
*The research and publication process of this article was carried out in accordance with "Research and Publication Ethics".

Managing Business Data with An Object-Oriented

Approach

Nesne Yönelimli Bir Yaklaşımla İş Verilerinin Yönetimi

Cem Ufuk BAYTAR

İstanbul Topkapı Üniversitesi, İİSBF, Yönetim Bilişim Sistemleri Bölümü

Öğretim Üyesi, ufukbaytar@topkapi.edu.tr

Abstract

Nowadays, managing data is so vital for companies in every sector to compete

with competitors. Databases are the critical part of information systems to

process raw data. Some of them are open source code and some of them are

commercial ones. In this study, the main question is that how business data is

managed based on the concept of persistence without a need to connect to a

database management system to make a contribution for the problem of

impedance mismatch. To find the answer of this question, a persistent object-

oriented model has been proposed to establish an infrastructure for especially

small companies to manage business data. When designing this model, the

source of inspiration has been the concepts of persistence and delegation.

Delegation contributes to diminish the effects of code scattering and code

tangling problems and to increase modularity. It also plays an important role in

the model in order to build an interface between users and the system.

Serialization methodology has been applied to save data represented by

persistent objects. C++ programming language was used for implementation of

the model. The reliability of the proposed model has been proved based on

Chidamber and Kemerer’s metric set to measure object-oriented programming.

Consequently, the first version of the model has been implemented without

needing any database management system. It has also provided valuable

functionalities, i.e., saving or loading data, listing data, describing data,

inserting data based on object-oriented concepts. In the future, the researchers

of the same field can make contributions for developing this model by

implementing new features to make it more powerful technically.

Öz

Günümüzde, verileri yönetmek her sektördeki şirketlerin rakipleriyle rekabet

edebilmesi için çok önemlidir. Veritabanları ham verilerin işlenmesi açısından

bilgi sistemlerinin kritik bir parçasıdır. Bu veritabanlarının bazıları açık kaynak

kodlu, bazıları ise ticari kodlardır. Bu çalışmada temel soru, iş verisinin bir

veritabanı yönetim sistemine bağlantı gereksinimi olmadan nesnelerin kalıcılığı

kavramına dayandırılarak empedans uyumsuzluğu problemine katkı sağlamak

için nasıl yönetilebileceğidir. Bu sorunun cevabını bulabilmek amacıyla,

özellikle küçük şirketlerin iş verilerini yönetecekleri bir altyapı oluşturmak

üzere kalıcılaştırılmış nesne yönelimli bir model önerilmiştir. Bu modeli

tasarlarken ilham kaynağı delegasyon ve nesnelerin kalıcılığı kavramları

olmuştur. Delegasyon, nesne yönelimli kodlamada kod saçılması ve kod

karıştırma sorunlarının etkilerinin azaltılmasına ve modülerliğin artmasına

katkıda bulunur. Ayrıca, delegasyon kullanıcılar ve sistem arasında bir ara yüz

oluşturulmasında model için önemli bir rol oynamaktadır. Serileştirme

metodolojisi, kalıcı nesneler tarafından temsil edilen verileri kaydetmek için

uygulanmıştır. Modelin uygulamasında C++ programlama dili kullanılmıştır.

Önerilen modelin güvenilirliği, Chidamber ve Kemerer'in nesne yönelimli

programlamayı ölçmek için belirlediği metrikler kümesine dayanarak

kanıtlanmıştır. Sonuç olarak, modelin ilk hali herhangi bir veritabanı yönetim

sistemine ihtiyaç duymadan uygulanmıştır.

Bilgi Yönetimi

Dergisi

 Cilt: 6 Sayı: 2 Yıl: 2023

https://dergipark.org.tr/tr/pub/by

Peer-Reviewed Articles

Research Article

Article Info

Date submitted: 23.04.2023

Date accepted: 11.07.2023

Date published: 31.12.2023

Makale Bilgisi

Gönderildiği tarih: 23.04.2023

Kabul tarihi: 11.07.2023

Yayınlanma tarihi: 31.12.2023

Keywords

Object-Oriented Model,

Information Management,

Information System

Anahtar Sözcükler

Nesne Yönelimli Model, Bilgi

Yönetimi, Bilgi Sistemi

DOI Numarası

10.33721/by.1270095

ORCID

0000-0003-0844-8160

mailto:ufukbaytar@topkapi.edu.tr
https://dergipark.org.tr/tr/pub/by

Managing Business Data… Peer-Reviewed Articles Bilgi Yönetimi 6: 2(2023), 348 - 363

349

Model, verileri saklama veya yükleme, verileri listeleme, verileri tanımlama, veri ekleme gibi nesne yönelimli

kavramlara dayalı değerli işlevler de sağlamıştır. Gelecekte, bu alandaki araştırmacılar modeli teknik olarak daha

güçlü hale getirecek yeni özellikleri uygulayarak modelin gelişmesine katkı sağlayabilirler.

1. Introduction

Relational databases need the relational data model to save the data. This model is suitable for storing

structured data. MySQL, PostgreSQL, and Oracle are some examples of a relational databases.
NoSQL databases have not referential integrity constraint among data objects. They can operate in a

distributed architecture (Lajam and Mohammed, 2022). They are non-relational databases because

their data models, i.e., key-value, document, column family, and graph data model, are different from

the relational data model (Moniruzzaman and Hossain, 2013). An object-oriented database (OODB) is

a structure that is able to manage data represented by objects. In addition, it is based on an object-

oriented model (OOM). In literature, there are studies about implementing of OOMs or OODBs. Some

of the related works are summarized in Table 1.

Table 1

Related Works

Work Subject / Related to Concepts/Tools

Bergesio

et al.,

2017

OOM for orchestrating smart devices Inheritance, polymorphism

Zuo et

al., 2019

Developing open source data center package Modelica

Ma et

al., 2015

How to store OWL ontologies in object-oriented

databases

Object-oriented database

Liu et

al., 2015

OOM to navigate blind people in outdoor space Objective orientation idea

Coruhlu

and

Yıldız,

2017

Modelling of object-oriented land division Geographical database

Schubert

et al,

2022

Using a graph database for integration of business

objects from heterogenous Business Information

Systems

Graph database

Truica et

al., 2021

Document-Oriented Database Management Systems XML, JSON

Candel

et al.,

2022

Metamodel for NoSQL and relational databases U-Schema, NoSQL

There is an important problem between relational data model and object-oriented applications. It is

called impedance mismatch or object-relational impedance mismatch. It occurs when trying to access

a relational database from an object-oriented application since there is a gap between the object-

oriented model of an application and the relational model in a database management system (Lajam

and Mohammed, 2022). A persistent object store (POS) is useful to prevent the problem of impedance

mismatch (Cortes et al., 2019).

In this study, a persistent object-oriented model was introduced to manage business data in a

consistent and efficient way. For this purpose; i) the proposed OOM has been presented based on

persistence and delegation concepts and serialization methodology, ii) the model has been

implemented with C++ programming language and iii) the model does not require connecting to a

database management system iv) the model contributes to the problem of impedance mismatch.

The contributions of this study to the literature are i) focusing on concepts of data persistence and

persistent object store, ii) how to use the concept delegation to create the effect of inheritance, iii) how

to implement an interface (like interface concept in Java) by using the delegation concept instead of

C. U. Baytar Peer-Reviewed Articles Bilgi Yönetimi 6: 2 (2023), 348 - 363

350

abstract functions, iv) pointing out how to reduce effects of code scattering and code tangling

problems in OOP and v) applying OOP metrics (CK Metrics) to verify that the OOM is reliable.

The 2
nd

 part of the study is about the concepts that is necessary in the development of the model,

implementation of the proposed model has been explained in Chapter 3. Chapter 4 includes findings

and the validation of the model. Finally, results obtained from the study are given in Chapter 5.

2. Summary of Literature

This part of the study includes information about data persistence, persistent object store, object-

oriented programming concepts, for example, composition, delegation, vector and serialization and

studies about persistent data models.

A database design includes conceptual, logical, and physical models to make sure that the structure to

store data will be built in a suitable way and will meet the requirements of a database system. A

conceptual design converts necessary requirements into a conceptual database schema. The logical

design represents the data model of a database, i.e., data types, the format of storing data (tables,

documents, nodes etc.). Physical design plays an vital role to match the data with the storage

environment in an efficient way. In addition, it includes some peculiarities, i.e., specific data types,

storage forms, partitioning, and clustering capabilities etc.(Zdepski et al., 2018). The key differences

between relational database and object-oriented databases are summarized in Table 2 (databasetown,

n.d.).

Table 2

Key Differences Between Relational Database and Object-Oriented Databases

Criteria Relational Database Object Oriented Database

Definition

Data is stored in tables

which consist of rows and

columns.

Data is stored in objects.

Objects contain data.

Amount of data
It can handle large amounts

of data.

It can handle larger and

complex data.

Type of data
Relational database has

single type of data.

It can handle different types of

data.

How data is stored

Data is stored in the form of

tables (having rows and

columns).

Data is stored in the form of

objects.

Data Manipulation

Language

DML is as powerful as

relational algebra. Such as

SQL, QUEL and QBE.

DML is incorporated into

object-oriented programming

languages, such as C++, C#.

Learning

Learning relational database

is a bit complex.

Object oriented databases are

easier to learn as compared to

relational database.

Structure

It does not provide a

persistent storage structure

because all relations are

implemented as separate

files.

It provides persistent storage for

objects (having complex

structure) as it uses indexing

technique to find the pages that

store the object.

Constraints

Relational model has key

constraints, domain

constraints, referential

integrity and entity integrity

constraints.

To check the integrity

constraints is a basic problem in

object-oriented database.

Cost

The maintenance cost of

relational database may be

lower than the cost of

expertise required

development and

integration of object

oriented database.

In some cases hardware and

software cost of object oriented

databases is lower cost than

relational databases.

Managing Business Data… Peer-Reviewed Articles Bilgi Yönetimi 6: 2(2023), 348 - 363

351

Data persistence refers to the ability of data to remain accessible and retrievable even after the

completion of a software application or in the event of runtime crashes. Essentially, it involves

securely storing and reliably loading data when required. In recent times, in-memory data persistence

has emerged as the cutting-edge approach. The concept of in-memory data persistence revolves around

storing data in either memory or external databases/storages to ensure its persistence and availability

(Chen et al., 2019).

Persistent object store is a data storage system based on objects. Such a system saves and loads the

data that is persistent in the form of objects (Brown and Morrison, 1992). POSs are useful to prevent

the problem of impedance mismatch. It is a problem that occurs when an object oriented application

tries to retrieve the relevant data in other types of databases, such as relational database management

systems (RDBMSs). There are three types of Users do not need to connect a database and to create a

query in order to get persistent data by using POSs (Atkinson et al., 1983; Chen et al., 2014).

There are some studies that have discussed about implementing persistent data model. Kozynchenko

(2006) developed a persistent object-oriented model by using C++ as shown in Figure 1. He suggested

an approach to build object-oriented models that provide persistency that is necessary for database

systems. The model is based on the parent and child classes, objects linked by pointers, inheritance

hierarchy and files structure provided by C++ programming language. Also, Chen et al. (2019)

established a model for in-memory data persistence by using javascript and Intel’s Persistent Memory

Development Kit (PMDK), which is a C++ development kit to make the implementations of persistent

memory, as shown in Figure 2 and Figure 3. Cortes et al. (2019) presented CAPre (Code-Analysis

based Prefetching for Persistent Object Stores) that is a novel prefetching system for Persistent Object

Stores based on static code analysis of object-oriented applications as seen in Figure 4.

Figure 1

Generalized Scheme of the C++ Persistent Object-Oriented Model

C. U. Baytar Peer-Reviewed Articles Bilgi Yönetimi 6: 2 (2023), 348 - 363

352

Figure 2

An Overview of Jdap

Figure 3

Javascript Persistent Object Pool

Figure 4

Overview of the Proposed Prefetching System

Managing Business Data… Peer-Reviewed Articles Bilgi Yönetimi 6: 2(2023), 348 - 363

353

Composition refers to the relationship between objects where one object (referred to as the whole or

parent) possesses another object (known as the part or child). In simpler terms, the parent object

retains ownership of the child object, and the child object remains in existence as long as the parent

object exists.

Figure 5

Composition Diagram in UML

Figure 5 depicts a compositon diagram as an example (Lorenzo, 2020). This diagram explains that

whole object has different parts. The syntax of compositon is given in Figure 6 (Geeksforgeeks, 2022).

Figure 7

Implementation of Delegation

Delegation is a feature of C++ programming language that can be used instead of inheritance. It is also
useful technique for object-oriented programmers. Delegation has the effect of interitance. In C++, it
can change the behaviour of an object dynamically by changing an object’s delegatee. A sample code
of delegation is shown in Figure 7 (Johnson and Zweig, 1991; Geeksforgee, 2022).

C++ Standard Template Library (STL) includes different types of containers, for example, list, vector,
map, etc. A vector is an array that has a dynamic chracteristic. It contains values (elements) of the
same type. When a person adds an element to a vector, it can adjust its own size automatically. Every
element follows other element in order (Geeksforgee, 2022; Pataki et al., 2011).

A data structure or an instance of a class can be saved in the memory of a computer system if they are
converted to an appropriate format. Serialization makes such a conversion possible. Re-creation of the

Figure 6

The Syntax of Composition

C. U. Baytar Peer-Reviewed Articles Bilgi Yönetimi 6: 2 (2023), 348 - 363

354

same object stored in the memory is called deserialization. Binary serialization stores an object in
sequences of bits (Tauro et al., 2012). Object serialization causes storage amount of data to reduce
(Carrera et al., 2018).

3. Material and Method

This chapter explains what the model is and gives information about implementation of object-
oriented model. In this study, a persistent object-oriented model has been proposed in Figure 8. The
main purpose of this model is to introduce an approach in order to build the base of an object-oriented
tool that will help users to manage business data for especially small companies in every industry
without needing any database management system by contributing to the problem of impedance
mismatch.

Figure 8

The Proposed Persistent OOM

The model has class manager that has an interface role between a user and a system. The code sample

is given in Figure 9. The manager class delegates tasks to other relevant classes. Delegation

contributes to increase the level of modularity in the OOM and to decrease the effects of code

scattering and code tangling issues in OOP. The record class has “has-a” relationship (composition)

with the class field in order to define the structure of a record as an object. The class record delegates

tasks (setDesc() and setValue()) to the class field. Vectors have been used as a container to keep the

field objects together to build a record or to keep the record objects together to create a table.

Figure 9

Code Sample of Class Manager

Managing Business Data… Peer-Reviewed Articles Bilgi Yönetimi 6: 2(2023), 348 - 363

355

In this study, C++ programming language has been used. C++ is one of languages that consumes less

memory, expends least energy and is faster than other 27 programming languages in the research. In

addition, C++ is one of pioneers that represents object-oriented paradigm (Pereira et al., 2017). C++

needs an external library to make a serialization/deserialization process. Boost library has been used in

this study as depicted in Figure 10.

Figure 10

Boost Library

The serialize function is designated as private within the respective classes (record and field). For

storing an object in an archive (save function), the << or & operator is utilized, while the >> or &

operator is employed to retrieve an object from an archive (load function), as illustrated in Figure 11

and Figure 12 When invoking one of these operators, the serialization function is called by the system.

Instances of class records are stored in the relevant .dat file. Every .dat file has the role of a table that

includes record objects as shown in Figure 8. Save () and Load () are friend functions. It means that

they are not member functions of other classes. In other words, they are common functions used by

other objects so that such a behaviour in the model prevents issues of scattering and tangling in object

oriented coding.

Figure 11

Save Function

C. U. Baytar Peer-Reviewed Articles Bilgi Yönetimi 6: 2 (2023), 348 - 363

356

Figure 12

Load Function

4. Findings

This chapter includes the findings after implementing the model and provides the validation of the

model. The proposed model has been realized some of SQL commands. Table 3 shows comparison of

class functions in the OOM and MySQL equivalents.

Table 3

Comparison of Class Functions And MySQL Equivalents

Class Name Functions In Classes MySQL equivalent

record

table

setDesc () + createTable () create table table_name

(

column1 datatype,

column2 datatype,

column3 datatype

);

display descTable() describe table_name

record

insert

setValue () + addRecord () insert into table_name (column1,

column2, column3) values (value1,

value2, value3);

display dispRecord () select * from table_name

As stated in Figure 13 and Figure 14, setDesc() member function of the class record defines every

necessary field belonged to a record, after that, createTable function of the class table adds this record

object to the relevant dat file that behaves like a table. As a result, co-operation of these 2 member

functions realizes the same functionality as “Create Table” command of MySQL.

Managing Business Data… Peer-Reviewed Articles Bilgi Yönetimi 6: 2(2023), 348 - 363

357

Figure 13

setdesc() Function of Class Record

Figure 14

createtable() Function of Class Table

In Figure 15, the object mng, which plays the role of interface, calls setDesc() and createTable()

functions to describe and to create a table.

Figure 15

Describing and Creating a Table in the Main Function

In the runtime, users can decide a function call by using the class manager. In addition, users can

determine the number of fields that will be defined. Vectors can adjust their size automatically. Save

C. U. Baytar Peer-Reviewed Articles Bilgi Yönetimi 6: 2 (2023), 348 - 363

358

function also invokes the serialize function (dynamic binding) in the relevant class. All of such

features make the structure of the model dynamic as shown in Figure 16.

Figure 16

Implementation of Describing and Creating a Table

Reliability is an important measurement to show the validity and quality of a software system. In

other words, it is probability of that the program will perform necessary functions in a correct way

(Johny, 2013).

Chidamber and Kemerer’s metric set (CK Metrics) is well-known for measuring OOP. It has been

used for the model proposed because it is suitable for object-oriented coding whose process is finished

(Katic et al., 2013). CK Metrics set evaluates object-oriented design instead of software

implementation (Ponnala and Reddy, 2019). It includes six metrics as shown in Table 4 (Basili et al.,

1995; Bakar et al., 2014; Chidamber and Kemerer, 1994).

Table 4

Definitions of CK Metrics

Metrics Definition

Weighted Methods

per Class (WMC)

The number of methods defined in each class. If a class has more member functions, it

will be more complex. This causes more errors to be happened

Depth of Inheritance

Tree of a class (DIT)

The number of ancestors of a class. Well-designed OO systems have not a large

inheritance tree.

Number of Children

of a Class (NOC)

The number of direct descendants for each class. If a class has more children, it will be

difficult to manage it

Coupling Between

Object classes (CBO)

The number of classes which their members are used by a given class. Weakly coupling

means less probability of occurring faults.

Response For a Class

(RFC)

The number of functions directly called by member functions of a class. Larger RFC

means higher complex, more fault-prone classes.

Lack of Cohesion on

Methods (LCOM)

(The number of function pairs not using common instance variables) – (The number of

function pairs using common instance variables). A class with low cohesion (high

LCOM) among its methods suggests an inappropriate design.

Threshold values for CK Metrics, which are used to predict software reliability, are established by

researchers and presented in Table 5.

Managing Business Data… Peer-Reviewed Articles Bilgi Yönetimi 6: 2(2023), 348 - 363

359

Table 5

Threshold Values of CK Metrics

Related Works WMC DIT NOC CBO RFC LCOM

Calp & Arıcı, 2011 Low Low Low Low Low Low

Goel & Bhatia, 2012 2 2 2 1 5 1

Zhou & Leung, 2006 0-15 0-6 0-6 0-8 0-35 0-1

Mago & Kaur, 2012 0-11

 0-4 1-3 0-3 0-12 0

Edith & Chandra, 2010 0-15 0-6 0-6 0-8 0-35 0-1

Reliability is inversely proportional to CK metrics as follows:

 Reliability α 1/WMC

 Reliability α 1/RFC

 Reliability α 1/DIT

 Reliability α 1/LCOM

 Reliability α 1/CBO

Reliability of software based on CK Metrics is calculated according to rules as follows (Johny, 2013;

Misra and Roy, 2015; Yılmaz and Tarhan, 2019):

 Weighted values for CK Metrics:

 If lower threshold limit ≤ value of metric ≤ mean of threshold range, weighted value is

1.

 If mean of threshold range ≤ value of metric ≤ upper threshold limit, weighted value is

2.

 If value of metric is outside of threshold range, weighted value is 7.

 In terms of NOC metric:

 (log(upper threshold limit of NOC))² is used for R-max (Maximum reliability value)

 (log(lower threshold limit of NOC))² is used for R-min (Minimum reliability value)

 If NOC value is outside of threshold range, it will be omitted.

 Reliability value (R) is calculated as follows:

R = k*(1/(wt(WMC)+wt(DIT)+wt(RFC)+wt(LOCM)+wt(CBO)) + (log(wt(NOC)))² (1)

where wt(WMC) is weighted value of WMC etc., k is 1.

R-max = k*(1/(1+1+1+1+1)) + (log(upper threshold of NOC))² (2)

where weighted value of every metric is maximum.

R-min = k*(1/(2+2+2+2+2)) + (log(lower threshold of NOC))² (3)

where weighted value of every metric is minimum.

R should be between R-max and R-min. In other words, R-min < R < R-max.

None of OO metrics can not individually explain the quality of object-oriented design. To evaluate the

OOM, threshold limits (Mago and Kaur, 2012) in Table 4 have been preferred because the model on

this work has provided the integrated evaluation of CK Metrics based on fuzzy logic.

The average values of metrics (Calp and Arıcı, 2011) belonged to classes in the proposed model are

shown in Table 6.

C. U. Baytar Peer-Reviewed Articles Bilgi Yönetimi 6: 2 (2023), 348 - 363

360

Table 6

Values of CK Metrics in the Model Proposed

Class

Name

WMC DIT NOC CBO RFC LCOM

manager 6 0 0 4 6 0

insert 3 0 0 1 0 0

display 3 0 0 1 0 0

table 2 0 0 1 0 0

record 3 0 0 1 2 0

field 3 0 0 0 0 0

Average

of

metrics
3,33 0 0 1,33 1,33 0

In Table 7, it is stated that R-Max is 0,428, R-Min is 0,1. In addition, Reliability value of the model is

0,2 showing that the model is reliable because it is between R-Min and R-Max.

Table 7

Reliability Values of the Model Proposed

 WMC DIT NOC CBO RFC LCOM

Average of metrics 3,33 0 0 1,33 1,33 0

R-Max 1*(1/(1+1+1+1+1)) + (log(3))² = 0,428

R-Min 1*(1/(2+2+2+2+2)) + (log(1))² = 0,1

R 1*(1/(1+1+1+1+1)) = 0,2

NOC is omitted

Another point is that the metrics of the model are fit to metric values shown in Table 4. This also

proves that the proposed model is reliable.

5. Conclusion

In this study, an OOM, based on persistence and delegation concepts, has been implemented. It has

shown that users can manage business data with the persistent objects without a database management

system to prevent the impedance mismatch problem. To manage business data, this implementation

has also provided the realization of some SQL commands, i.e., select, insert, create table, describe

table that is available in MySQL database management system. In addition, data represented by

persistent objects has been saved by using serialization methodology. The implementation points out

that the OOM has a dynamic structure. Interface has also been established by using the delegation

concept in order to increase the modularity level. The reliability of the model has been proved based

on CK Metrics. On the other hand, this model will need new features that make it technically more

powerful in the future. Data conversion, data integrity checks, updating data, searching data can be

given as examples of new features for researchers in the relevant field.

Managing Business Data… Peer-Reviewed Articles Bilgi Yönetimi 6: 2(2023), 348 - 363

361

Compliance with Ethical Standards

Conflict of Interest: The author declare that there is no conflict of interest.

Ethics Committee Permission: Ethics comittee approval is not required for this study.

Authors Contribution Rate Statement: The author declares that he has contributed fully to the

article.

Financial Support: No

References

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, P.W. & Morrison, R. (1983). An approach to

persistent programming. The Computer Journal, 26(4), 360-365, doi:

http://dx.doi.org/10.1093/comjnl/26.4.360.

Bakar, A.D., Sultan, A., Zulzalil H. & Din, J. (2014). Predicting Maintainability of Object oriented

Software Using Metric Threshold. Information Technology Journal, 13(8), 1540-1547, 2014.

Basili, V.R., Briand, L. & Melo, W.L. (1995). A Validation of Object-Oriented Design Metrics as

Quality Indicators. Technical Report, Dep. of Computer Science, Univ. of Maryland, College Park,

MD, USA. https://www.cs.umd.edu/~basili/publications/technical/T102.pdf

Bergesio, L., Bernardos, A.M. & Casar, J.R. (2017). An Object-Oriented Model for Object

Orchestration in Smart Environments. Procedia Computer Science, 109C, 440-447.

Brown, A.L. & Morrison R. (1992). A generic persistent object store. Software Eng. Journal, 7(2),

161-168, doi: http://dx.doi.org/10.1049/sej.1992.0017.

Calp, M.H. & Arıcı, N. (2011). Nesne Yönelimli Tasarım Metrikleri ve Kalite Özellikleriyle İlişkisi.

Politeknik Dergisi, 14(1), 9-14.

Candel, C.J.F., Ruiz, D.S. & García-Molina, J.J. (2022). A unified metamodel for NoSQL and

relational databases. Information Systems, 104, 101898, 1-26, doi:

https://doi.org/10.1016/j.is.2021.101898

Carrera, D., Rosales, J.& Gustavo, A. (2018). Optimizing Binary Serialization with an Independent

Data Definition Format. International Journal of Computer Applications, 180, 15-18.

Chen, T.H., Shang, W., Jiang, Z.M., Hassan, A.E., Nasser, M. & Flora, P. (2014). Detecting

performance anti-patterns for applications developed using object-relational mapping. Paper

presented at the 36th International Conference on Software Engineering, Hyderabad, 2014, pp.

1001-1012. http://dx.doi.org/10.1145/2568225.2568259.

Chen, Y., You, L., Xu, H., Zhang, Q., Li, T., Li, C. & Huang, L. (2019). JDap: Supporting in-memory

data persistence in javascript using Intel’s PMDK. Journal of Systems Architecture, 101(2019),

101662, 1-12. doi: https://doi.org/10.1016/j.sysarc.2019.101662

Chidamber, S.R. & Kemerer, C.F. (1994). A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 20(6), 476-493.

Cortes, T., Queralt, A. & Touma, R. (2019). CAPre: Code-Analysis based Prefetching for Persistent

Object Stores. Future Generation Computer Systems, 111(2020), 491-506, doi:

https://doi.org/10.1016/j.future.2019.10.023

Coruhlu, Y.E. & Yıldız, O. (2017). Geographical database for object-oriented land division modelling

in Turkey. Land Use Policy, 68, 212-221.

Databasetown (n.d.). Relational Database vs Object-Oriented Database (Key Differences). Retrieved

from https://databasetown.com/relational-database-vs-object-oriented-database-key-differences/

Edith, L.P. & Chandra, E (2010). Class Break Point Determination Using CK Metrics Thresholds.

Global Journal of Computer Science and Technology, 10(14), 83-87.

C. U. Baytar Peer-Reviewed Articles Bilgi Yönetimi 6: 2 (2023), 348 - 363

362

Geeksforgee (2022, Febraury 11). Composition. Retrieved from

https://www.geeksforgeeks.org/object-composition-delegation-in-c-with-example

Geeksforgeeks (2022, January 18). Object Delegation in C++. Retrieved from

https://www.geeksforgeeks.org/object-delegation-in-cpp

Geeksforgeeks (2022, May 13). Vector in C++. Retrieved from https://www.geeksforgeeks.org/vector-

in-cpp-stl

Goel, B.M. & Bhatia, P.K. (2012). Analysis of Reusability of Object-Oriented System using CK

Metrics. ACM SIGSOFT Software Engineering Notes, 38(4), 1-5.

Johnson, R. & Zweig, J.M. (1991). Delegation in C++. Journal of Object-Oriented Programming, 4,

31-34.

Johny, A.P. (2013). Predicting Reliability of Software Using Thresholds of CK Metrics. Int. J.

Advanced Networking and Applications, 4(6), 1778-1785.

Katic, M., Boticki, I.. & Fertalj, K. (2013). Impact of Aspect Oriented Programming on the Quality of

Novices’ Programs: A Comparative Study. Journal of Information and Organizational Sciences,

37(1), 45-61.

Kozynchenko, A. (2006). Constructing persistent object-oriented models with standard C++. Journal

of Object Technology, 5(1), 69-81.

Lajam, O. & Mohammed, S. (2022). Revisiting Polyglot Persistence: From Principles to Practice.

International Journal of Advanced Computer Science and Applications, 13(5), 872-882.

Liu, D., Chena, M., Lin, H., Zhang, H. & Yue, S. (2015). An object-oriented data model built for blind

navigation in outdoor space. Applied Geography, 60, 84-94.

Lorenzo, T. (2020). Object-oriented event-graph modeling formalism to simulate manufacturing

systems in the Industry 4.0 era. Simulation Modelling Practice and Theory, 99, 1-33.

Ma, Z.M., Zhang F. & Li, W. (2015). Storing OWL ontologies in object-oriented databases.

Knowledge-Based Systems, 76, 240-255.

Mago, J. & Kaur, P. (2012). Analysis of quality of the design of the object oriented software using

fuzzy logic. International Journal of Computer Applications, 21–25.

Misra, S. & Roy, B. (2015). Assessment of Object Oriented Metrics for Software Reliability.

International Journal of Engineering Research & Technology, 4(1), 432-435.

Moniruzzaman, A. & Hossain, S. A. (2013). Nosql database: New era of databases for big data

analytics-classification, characteristics and comparison. International Journal of Database Theory

and Application, 6(4), 1-14.

Pataki, N., Szűgyi, Z. & Dévai, G. (2011). Measuring the Overhead of C++ Standard Template

Library Safe Variants. Electronic Notes in Theoretical Computer Science – ENTCS, 264(5), 71-83.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P. & Saraiva, J. (2017). Energy

Efficiency across Programming Languages: How Do Energy, Time, and Memory Relate? ACM

SIGPLAN International Conference on Software Language Engineering, Vancouver, 2017, pp.

256-267.

Ponnala, R. & Reddy, C.R.K. (2019). Object Oriented Dynamic Metrics in Software Development: A

Literature Review. International Journal of Applied Engineering Research, 14(22), 4161-4172.

Schubert, P., Blankenberg, C. & Gebel-Sauer, B. (2022). Using a graph database for the ontology-

based information integration of business objects from heterogenous Business Information

Systems. Procedia Computer Science, 196, 314–323.

Tauro, C. N., Mishra, G.S. & Bhagwat, A. (2012). A Study of Techniques of Implementing Binary

Serialization in C++, Java and .NET. International Journal of Computer Applications, 45, 25-29.

https://www.geeksforgeeks.org/object-composition-delegation-in-c-with-example
https://www.geeksforgeeks.org/object-delegation-in-cpp
https://www.geeksforgeeks.org/vector-in-cpp-stl
https://www.geeksforgeeks.org/vector-in-cpp-stl

Managing Business Data… Peer-Reviewed Articles Bilgi Yönetimi 6: 2(2023), 348 - 363

363

Truica, C.O., Apostol, E.S., Darmont, J. & Pedersen, T.B. (2021). The Forgotten Document-Oriented

Database Management Systems: An Overview and Benchmark of Native XML DODBMSes in

Comparison with JSON DODBMSes. Big Data Research, 25, 1-14.

Yılmaz, N. & Tarhan, A. (2019). A two-dimensional method for evaluating maintainability and

reliability of open source software. Journal of the Faculty of Engineering and Architecture of Gazi

University, 3(4), 1807-1829.

Zdepski, C., Bini, T. & Matos, S. (2018). An Approach for Modeling Polyglot Persistence. 20th

International Conference on Enterprise Information Systems, Maderia, 2018, pp. 120-126.

Zhou, Y. & Leung, H. (2006). Empirical analysis of object-oriented design metrics for predicting high

and low severity faults. IEEE Trans. Softw. Eng., 32(10), 771-789.

Zuo, W., Fu, Y., Wetter, M., VanGilder, J.W. & Yang, P. (2019). Equation-based object-oriented

modeling and simulation of data center cooling systems. Energy&Buildings, 198, 503-519.

