for 

Scheme 1 and the smallest value for Scheme 2. The BEs under gamma priors have a higher coverage 

probability than the ML and BEs with uniform priors. Finally, one set of actual data supports the suggested 

estimations. 
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Appendix 

Table A1. MSE and Bias for different Estimates of parameters, RF, and HRF at 0.5 =  and 1.5 =  
  Scheme I 

n m Estimate 
ML IFP NIFP  

Bias MSE Bias MSE Bias MSE 

50 

 

  

20 

  0.153 0.308 0.152 0.024 0.153 0.024 

  0.085 0.078 0.084 0.008 0.085 0.008 

1

( )S t  0.260 0.067 0.259 0.067 0.260 0.068 

1

( )h t  0.125 0.016 0.125 0.016 0.125 0.016 

30 

  0.109 0.143 0.109 0.012 0.108 0.012 

  0.055 0.035 0.055 0.004 0.054 0.003 

1

( )S t  0.273 0.075 0.273 0.075 0.273 0.075 

1

( )h t  0.134 0.018 0.134 0.018 0.134 0.018 

100 

20 

  0.129 0.167 0.128 0.017 0.128 0.017 

  0.068 0.055 0.067 0.005 0.067 0.005 

1

( )S t  0.304 0.093 0.304 0.092 0.304 0.093 

1

( )h t  0.150 0.022 0.150 0.022 0.150 0.022 

50 

  0.065 0.059 0.062 0.004 0.052 0.003 

  0.032 0.014 0.029 0.001 0.027 0.001 

1

( )S t  0.266 0.071 0.302 0.091 0.334 0.112 

1

( )h t  0.135 0.018 0.144 0.021 0.146 0.021 

 

70 

  0.038 0.034 0.037 0.002 0.038 0.002 

  0.015 0.008 0.015 0.001 0.015 0.001 

1

( )S t  0.247 0.061 0.247 0.061 0.247 0.061 
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Continued Table A1.  

  Scheme 2 

n m Estimate 
ML IFP NIFP  

Bias MSE Bias MSE Bias MSE 

50 

20 

  0.162 0.288 0.161 0.026 0.161 0.026 

  0.080 0.068 0.079 0.007 0.080 0.007 

1

( )S t  0.431 0.186 0.431 0.185 0.431 0.186 

1

( )h t  0.183 0.033 0.183 0.033 0.183 0.033 

30 

  0.104 0.114 0.104 0.011 0.103 0.011 

  0.050 0.027 0.050 0.003 0.050 0.003 

1

( )S t  0.261 0.068 0.261 0.068 0.261 0.068 

1

( )h t  0.128 0.016 0.128 0.016 0.128 0.016 

100 

20 

  0.098 0.168 0.097 0.010 0.098 0.010 

  0.060 0.058 0.060 0.004 0.059 0.004 

1

( )S t  0.149 0.022 0.149 0.022 0.148 0.022 

1

( )h t  0.109 0.012 0.108 0.012 0.109 0.012 

50 

  0.057 0.051 0.067 0.005 0.062 0.004 

  0.029 0.013 0.027 0.001 0.028 0.001 

1

( )S t  0.273 0.074 0.273 0.075 0.291 0.085 

1

( )h t  0.135 0.018 0.139 0.019 0.137 0.019 

 

70 

  0.044 0.034 0.044 0.002 0.043 0.002 

  0.018 0.008 0.017 0.001 0.018 0.001 

1

( )S t  0.333 0.111 0.332 0.110 0.333 0.111 

1

( )h t  0.163 0.027 0.163 0.027 0.163 0.027 

  Scheme I 

n m Estimate 
ML IFP NIFP  

Bias MSE Bias MSE Bias MSE 

1

( )h t  0.122 0.015 0.122 0.015 0.122 0.015 

150 

50 

  0.060 0.053 0.064 0.005 0.062 0.004 

  0.028 0.014 0.032 0.001 0.030 0.001 

1

( )S t  0.248 0.062 0.308 0.095 0.346 0.119 

1

( )h t  0.128 0.016 0.147 0.022 0.160 0.026 

 

70 

  0.031 0.027 0.031 0.001 0.029 0.001 

  0.016 0.008 0.015 0.001 0.017 0.001 

1

( )S t  0.287 0.082 0.286 0.082 0.287 0.083 

1

( )h t  0.139 0.019 0.139 0.019 0.138 0.019 

100 

  0.025 0.021 0.038 0.002 0.012 0.002 

  0.009 0.005 0.016 0.001 0.015 0.001 

1

( )S t  0.325 0.105 0.339 0.115 0.357 0.128 

1

( )h t  0.151 0.023 0.149 0.022 0.157 0.025 

130 

  0.021 0.017 0.021 0.001 0.003 0.001 

  0.012 0.004 0.008 0.000 0.011 0.001 

1

( )S t  0.275 0.076 0.264 0.070 0.310 0.096 

1

( )h t  0.131 0.017 0.127 0.016 0.144 0.021 
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  Scheme 2 

n m Estimate 
ML IFP NIFP  

Bias MSE Bias MSE Bias MSE 

150 

50 

  0.058 0.046 0.053 0.003 0.050 0.003 

  0.033 0.015 0.026 0.001 0.024 0.001 

1

( )S t  0.327 0.107 0.306 0.094 0.349 0.122 

1

( )h t  0.151 0.023 0.143 0.021 0.158 0.025 

 

70 

  0.041 0.032 0.042 0.002 0.041 0.002 

  0.018 0.008 0.018 0.001 0.018 0.001 

1

( )S t  0.283 0.080 0.283 0.080 0.284 0.080 

1

( )h t  0.134 0.018 0.134 0.018 0.134 0.018 

100 

  0.023 0.019 0.029 0.001 0.029 0.001 

  0.012 0.005 0.015 0.001 0.009 0.001 

1

( )S t  0.294 0.086 0.273 0.075 0.255 0.065 

1

( )h t  0.139 0.019 0.127 0.016 0.122 0.015 

130 

  0.012 0.017 0.025 0.001 0.028 0.001 

  0.012 0.004 0.009 0.000 0.010 0.001 

1

( )S t  0.333 0.111 0.307 0.094 0.320 0.102 

1

( )h t  0.162 0.026 0.144 0.021 0.148 0.022 

 

Table A2. MSE and Bias for different Estimates of parameters, RF, and HRF at 2 =  and 1.5 =  
  Scheme 1 

n m Estimate 
ML IFP NIFP  

Bias MSE Bias MSE Bias MSE 

50 

20 

  0.376 2.225 0.153 0.024 0.452 0.205 

  0.050 0.049 0.085 0.008 0.068 0.005 

1

( )S t  0.328 0.108 0.260 0.068 0.433 0.187 

1

( )h t  0.042 0.002 0.125 0.016 0.057 0.003 

30 

  0.302 0.897 0.108 0.012 0.322 0.104 

  0.045 0.022 0.054 0.003 0.050 0.003 

1

( )S t  0.506 0.256 0.273 0.075 0.459 0.211 

1

( )h t  0.060 0.004 0.134 0.018 0.056 0.003 

100 

20 

  0.389 1.456 0.128 0.017 0.356 0.127 

  0.070 0.049 0.067 0.005 0.056 0.004 

1

( )S t  0.442 0.195 0.304 0.093 0.500 0.250 

1

( )h t  0.053 0.003 0.150 0.022 0.063 0.004 

50 

  0.179 0.446 0.052 0.003 0.169 0.029 

  0.029 0.013 0.027 0.001 0.026 0.001 

1

( )S t  0.425 0.181 0.334 0.112 0.429 0.184 

1

( )h t  0.051 0.003 0.146 0.021 0.051 0.003 

 

70 

  0.107 0.268 0.038 0.002 0.128 0.017 

  0.017 0.007 0.015 0.001 0.023 0.001 

1

( )S t  0.403 0.163 0.247 0.061 0.481 0.231 

1

( )h t  0.049 0.002 0.122 0.015 0.059 0.003 

150 50   0.188 0.488 0.062 0.004 0.140 0.020 
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  Scheme 1 

n m Estimate 
ML IFP NIFP  

Bias MSE Bias MSE Bias MSE 

  0.028 0.013 0.030 0.001 0.022 0.001 

1

( )S t  0.422 0.178 0.346 0.119 0.458 0.210 

1

( )h t  0.055 0.003 0.160 0.026 0.056 0.003 

 

70 

  0.130 0.298 0.029 0.001 0.115 0.014 

  0.020 0.008 0.017 0.001 0.018 0.001 

1

( )S t  0.484 0.234 0.287 0.083 0.378 0.143 

1

( )h t  0.059 0.003 0.138 0.019 0.048 0.002 

100 

  0.094 0.193 0.012 0.002 0.098 0.010 

  0.015 0.006 0.015 0.001 0.016 0.001 

1

( )S t  0.431 0.186 0.357 0.128 0.434 0.188 

1

( )h t  0.050 0.003 0.157 0.025 0.053 0.003 

130 

  0.046 0.132 0.003 0.001 0.091 0.009 

  0.007 0.004 0.011 0.001 0.014 0.001 

1

( )S t  0.426 0.181 0.310 0.096 0.412 0.170 

1

( )h t  0.050 0.003 0.144 0.021 0.050 0.002 

 

Continued Table A2.  

   Scheme 2 

n m Estimate 
ML IFP NIFP  

Bias MSE Bias MSE Bias MSE 

50 

20 

  0.369 1.371 0.161 0.026 0.368 0.136 

  0.054 0.041 0.080 0.007 0.056 0.004 

1

( )S t  0.500 0.250 0.431 0.186 0.496 0.246 

1

( )h t  0.059 0.004 0.183 0.033 0.063 0.004 

30 

  0.249 0.718 0.103 0.011 0.285 0.082 

  0.038 0.019 0.050 0.003 0.042 0.002 

1

( )S t  0.491 0.241 0.261 0.068 0.433 0.188 

1

( )h t  0.058 0.003 0.128 0.016 0.054 0.003 

100 

20 

  0.377 1.356 0.098 0.010 0.329 0.109 

  0.069 0.054 0.059 0.004 0.065 0.005 

1

( )S t  0.469 0.220 0.148 0.022 0.502 0.252 

1

( )h t  0.059 0.004 0.109 0.012 0.066 0.004 

50 

  0.155 0.407 0.062 0.004 0.158 0.026 

  0.028 0.012 0.028 0.001 0.025 0.001 

1

( )S t  0.453 0.206 0.291 0.085 0.417 0.174 

1

( )h t  0.056 0.003 0.137 0.019 0.052 0.003 

 

70 

  0.086 0.244 0.043 0.002 0.162 0.027 

  0.012 0.007 0.018 0.001 0.020 0.001 

1

( )S t  0.392 0.154 0.333 0.111 0.451 0.203 

1

( )h t  0.047 0.002 0.163 0.027 0.057 0.003 

150 50 
  0.181 0.446 0.050 0.003 0.142 0.021 

  0.033 0.014 0.024 0.001 0.025 0.001 
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   Scheme 2 

n m Estimate 
ML IFP NIFP  

Bias MSE Bias MSE Bias MSE 

1

( )S t  0.482 0.233 0.349 0.122 0.408 0.166 

1

( )h t  0.060 0.004 0.158 0.025 0.050 0.003 

 

70 

  0.105 0.252 0.041 0.002 0.124 0.016 

  0.013 0.007 0.018 0.001 0.018 0.001 

1

( )S t  0.422 0.178 0.284 0.080 0.391 0.153 

1

( )h t  0.052 0.003 0.134 0.018 0.046 0.002 

100 

  0.094 0.197 0.029 0.001 0.099 0.010 

  0.014 0.005 0.009 0.001 0.014 0.001 

1

( )S t  0.408 0.166 0.255 0.065 0.436 0.190 

1

( )h t  0.048 0.002 0.122 0.015 0.053 0.003 

130 

  0.051 0.128 0.028 0.001 0.072 0.006 

  0.010 0.004 0.010 0.001 0.010 0.001 

1

( )S t  0.429 0.184 0.320 0.102 0.464 0.215 

1

( )h t  0.051 0.003 0.148 0.022 0.056 0.003 

 

Table A3. AIL and CP for different estimates for parameters, RF, and HRF at 0.5 =  and 1.5 =   

   Scheme 1 

n m Estimate 
ML IFP NIFP  

AIL CP AIL CP AIL CP 

50 

20 

  2.094 97.9 0.082 97.3 0.081 97.4 

  1.040 96.0 0.086 97.9 0.086 97.5 

1

( )S t  0.922 95.0 0.977 100.0 0.977 100.0 

1

( )h t  0.269 95.0 0.275 100.0 0.276 100.0 

30 

  1.417 96.2 0.082 97.2 0.076 97.7 

  0.696 96.0 0.086 96.8 0.085 98.3 

1

( )S t  0.855 96.7 0.856 100.0 0.855 100.0 

1

( )h t  0.272 96.7 0.271 100.0 0.272 100.0 

100 

20 

  1.524 96.3 0.087 97.3 0.079 97.0 

  0.877 96.3 0.083 97.3 0.088 97.1 

1

( )S t  0.916 95.0 0.928 100.0 0.928 100.0 

1

( )h t  0.268 95.0 0.277 100.0 0.277 100.0 

50 

  0.914 95.4 0.080 98.1 0.084 97.4 

  0.451 96.0 0.081 97.5 0.084 99.4 

1

( )S t  0.949 96.0 0.903 96.0 0.903 96.0 

1

( )h t  0.286 96.0 0.284 100.0 0.278 96.0 

 

70 

  0.703 95.4 0.083 98.2 0.083 97.8 

  0.341 95.5 0.076 97.7 0.085 9.8 

1

( )S t  0.977 97.1 0.955 100.0 0.955 100.0 

1

( )h t  0.289 97.1 0.289 95.7 0.289 95.7 

150 50 

  0.871 95.8 0.086 96.8 0.086 96.7 

  0.456 96.3 0.080 98.0 0.085 97.3 

1

( )S t  0.951 96.0 0.959 96.0 0.954 96.0 



999  Amal HASSAN, Samah ATIA, Hiba MUHAMMED/ GU J Sci, 37(2): 979-1002 (2024) 

 
 

   Scheme 1 

n m Estimate 
ML IFP NIFP  

AIL CP AIL CP AIL CP 

1

( )h t  0.286 96.0 0.288 98.0 0.281 96.0 

 

70 

  0.637 95.8 0.082 97.9 0.086 96.3 

  0.347 95.4 0.078 9.8 0.087 97.5 

1

( )S t  0.945 97.1 0.939 98.6 0.939 98.6 

1

( )h t  0.294 97.1 0.287 95.7 0.289 95.7 

100 

  0.558 95.0 0.084 98.5 0.085 97.9 

  0.283 96.4 0.080 97.6 0.080 98.3 

1

( )S t  0.935 97.0 0.921 97.0 0.844 97.0 

1

( )h t  0.293 97.0 0.283 96.0 0.279 96.0 

130 

  0.507 95.5 0.085 98.1 0.085 97.5 

  0.258 96.0 0.078 97.5 0.083 96.4 

1

( )S t  0.933 96.9 0.929 99.2 0.944 100.0 

1

( )h t  0.298 96.9 0.294 99.2 0.292 95.4 

 

Continued Table A3.  

   Scheme 2 

n m Estimate 
ML IFP NIFP  

AIL CP AIL CP AIL CP 

50 

20 

  2.008 96.2 0.083 97.7 0.085 98.5 

  0.976 95.9 0.084 96.5 0.083 97.9 

1

( )S t  0.923 95.0 0.944 100.0 0.944 100.0 

1

( )h t  0.255 95.0 0.265 100.0 0.265 100.0 

30 

  1.260 95.9 0.079 97.9 0.083 97.6 

  0.617 95.9 0.084 98.5 0.081 98.1 

1

( )S t  0.956 96.7 0.953 100.0 0.953 100.0 

1

( )h t  0.273 96.7 0.271 96.7 0.271 96.7 

100 

20 

  1.559 96.8 0.084 98.3 0.085 99.3 

  0.913 97.0 0.076 97.6 0.085 97.9 

1

( )S t  0.977 95.0 0.983 100.0 0.983 100.0 

1

( )h t  0.281 95.0 0.284 100.0 0.283 100.0 

50 

  0.860 95.0 0.085 96.4 0.083 97.9 

  0.431 96.3 0.082 98.0 0.085 97.8 

1

( )S t  0.949 96.0 0.865 100.0 0.942 100.0 

1

( )h t  0.283 96.0 0.275 100.0 0.284 96.0 

 

70 

  0.702 95.5 0.085 97.2 0.083 98.2 

  0.344 95.7 0.082 97.7 0.085 97.9 

1

( )S t  0.957 97.1 0.938 100.0 0.938 100.0 

1

( )h t  0.287 97.1 0.285 95.7 0.287 95.7 

150 50 

  0.814 95.6 0.087 97.3 0.083 97.0 

  0.455 95.7 0.078 98.2 0.091 98.3 

1

( )S t  0.937 96.0 0.951 100.0 0.941 96.0 

1

( )h t  0.288 96.0 0.288 96.0 0.277 96.0 
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   Scheme 2 

n m Estimate 
ML IFP NIFP  

AIL CP AIL CP AIL CP 

 

70 

  0.687 95.8 0.080 97.7 0.087 97.2 

  0.340 96.2 0.085 97.7 0.084 99.2 

1

( )S t  0.915 97.1 0.912 100.0 0.912 100.0 

1

( )h t  0.285 97.1 0.282 95.7 0.282 95.7 

100 

  0.527 96.2 0.084 98.8 0.085 97.3 

  0.272 96.1 0.083 98.1 0.081 98.6 

1

( )S t  0.931 97.0 0.916 96.0 0.941 96.0 

1

( )h t  0.291 97.0 0.294 97.0 0.288 96.0 

130 

  0.498 95.8 0.086 97.2 0.088 97.4 

  0.253 96.3 0.077 97.0 0.081 98.0 

1

( )S t  0.955 96.9 0.948 95.4 0.908 95.4 

1

( )h t  0.287 96.9 0.288 95.4 0.293 95.4 

 

Table A4. AIL and CP for different estimates for parameters, RF, and HRF at 2 =  and 1.5 =   

   Scheme 1 

N m Estimate 
ML IFP NIFP  

AIL CP AIL CP AIL CP 

50 

20 

  5.664 97.4 0.081 97.4 0.087 97.7 

  0.859 96.9 0.086 97.5 0.083 97.9 

1

( )S t  0.807 96.0 0.977 100.0 0.943 100.0 

1

( )h t  0.085 96.0 0.276 100.0 0.088 96.0 

30 

  3.520 94.8 0.076 97.7 0.081 97.3 

  0.560 95.8 0.085 98.3 0.084 96.8 

1

( )S t  0.908 97.1 0.855 100.0 0.915 97.1 

1

( )h t  0.091 97.1 0.272 100.0 0.091 97.1 

100 

20 

  4.480 95.4 0.079 97.0 0.083 98.3 

  0.823 95.5 0.088 97.1 0.083 98.2 

1

( )S t  0.895 96.0 0.928 100.0 0.949 100.0 

1

( )h t  0.092 96.0 0.277 100.0 0.087 96.0 

50 

  2.524 96.2 0.084 97.4 0.084 96.9 

  0.424 95.9 0.084 99.4 0.084 97.5 

1

( )S t  0.954 96.0 0.903 96.0 0.940 96.0 

1

( )h t  0.096 96.0 0.278 96.0 0.094 96.0 

 

70 

  1.985 96.2 0.083 97.8 0.087 97.0 

  0.329 96.1 0.085 9.8 0.085 97.9 

1

( )S t  0.869 97.3 0.955 100.0 0.937 98.7 

1

( )h t  0.097 97.3 0.289 95.7 0.096 96.0 

150 50 

  2.639 95.6 0.086 96.7 0.084 97.5 

  0.427 95.8 0.085 97.3 0.081 98.2 

1

( )S t  0.918 96.0 0.954 96.0 0.965 100.0 

1

( )h t  0.094 96.0 0.281 96.0 0.096 96.0 
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   Scheme 1 

N m Estimate 
ML IFP NIFP  

AIL CP AIL CP AIL CP 

 

70 

  2.080 95.2 0.086 96.3 0.085 97.2 

  0.352 95.6 0.087 97.5 0.081 97.5 

1

( )S t  0.949 97.3 0.939 98.6 0.866 100.0 

1

( )h t  0.096 97.3 0.289 95.7 0.095 100.0 

100 

  1.684 95.7 0.085 97.9 0.084 97.2 

  0.286 96.2 0.080 98.3 0.082 98.6 

1

( )S t  0.907 97.0 0.844 97.0 0.935 100.0 

1

( )h t  0.098 97.0 0.279 96.0 0.097 96.0 

130 

  1.415 95.6 0.085 97.5 0.082 96.5 

  0.235 96.4 0.083 96.4 0.085 97.0 

1

( )S t  0.934 96.9 0.944 100.0 0.941 97.7 

1

( )h t  0.099 96.9 0.292 95.4 0.098 100.0 

 

 

   Scheme 2 

n m Estimate 
ML IFP NIFP  

AIL CP AIL CP AIL CP 

50 

20 

  4.332 95.5 0.085 98.5 0.084 96.9 

  0.750 96.3 0.083 97.9 0.084 97.2 

1

( )S t  0.964 96.0 0.944 100.0 0.929 96.0 

1

( )h t  0.091 96.0 0.265 100.0 0.089 100.0 

30 

  3.172 94.3 0.083 97.6 0.081 98.0 

  0.517 94.9 0.081 98.1 0.090 97.2 

1

( )S t  0.879 97.1 0.953 100.0 0.975 97.1 

1

( )h t  0.093 97.1 0.271 96.7 0.093 100.0 

100 

20 

  4.321 96.1 0.085 99.3 0.081 97.8 

  0.868 96.6 0.085 97.9 0.083 96.7 

1

( )S t  0.889 96.0 0.983 100.0 0.915 100.0 

1

( )h t  0.090 96.0 0.283 100.0 0.089 100.0 

50 

  2.429 95.6 0.083 97.9 0.085 98.1 

  0.420 96.4 0.085 97.8 0.086 98.0 

1

( )S t  0.935 96.0 0.942 100.0 0.946 96.0 

1

( )h t  0.096 96.0 0.284 96.0 0.096 96.0 

 

70 

  1.908 95.4 0.083 98.2 0.081 97.3 

  0.332 96.7 0.085 97.9 0.083 99.0 

1

( )S t  0.914 97.3 0.938 100.0 0.940 97.3 

1

( )h t  0.097 97.3 0.287 95.7 0.095 97.3 

150 50 

  2.520 95.7 0.083 97.0 0.085 98.4 

  0.450 95.3 0.091 98.3 0.087 99.2 

1

( )S t  0.969 96.0 0.941 96.0 0.927 100.0 

Continued Table A4.   
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   Scheme 2 

n m Estimate 
ML IFP NIFP  

AIL CP AIL CP AIL CP 

1

( )h t  0.097 96.0 0.277 96.0 0.097 100.0 

 

70 

  1.924 95.8 0.087 97.2 0.085 97.7 

  0.331 96.1 0.084 99.2 0.085 97.4 

1

( )S t  0.914 97.3 0.912 100.0 0.933 100.0 

1

( )h t  0.096 97.3 0.282 95.7 0.097 100.0 

100 

  1.701 96.0 0.085 97.3 0.087 98.0 

  0.283 96.1 0.081 98.6 0.079 97.5 

1

( )S t  0.965 97.0 0.941 96.0 0.946 100.0 

1

( )h t  0.098 97.0 0.288 96.0 0.097 96.0 

130 

  1.390 96.4 0.088 97.4 0.084 98.2 

  0.238 95.8 0.081 98.0 0.084 96.7 

1

( )S t  0.921 96.9 0.908 95.4 0.939 98.5 

1

( )h t  0.099 96.9 0.293 95.4 0.097 95.4 

 


