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Abstract 
 
The aim of this paper is to compare the efficiency of automotive firms in the 

context of standard DEA, bounded (crisp) DEA, and fuzzy DEA approaches and 
to apply a bounded fuzzy DEA model by imposing bounds on input and output 
factors. Actual data on 37 automotive firms recorded in Istanbul Chamber of 
Industry (ISO) were obtained for illustration purposes of fuzzy-DEA and 
compared the efficiency results with those obtained with standard DEA and 
bounded (crisp) approaches. According to the analysis results, average 
efficiencies differ significantly across methods. Besides, fuzzy-DEA model 
results have outlined that real evaluation of one problem in the context of DEA is 
generally applicable, and in many situations is likely to result in more realistic 
estimates of efficiency than standard DEA and bounded (crisp) approaches.  

 
Keywords: Efficiency, data envelopment analysis (DEA), Fuzzy DEA, 

Fuzzy linear programming. 
 
Öz 
 

Bulanık Veri Zarflama Analizi Đle Türk Otomotiv Firmalarının  
Etkinlik Ölçümü 

 
Bu çalışmanın amacı, Türk otomotiv firmalarının standart VZA (veri 

zarflama analizi), sınırlı VZA ve bulanık VZA yöntemleri ile hesaplanan 
etkinliklerini karşılaştırmak ve girdi-çıktı faktör ağırlıklarını sınırlandırarak bir 
sınırlı bulanık VZA modeli uygulamaktır. Sınırlı bulanık VZA nın gösterimi 
amacı ile Đstanbul Sanayi Odasına (ISO) kayıtlı 37 otomotiv firmasının gerçek 
verileri elde edilmiş ve hesaplanan etkinlik sonuçları standart VZA ve sınırlı 
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yaklaşımlardan elde edilen sonuçlarla karşılaştırılmıştır. Analiz sonuçlarına göre 
sözkonusu metodlar, birbirlerinden önemli ölçüde farklı etkinlik puanları 
üretmişlerdir. Bunun yanı sıra, Bulanık VZA modelinin diğer VZA modellerinden 
daha gerçekçi sonuçlar verdiği sonucuna varılmıştır. 

 
Anahtar Sözcükler: Etkinlik, veri zarflama analizi (VZA), Bulanık VZA, 

Bulanık doğrusal programlama.        
 

 
INTRODUCTION AND BACKGROUND 
 
DEA, widely known as a non-parametric approach, is basically a 

mathematical programming technique developed by Charnes, Cooper and 
Rhodes (CCR) (1978) to evaluate the relative efficiency of a set of homogenous 
‘‘decision making units’’ (DMUs) (Emel et al., 2003). Conceptually, the 
relative efficiency of DMUs that is constrained to be no more than 1 is 
compared by using a ratio of the weighted sum of outputs to the weighted sum 
of inputs. Specifically, DEA determines a set of weights such that the efficiency 
of one DMU relative to the other DMUs is maximized and identifies the source 
of inefficiency in each input relative to each output for the DMUs 
(Lertworasirikul et al., 2003). 

 
In the business sector, DMUs can be companies, firms, service centers, 

management or employees (Dia, 2004). Although, the real evaluation of DMUs 
often implies strong imprecision and great uncertainty, evaluating the traditional 
DEA with these entities requires that data be accurate (crisp) in its analysis. 
Indeed, as the system's complexity increases, accurate evaluation of data 
becomes extremely difficult (Dia, 2004:268). In such situations, in order to 
compare the performance of DMUs, it is thus important to incorporate fuzzy 
modeling with traditional DEA especially since the former is reflecting a 
general feeling or experience of experts, whereas later particularly sensitive to 
the quality of the data (Guo and Tanaka, 2001; Dia, 2004).   

 
DEA has been extensively used to measure efficiency of entities such as 

schools in performing their education (Sarrico and Dyson, 2000), hospitals, 
hotels, banks and libraries in providing their services (Al-Shammari, 1999; 
Ramanathan, 2005; Barros and Alves, 2004; Asish and Ravisankar, 2000; 
Weber 2002; Chen, 1997) in which outputs and inputs are always multiple 
forms. An advantage of DEA in these examples, it is a powerful tool for 
efficiency measurement. However, in some situations, such as in a 
manufacturing system, and in production process or a service system, inputs and 
outputs are easy to change. It is difficult to measure them in an accurate way to 
obtain precise data (Lertworasirikul et al., 2003). Some researchers, however, 
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when they evaluating the problems, used stochastic efficient frontier techniques 
to deal with inaccurate and fluctuating inputs and outputs in DEA models 
(Aigner et al., 1977). In addition, this method can not be used for the multiple-
input, multiple-output form (Charnes et al., 1978; Lertworasirikul, 2002). In the 
light of above findings, one has to say that unbounded version of the DEA 
model can give rise to undesirable consequences (Roll et al., 1991). Because, 
traditional DEA requires precise input and output data, it is very difficult to 
evaluate the efficiency of DMUs with unbounded inputs and outputs by 
traditional DEA models (Guo and Tanaka, 2001).  For this reason, linguistic or 
qualitative data presented by fuzzy numbers should be used to deal with the 
fluctuating or imprecise data in evaluating the efficiency of entities.  

 
In recent years, a number of different approaches have been carried out as 

a way to quantify imprecise and vague data in DEA models by Lertworasirikul, 
(2002), Lertworasirikul et al., (2003), Guo and Tanaka (2001), Triantis and 
Girod (1998), Maeda et al., (1998) and Entani et al., (2002). Lertworasirikul 
(2002) was, for example, interested in modeling some small examples in a fuzzy 
context using a DEA approach while Lertworasirikul et al., (2003) developed a 
possibility approach that transforms fuzzy DEA models into possibility DEA 
models by using possibility measures of fuzzy constraints. Similarly, Guo and 
Tanaka (2001) evaluated the fuzzy DEA and also proposed a model with 
considering the relationship between DEA and RA (regression analysis). 
Besides, Triantis and Girod (1998) developed a mathematical programming 
approach to measure technical efficiency in a preprint and packaging 
manufacturing line in the context of fuzzy DEA environment. Entani et al., 
(2002) proposed a DEA model with an interval efficiency consisting 
efficiencies obtained from the pessimistic and the optimistic viewpoints to deal 
with fuzzy data. Meanwhile, mentioned above researchers (Zimmerman, 1996; 
Guo and Tanaka 2001; Maeda et al., 1998) have been used tolerance, ranking 
and parametric programming approaches when comparing of fuzzy DEA to 
other efficiency measurement models. In these researches, it is shown that fuzzy 
DEA models can more realistically represent real-world problems than the 
traditional DEA models. Fuzzy set theory also allows linguistic or qualitative 
data to be used directly within the DEA models (Lertworasirikul et al., 
2003:380).  

 
In this paper, firstly, by adding upper and lower bounds on the weights of 

inputs and outputs, bounded (crisp) version of the standard DEA is obtained. 
Secondly, to model the uncertainty of the bound values, crisp bounds are 
replaced by the fuzzy numerical values. Finally, to determine the fuzzy 
numerical values with triangular membership functions, upper and lower limits 
of numerical data merging into parametric programming approaches are 
transformed to linear programming models, and solved by a Lindo 6.1 program.  
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This approach uses the traditional DEA framework with bounded constraints 
and then merges this concept developed in fuzzy parametric programming 
(Carlsson and Korhonen, 1986; Triantis and Girod, 1998). 

 
The paper is organized as follows. In the first section of the study, the 

fuzzy model was used to develop and to solve the uncertainty in the bounded 
DEA (crisp) model. In Section 2, the entire procedure was presented, and 
possible interpretations to differences in efficiency ratings, obtained with the 
standard DEA, bounded (crisp) model and Fuzzy DEA, were discussed.  
Section 3 closed with final remarks and future directions.  

 
 
1. FUZZY MODEL FOR THE BOUNDED DEA 
 
In this section, it was examined to impose bounds on factor weights and 

to combine this with the fuzzy DEA. Fuzzy DEA aims at evaluating the 
performance of organizations in an uncertain and vague context (Dia, 2004). 
Incorporating fuzzy data in bounded DEA (crisp) models not only allows for a 
greater realism in modeling, it also represents the upper and lower bounds on 
factor weights of data in the model so that none of the factors are ignored or 
over emphasized with high weights (Kabnurkar, 2001; Dia, 2004; Allen et al., 
1997). 

 
The relative efficiency of DMUs with in the bounded DEA framework 

can be maximized as the ratio of weighted outputs to weighted inputs for each 
DMU (Roll et al., 1991; Pedraja-C. et al., 1997). This fractional programming 
problem is equivalent to a linear programming model developed by Charnes et 
al., (1962, 1978). In order to determine appropriate values for the bounds of 
each DMU, some methods were proposed by Roll et al., (1991) and Roll and 
Golany (1993). With respect to those methods, appropriate bounds can only be 
set after examining the results from an unbounded DEA, and may have to be 
varied from one DMU to another (Roll et al., 1991; Pedraja-C. et al., 1997). In 
implementing this method, firstly, an unbounded DEA model is run, and a 
weights matrix is compiled with eliminating extreme values leading to 
anomalies in the results for calculating the bounds. Secondly, specified bounds 
are added as upper and lower bound constraints to the original DEA (CCR) 
model to obtain the bounded DEA (crisp) model (Allen et al., 1997; Kabnurkar, 
2001; Roll et al., 1991).  The absolute bounded DEA (crisp) model as 
introduced by Roll et al. (1991) is represented as follows:     
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y0 is the known as column vector of outputs produced by considered 

DMU, and Y is the matrix of outputs of all DMUs.  x0  is the column vector of 
inputs consumed by the DMU, and X is the matrix of inputs of all DMUs. The u 
and v are column vector of variable multipliers or most favorable factor weights 
to maximize the efficiency of DMUs. UBr and LBr define upper and lower 
bound on weight of output r ( sr ,,1K= ), whereas UBi and LBi upper and 

lower bound on weight of input i ( mi ,,1K= ). In Eq. (1), the efficiency ratio of 
each DMU should no exceed unity and all factor weights should be positive. To 
model the uncertainty of the bound values in (1), crisp bounds of 

iirr LBUBLBUB ,,,  are replaced by the fuzzy numerical values of 
f
i

f
i

f
r

f
r LBUBLBUB ,,, respectively. Fuzzy numerical values express the concept 

close to the original crisp bounds (Kabnurkar, 2001:93). To incorporate fuzzy 
numerical values in bounded DEA (crisp) models, coefficients in fuzzy DEA 
models are to be defined by triangular membership functions. Otherwise, fuzzy 
DEA models can not be solved like a crisp model because coefficients in this 
model are imprecise and vague data (Lertworasirikul et al., 2003:383). 
Fractional fuzzy DEA model with fuzzy coefficients are re-formulated as 
follows (Werners, 1987): 
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In Eq. (2), the superscript f signifies a fuzzy numerical value. Also, 

parameters of fuzzy DEA model are fuzzy sets, 0yuT is approximately equal to 

one which indicates that 00 / xvyu TT  is less than or equal to one. However, 

such models are called unsymmetrical, because there is not “symmetry” 
between the constraints and the objective function in (2). These models can be 
solved if the crisp objective function can be represented as a maximizing set 
(Kabnurkar, 2001). Therefore, to solve Eq. (2), it is needed to determine the 
most desirable value, the least desirable values and the form of membership 
functions of the fuzzy weight bounds. The most desirable bound values get a 
membership grade of 1 specified by decision maker.  Also, to determine the 
least desirable bounds two methods are proposed. There are many techniques or 
different approaches can be taken to set the least desirable bounds of this model.  
In this study, setting the bounds is of four steps: (1) compiling a weights matrix 
by running the unbounded DEA model (2) eliminating the topmost and 
bottommost extreme values from all columns, (3) taking the average of the 
remaining values as average after truncation, and (4) choosing the desirable 
ratio between the largest and smallest weight values as proposed by Roll and 
Golany (1993).  Determining the values of the upper and lower bounds by using 

a value of d=2 and the formulas )1/(2 duLB r +=  and )1/(2 dudUB r += , 

most desirable bounds can be calculated. Also, for determining the least 
desirable bounds required by the fuzzy model, a value of d=3 are chosen instead 
of 2 (Roll and Golany, 1993). However, as the second method, the highest and 
lowest values of optimal multipliers obtained for efficient DMUs in the 
unbounded weight matrix, are used as the least desirable bounds. 

 
The half of linear triangular membership function for the fuzzy bounds 

can be graphically depicted as follows: 
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As shown in figure 1 and 2, UBr+pr or UBi+pi and LBr-pr or LBi-pi has the 

effect of relaxing the weight restriction constraints. The value of the objective 
function of a linear programming model is optimized when the constraints are 
most relaxed. As seen figure 1 and 2, neither of bounds values is tightening the 
constraints. Therefore, the membership function of objective function will favor 
the bounds values which relax the constraints. On the other hand, the 
membership function of the fuzzy constraints will favor the bounds specified by 
the decision-maker. Thus, the maximizing solution of objective function of 
fuzzy DEA model will be a compromising solution between the relaxed and 
specified (most desirable) bounds (Kabnurkar, 2001: 94). 
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By the membership function of the bound of f
rUB , the degree of 

satisfaction of f
rUBx ≤ can be obtained as: 

                      1                      if rUBx ≤  

  =)(xUB f
r     

r

rr
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The satisfaction degrees of other fuzzy constraints such as f
iUB , f

rLB and 
f
iLB can be formulated with small changes as in Eq. (3) (Werners, 1987). 

 
Equating the denominator of the objective function to 1, adding as a 

constraint and multiplying the objective function and all the constraints by the 

transformation factor 1
00 )( −= xvT T , fractional programming model in (2) can 

be converted a linear programming model (Werners, 1987): 
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To solve Eq. (4), crisp objective function should be represented as a 
maximizing set. The maximizing set is formed by determining the upper and 
lower bounds of the crisp function over the fuzzy domain. To determine the 
maximizing set for the objective function, the two values of the objective 
function ( fo and f1 ) should be specified by solving two linear programming 
problems . fo is the value of the objective function when the weight bound 
constraints are most relaxed. To determine f0, left –hand and right-hand sides of 
constraints of rµ  and iη  in (4) can be rearranged in the form of LBr-pr, LBi-pi, 

UBr+pr,and UBi+pi respectively. Contrast to f0, f1 is the value of the objective 
function when the weight bound constraints are tightest. In other words, to 
determine f1 specified bounds on constraints of rµ  and iη  in (4) are arranged in 

the form of UBr, LBr, UBi and LBi respectively.  
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The fuzzy set of optimal values or the membership function of the objective 
function can be presented as follows (Werners, 1987): 
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where w  defines the set of all factor weights (µ ,η ).  

 
Objective function is of maximization type, f0 will be its upper bound 

(most desirable) and f1 will be its lower bound (least desirable).  
 

Figure 3: Membership function of the goal 
 

  
 

 
Figure 3 graphically shows the variation of the membership degree of the 

objective function between 0 and 1 as the objective function varies between f0 
and f1.   

 
As seen in figure 3, there is a problem of finding a point which satisfies 

the constraints and goal with the maximum degree. Mathematically, this 
problem can be explained to find a set of weights by introducing an additional 
variableλ . Crisp variableλ  which represents intersection between constraints 
and objectives of the crisp model and called as satisfaction degree must be 
maximized subject to as follows:  

1 

0 
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In other words, the following crisp model must be solved by rearranging 
the Eq.(6): 

λmax  

1010 )( fYff T −≤−− µλ  

10 =XTη  

0≤+− YX TT µη         

)(00 rrrr pUBTpT +≤+ µλ  
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To solve Eq. (7), parametric algorithm can be used to reach the maximum 

feasible value in determining the different values of λ.  
 
The solution of the parametric algorithm provides simultaneously both λ 

values and optimal efficiency scores of each DMUs. 
 
 

2. THE SAMPLE AND RESULTS 
 

Turkish industrial firms listed in the yearbook of Istanbul Chamber of 
Industry (ISO 500), a sample of 37 private sector companies, were used for our 
study. The input and output data for the year 2003 were obtained from the ISO 
500 (2003) guide. The population size was 43 firms. However, due to 
unavailability of data on some input and output measures six companies were 
eliminated from the study. The final sample size was reduced to 37 firms.  

 

Data on input and output measures for the year 2003 were obtained from 
the financial statements of companies as given in the ISO 500’s guide and listed 
in Table-1. As seen Table 1, a set of 37 DMUs with the numerical values of two 
outputs and three inputs are documented.  
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Table 1: Input-Output Data for Automotive Firms*  
 

  Net Profit Net Employee Equity 
  Sales After taxes Assets Number  
No. DMU (1,000 $) (1,000 $) (1,000 $)  (1,000 $)  
1 Aka 48.529  2.84 24.85 415 7.144 
2 Anadolu Isuzu 128.566 17.25 94.39 495 55.227 
3 Autolive 114.585 12.79 39.42 467 21.343 
4 Bmc 316.721 73.82 990.31 2.354 256.874 
5 Bosch 37.382 399 21.33 184 12.992 
6 Cms 94.880 6.64 57.02 757 21.190 
7 Coskunoz 54.979 2.19 40.90 803 17.582 
8 Delphi 114.862 1.48 41.90 1.514 19.366 
9 Federal Mogul 120.056 9.07 79.48 1.000 62.894 
10 Fiat 69.196 9.23 126.21 379 117.004 
11 Fnss 288.728 89.71 180.57 395 69.554 
12 Ford 2.073,893 175.72 1.74,719 5.153 346.108 
13 Hayes 48.782 5.29 48.45 536 22.213 
14 Hema 103.220 15.92 130.81 1.250 67.987 
15 Honda 268.627 27.34 73.17 444 53.936 
16 Kale 55.588 2.91 36.80 612 11.523 
17 Karsan 118.64 486 86.45 835 46.486 
18 Mako 93.30 7.62 46.74 946 19.829 
19 Man 364.28 16.84 203.32 2.497 71.225 
20 Matay 60.62 7.95 18.86 237 10.205 
21 Mercedes 949.98 51.83 390.27 3.645 155.656 
22 Nursan 52.48 3.34 29.26 602 9.535 
23 Otokar 140.28 16.20 109.62 707 41.231 
24 Oyak 1.81,312 127.27 519.79 3.810 326.361 
25 Stprofil 79.80 3.89 112.50 1.357 41.439 
26 Sywiring 39.08 5.70 21.31 235 10.359 
27 Temsa 205.63 17.23 102.22 718 8.333 
28 Termo 55.06 7.35 37.52 300 2.084 
29 Tirsan 89.19 6.10 105.99 257 43.137 
30 Teknik Malz. 133.23 9.98 56.92 535 16.783 
31 Tofas 1.60,844 28.65 1.54,418 4.138 410.223 
32 Turk Traktor 277.04 62.14 200.81 804 93.913 
33 Tusas Hava 70.44 6.14 255.03 1.717 148.096 
34 Tusas Motor 67.10 4.56 103.654 630 71.591 
35 Tudemsas 37.69 4.94 27.532 1.861 8.063 
36 Uzel 192.41 14.87 111.506 1.187 22.451 
37 Yazaki 90.95 6.47 57.837 1.300 36.891 

 

*Indicative exchange rates on banknotes announced on 12/31/2003 by the Central Bank of Turkey 
were used in this study. 
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The outputs, namely, net sales, profit after taxes, while inputs; net assets, 
employee number and equity were chosen based on literature (Al-Shammari, 
1999; Yeh, 1996; Zhu, 2000). 

 
The efficiency score is a numerical value that describes a system’s 

efficiency in terms of inputs and outputs. The optimal input/output weights and 
efficiency scores for all DMUs calculated by the CCR model are presented in 
Table 2.  

 
According to the standard DEA analysis results, out of the sample of 37 

companies, 5 (13.52%) were found to be relatively efficient (h0=1), and 32 
(86.48%) were found to be relatively inefficient (h0<1). The interpretation for 
the inefficiency in some units is that some inputs are not fully utilized. In 
contrast, efficient units are getting more output per unit of input for these 
resources (Al-Shammari, 1999). The DEA relative efficiency score of the 32 
inefficient DMUs ranged from 0.084 to 0.931. The mean efficiency score was 
0.6216 with a standard deviation of 0.2636. The majority of the relatively 
inefficient DMUs (64.86%) fall within the 0.084-0.69 band. The same also 
applies to the DMUs with scores of 0.74-0.93 (21.62%). It is interesting to note 
that eight companies within this band may be more efficient than other 
companies as using a given level of inputs to produce more outputs or 
producing the same amount of outputs with less input.  

 
In Table-2, UB and LB are the most desirable bounds computed with d= 

2. The least desirable bounds, 1UB+p and 1LB-p are computed with d=3 
whereas 2UB+p and 2LB-p are the highest and the lowest weight values 
respectively. As seen Table 2, weights of some inputs and outputs are assigned 
zero as well as the weights of some others are assigned high values. By 
assigning zero weights to some of the inputs and outputs means that these 
factors are ignored when solving standard DEA model. To eliminate the 
extreme weight values and to minimize variation between the weights assigned 
to different inputs and outputs, the decision maker sets bounds on the weight 
values (Kabnurkar, 2001: 112).  
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Table 2: Bound Values and Standard DEA Model Results  
DMU U1 U2 V1 V2 V3 Efficiency 
1 1.14E-04* 0* 2.99E-04 2.07E-04 0* 0.7790266 
2 1.7E-05 6.8E-05 6.3E-05 3.4E-05 1.23E-04 0.4644968 
3 0* 0 0* 0* 0 0.9318318 
4 5E-06 1E-06 1.5E-05 0 1.88E-04 0.242919 
5 1E-04 0 2.53E-04 1.77E-04 1E-04 0.5253701 
6 4.5E-05 0 1.17E-04 8.1E-05 0 0.5977605 
7 6E-05 0 1.56E-04 1.08E-04 0 0.4607394 
8 5.7E-05 0 1.49E-04 1.03E-04 0 0.9210506 
9 2.4E-05 0 0 8.9E-05 0 0.411442 
10 2.8E-05 0 0 1.2E-05 2.08E-03 0.2695988 
11 0 7.9E-05 0 3.9E-05 0 1 
12 3E-06 0 9E-06 0 1.1E-04 0.8990018 
13 4.9E-05 0 1.23E-04 8.6E-05 4.9E-05 0.3338927 
14 7E-06 8.6E-05 9E-06 5E-05 0 0.2901954 
15 1E-05 1.63E-04 0 9.7E-05 0 1 
16 7.4E-05 0 1.94E-04 1.34E-04 0 0.5795723 
17 2.6E-05 0 6.5E-05 4.6E-05 2.6E-05 0.4305343 
18 5.3E-05 0 1.37E-04 9.5E-05 0 0.691626 
19 1.3E-05 0 3.4E-05 2.3E-05 0 0.6603497 
20 4.7E-05 5.95E-04 6.3E-05 3.47E-04* 0 1 
21 6E-06 0 1.6E-05 1.1E-05 6E-06 0.8575824 
22 9.1E-05 0 2.37E-04 1.64E-04 0 0.6678254 
23 1.7E-05 7E-05 6.5E-05 3.5E-05 1.26E-04 0.49797 
24 4E-06 0 1E-05 7E-06 4E-06 0.8388885 
25 2.3E-05 0 6E-05 4.1E-05 0 0.2559487 
26 6.2E-05 4.05E-04 3.45E-04 1.68E-04 0 0.6576718 
27 3.5E-05 0 8.7E-05 6.1E-05 3.5E-05 1 
28 4.7E-05 6.29E-04* 6.06E-04* 1.55E-04 0 1 
29 3.9E-05 0 0 1.7E-05 2.923E-03 0.4902082 
30 4.9E-05 0 1.24E-04 8.6E-05 4.9E-05* 0.9155787 
31 3E-06 0 9E-06 0 1.13E-04 0.6534063 
32 4E-06 6E-05 0 3.6E-05 0 0.6642991 
33 9E-06 0 2.2E-05 1.5E-05 9E-06 0.08403032 
34 1.9E-05 0 5.6E-05 0 6.9E-04 0.1837541 
35 6E-05 3.9E-04 3.33E-04 1.62E-04 0 0.5456448 
36 2.7E-05 0 7.2E-05 5E-05 0 0.7421695 
37 3.6E-05 0 8.2E-05 7.1E-05 0 0.4555013 

Aver. 3.41351E-
05 

6.881E-05 1.02973E-
04 

7.5865E-05 1.79216E-04 0.62161857 
 Av.tr. 3.28286E-

05 
5.477E-05 9.15429E-

05 
7.0286E-05 1.05943E-04 0.64313367 

 UB 4.37714E-
05 

7.303E-05 1.22057E-
04 

9.3714E-05 1.41257E-04 1.33*Avg 
LB 2.18857E-

05 
3.651E-05 6.10286E-

05 
4.6857E-05 7.06286E-05 0.67*Avg 

1UB+p 4.92429E-
05 

8.216E-05 1.37314E-
04 

1.0543E-04 1.58914E-04 1.5*Avg 
1LB-p 1.64143E-

05 
2.739E-05 4.57714E-

05 
3.5143E-05 5.29714E-05 0.5*Avg 

2UB+p 1.14E-04 0.000629 6.06E-04 3.47E-04 2.923E-03  
2LB-p 0 0 0 0 0  
*Eliminated values from the analysis. 
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It signifies the degree to which the decision makers consider as 
acceptable differences in the impact of the various factors when assessing 
performance of different DMUs (Roll et al., 1991:6).  

 
The efficiency scores obtained using the crisp model and fuzzy DEA 

models and λ values that represent the degree to which the bounds specified by 
the decision maker were satisfied in the final solution is shown in Table-3. 

 
In Table-3, results from bounded (crisp) and fuzzy models are compared. 

In the second column, using values of UB and LB from Table-2, the efficiency 
results of bounded DEA (crisp) model are shown. In Table-3, two different sets 
of f0 values are used with f1 values to determine different values of least 
desirable bounds with respect to proposed methods on fuzzy constraints. 

 
For this purpose, to obtain  f1 values with using values of UB and LB, and 

to obtain one set of f0 with using 
1UB+p and 1LB-p, they are solved by Eq. (3). 

Founded results were inserted to the Eq. (7) with using the parametric algorithm 
to obtain λ values and efficiency scores of each DMUs. Similarly, the other set 
of f0 values with using 

2UB+p and 2LB-p and f1 values from the Table-2, are 
solved twice by Eq. (3). Founded results were plugged into the Eq. (7), which is 
solved using the parametric algorithm. Fifth and sixth columns of Table 3 as 
well as third and fourth columns, shows the efficiency scores and λ values of 
fuzzy models.  

 
To determine the difference between the scores obtained by using the 

crisp model and the fuzzy models, two-tail t test was performed. For the 
columns 2 and 3 of Table-2, a p- value of 0.001 while a p-value 0.000 for the 
columns 2 and 5 were found which mean that the null hypotheses that there is 
not a significant difference in the average efficiency calculated by the two 
models can be rejected. This means that there is a significant difference between 
the efficiency scores calculated by crisp and fuzzy DEA models. 

 
Considered closely to the efficiency scores of Table-3, it is noticed that 

there is a significant difference between the crisp and fuzzy scores of one of the 
DMUs (DMU20).   
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Table 3: Comparison of Results of Crisp and Fuzzy DEA models 
 

 Efficiency 
 Crisp bounds 

 
(UB, LB) & 

 
 (UB, LB) & 

 
 

No. (UB, LB) (1UB+p, 1LB-p) λλλλ (2UB+p, 2LB-p) λλλλ 
1 0.3212192 0.7307448 0.5 0.7503836 0.7 
2 0.4644968 0.4644968 0.5 0.4644968 0.7 
3 0.8933367 0.89359 0.5 0.8959661 0.7 
4 0.234268 0.238284 0.5 0.2447004 0.7 
5 0.2335077 0.4945752 0.5 0.5061183 0.7 
6 0.5688285 0.5750709 0.5 0.5843771 0.7 
7 0.3642388 0.4302752 0.5 0.4426312 0.7 
8 0.724878 0.8097222 0.5 0.8502344 0.7 
9 0.3807087 0.411442 0.5 0.4476158 0.7 
10 0.1846664 0.1847309 0.5 0.1856405 0.7 
11 1 1 1 1 1 
12 0.8990018 0.9044405 0.5 0.9117981 0.7 
13 0.3330266 0.3331667 0.5 0.3334557 0.7 
14 0.2753012 0.2891293 0.5 0.2901954 0.7 
15 1 1 1 1 1 
16 0.3625636 0.5411434 0.5 0.5567905 0.7 
17 0.3665392 0.4020882 0.5 0.4293054 0.7 
18 0.6520246 0.6607191 0.5 0.6732408 0.7 
19 0.6125587 0.6549283 0.5 0.6587164 0.7 
20 0.4441214 0.9893346 0.7 1 0.9 
21 0.8575824 0.8585613 0.5 0.865972 0.7 
22 0.3539693 0.6257685 0.5 0.6427786 0.7 
23 0.49797 0.49797 0.5 0.49797 0.7 
24 0.8388885 0.8391605 0.4 0.8398885 0.7 
25 0.2162036 0.2444529 0.5 0.2554636 0.7 
26 0.2982774 0.6556051 0.5 0.6566083 0.7 
27 1 1 1 1 1 
28 0.4116658 0.9092576 0.5 0.9543204 0.7 
29 0.3078403 0.4895507 0.4 0.578267 0.7 
30 0.8823206 0.898387 0.5 0.9052491 0.7 
31 0.6534063 0.6835069 0.6 0.6967553 0.7 
32 0.6642991 0.6642991 0.5 0.6658247 0.7 
33 0.08403032 0.08583803 0.5 0.08744721 0.7 
34 0.172932 0.1833745 0.5 0.1840102 0.7 
35 0.2714745 0.4394442 0.5 0.4944271 0.7 
36 0.6853849 0.7421695 0.5 0.7698522 0.7 
37 0.4142932 0.432593 0.5 0.451984 0.7 
Aver. 0.51150876 0.601591541  0.61667833  
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This implies that DMU20 move from the inefficient set to the efficient set 
when the bounds are changed from crisp to fuzzy (Kabnurkar, 2001). Since 
DMU20 satisfied the bounds to a degree as high as 90%, 10% relaxation of the 
bounds could change efficient DMU set. 

 
The relaxation is acceptable because the bounds were already specified 

subjectively by decision maker. In Table 4, the new bounds set which were 
computed by using the 90% satisfaction level of the original bounds are 
presented.  

 
Table 4: Modified Set of Bounds  

(90% Satisfaction Level of Original Bounds) 
 

Factor Upper bound Lower bound 
U1 5.07943E-05 1.96971E-05 
U2 1.286E-04 3.286E-05 
V1 1.70451E-04 5.49257E-05 
V2 1.1904E-04 4.2171E-05 
V3 4.19431E-04 6.35657E-05 
 
 
Visually comparing the results in the Table-5, it is also seen that DMU20 

entered the efficient set, when the bounds were re-adjusted. For this reason, 
DMU 20 is referred to as borderline. In Table-5, comparison of efficiency 
scores obtained by using original and modified sets of bounds is shown.   

 
In table 5, efficiency score of DMU20 was found to be 1. In this case, the 

decision maker obtained a new chance to modify the original set of bounds, and 
to make the bounds favorable to the borderline DMUs. 
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Table 5: Comparison of Efficiency Scores Obtained Using Original and 
Modified Sets of Bounds 

 
Efficiency Scores 

No. With Original  set of bounds With Modified set of bounds 
1 0.3212192 0.7412798 
2 0.4644968 0.4644968 
3 0.8933367 0.8952061 
4 0.234268 0.242919 
5 0.2335077 0.4953264 
6 0.5688285 0.5775081 
7 0.3642388 0.4399073 
8 0.724878 0.8334948 
9 0.3807087 0.4299287 
10 0.1846664 0.1850441 
11 1 1 
12 0.8990018 0.9117981 
13 0.3330266 0.3332864 
14 0.2753012 0.2891293 
15 1 1 
16 0.3625636 0.5555881 
17 0.3665392 0.4278737 
18 0.6520246 0.667527 
19 0.6125587 0.6558819 
20 0.4441214 1 
21 0.8575824 0.8615824 
22 0.3539693 0.6372841 
23 0.49797 0.49797 
24 0.8388885 0.8398885 
25 0.2162036 0.2506915 
26 0.2982774 0.6566083 
27 1 1 
28 0.4116658 0.9543204  
29 0.3078403 0.5487935 
30 0.8823206 0.9013495 
31 0.6534063 0.6867553 
32 0.6642991 0.6642991 
33 0.08403032 0.08603032 
34 0.172932 0.1839875 
35 0.2714745 0.4917342 
36 0.6853849 0.7503122 
37 0.4142932 0.4466556 
Aver 0.51150876 0.610931298 
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CONCLUSION  
 
The study has indicated how to compare the efficiency of automotive 

firms in the context of standard DEA, bounded (crisp) DEA, and fuzzy DEA 
approaches by imposing bounds on input and output factors. For this reason 
firstly, the paper proposes general guidelines for setting bounds on factor 
weights. Then, it presents bounded (crisp) and fuzzy DEA approaches to the 
same data set to make a reasonable efficiency comparison of DMUs. Finally, 
the implication of these approaches is discussed. The results can be interpreted 
in the following way: 

 
DEA approaches were formulated in terms of output factors representing, 

net sales, and profit after taxes relative to input factors representing the net 
assets, employee number and equity. According to the standard DEA results, a 
sample of 37 companies which its 5 (13.514%) were found to be relatively 
efficient. However, when the analysis is performed by fuzzy DEA approach, the 
efficient firms become 4 (10.81%) and they form the reference set for the 
inefficient firms.   

 
Evaluating the performance of many activities by a traditional DEA 

approach requires precise input and output data. In order to make a reasonable 
efficiency comparison of DMUs, inputs and outputs should be linguistic or 
qualitative data characterized by fuzzy numbers. In implementing fuzzy DEA 
approach and determining fuzzy coefficients, standard DEA model should be 
transformed into the bounded (crisp) DEA approach. To determine upper and 
lower bounds on factor weights of bounded (crisp) DEA approach, an 
unbounded DEA model is run and a weights matrix is compiled eliminating 
extremely high weights. In this study, for example, the average weight, for each 
factor is calculated and a certain amount of allowable variation about each mean 
is decided upon subjectively, giving an upper and lower bound for each factor 
weight (Allen et al., 1997). Then, to model the uncertainty in a bounded (crisp) 
DEA approach, a fuzzy mathematical programming approaches proposed by 
Sengupta (1992) and Werners (1987) was preferred. For this purpose, the 
determined crisp weight bounds were replaced by fuzzy numbers. When fuzzy 
numbers were used instead of crisp numbers, the decision maker can specify a 
range of values instead of one value. This means that setting the flexibility into 
the fuzzy DEA approach to determine upper and lower bounds of fuzzy 
numerical values. 

 
Application part of this study aims at comparing various approaches 

presented throughout the paper. This comparing with t- test for means displayed 
that the efficiency scores calculated by the fuzzy model are significantly 
different from those by standard DEA and crisp model. The efficiency scores 
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calculated by the fuzzy model represent a compromise between maximization of 
the efficiency scores and satisfaction of the decision maker with the bounds. In 
other words, the fuzzy approach produces maximum possible efficiency value at 
which the satisfaction of the decision maker with the bounds is maximized. For 
example, some DMUs can move from the inefficient set to efficient set, when 
the bounds are changed from crisp to fuzzy by just 10% relaxation of bounds. 
Thus, these DMUs can be referred to as ‘borderline’. If DEA analysis is 
perform to make important decisions, borderline DMUs become important. In 
such cases, fuzzy model gives the decision maker an opportunity to revise the 
bounds and reassessment the DMUs on the borderline. Besides, fuzzy-DEA 
model results have outlined that real evaluation of one problem in the context of 
DEA is generally applicable, and in many situations is likely to result in more 
realistic estimates of efficiency than standard DEA and bounded (crisp) 
approaches.  

 
In this study, the linear membership function which can affect efficiency 

results was used. But linear membership function may not be suitable in every 
case. For this reason, other form of membership functions like hyperbolic, 
logistic, s-shaped, etc. should be considered. Also, apart from the fuzzy CCR 
approach, other approaches could be applied to the DEA models. 
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