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1. Intrоduсtiоn 

Near-Infrared Spectroscopy (NIRS) has become a 

popular method in recent years as it allows non-destruc-

tive and fast analysis. NIRS, which is based on measur-

ing vibrational frequencies in the near-infrared (NIR) re-

gion (780-2500 nm) in the electromagnetic spectrum 

and is characterized by combination vibrations with mo-

lecular overtones, stands out as an advantageous 

method. Chemical bonds with high vibrational frequen-

cies, such as C-H, O-H, and N-H form overtone and 

combination bands in the NIR region and their intensity 

can be measured in this region (Ciurczak et al. 2021). 

Thus, it can be easily used in qualitative and quantitative 

analysis in many areas, such as agriculture, food, and 

pharmacy. Although it has been used in many different 

areas, the most intensive studies have been carried out 

in the food sector. Several studies have been conducted 

to determine food quality (Mohamed et al. 2021; Teye 

et al. 2020; Yang et al. 2022), detect food adulteration 

(De Girolamo et al. 2020; Genis et al. 2021; Laborde et 

al. 2021), and classify food types (Fu et al. 2022). 

Sugarcane is one of the primary materials for sugar 

production. Its production is demanding as it requires 

special growing conditions (Guo et al. 2014). For this 

reason, it is important to determine the quality of the 
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products and to apply the necessary fertilization or in-

secticide spraying. For this purpose, several studies have 

been carried out to determine the mineral content 

(Steidle Neto et al. 2017), to predict the crude protein 

and sugar content (Ryckewaert et al. 2022), to determine 

the lignin content of sugarcane (Assis et al. 2017), to 

screen sugarcane breeding (Guo et al. 2014), and to de-

termine soil organic carbon in sugarcane fields (Zhao et 

al. 2022). Although sugarcane is considered inferior as 

an animal feed, its high dry matter and organic matter 

digestibility means it can be a good feed, particularly for 

ruminants (So et al. 2020). 

Spectra acquisition in NIRS has traditionally been 

performed with expensive laboratory-type instruments 

(Schuler et al. 2009). In recent years, however, mini/mi-

cro spectrometers have continued to be developed that 

work in a narrow spectrum or with low spectral resolu-

tion. The increase in the variety of these spectrometers, 

their widespread use, and the increase in resolution will 

facilitate more comprehensive studies in the NIRS. 

The spectra obtained from spectrometers cannot be 

used directly as they may contain several distortions. 

Although various preprocessing methods have been de-

veloped to suppress these distortions, there is no global 

method. On the other hand, various methods are being 

developed to extract meaningful data from the 
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 Sugarcane is a plant whose quality parameters are required to be determined both 

for being one of the substances used in sugar production and for being used as 

animal feed. Near-infrared spectroscopy is a technique that has already been 

used for predicting the parameters of various plants and has gained popularity in 

recent years. This study proposes a near-infrared spectroscopy-based model for 

the rapid and effortless analysis of acid detergent fiber fraction and vitro organic 

matter digestibility parameters of the sugarcane plant. Partial least squares re-

gression was combined with common preprocessing methods for modeling. This 

model yielded an R2
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fraction and vitro organic matter digestibility parameters, respectively. Then, the 

spectra from three handheld spectrometers were combined using a proposed 

combination method to generate new spectra with higher spectral resolution. 

New models were built using these generated spectra and compared to the pre-

vious result. Obtained results showed that combining spectra from different 

spectrometers can improve model performance. 
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preprocessed spectrum. Application examples of artifi-

cial neural networks (Pérez-Marín et al. 2007), deep 

learning (Cui & Fearn 2018), or ensemble methods (Kim 

et al. 2023; Mishra et al. 2020) have been encountered 

frequently in recent years. However, partial least square 

regression (PLSR), a cult method for qualitative analy-

sis, is still the most popular method. 

The objective of our work is twofold: to develop a 

model for the prediction of acid detergent fiber fraction 

(ADF) and in vitro organic matter digestibility 

(IVOMD) content of sugarcane samples using the spec-

tra of different handheld spectrometers and to investi-

gate whether combining the spectra of different devices 

would be beneficial. 

The paper is organized as follows: Section two pro-

vides brief information on preprocessing techniques and 

partial least squares regression. The properties of the 

used dataset and spectra combining procedure are also 

given in section two. Performance metrics and results 

are presented in section three. Section four contains the 

main conclusion of our study. 

2. Materials and Methods 

2.1. Dataset description 

This study used the sugarcane dataset to build and 

evaluate a reliable model. This dataset contains spectra 

of 60 sugarcane samples which measured different re-

gions of sugarcane. These spectra were obtained from 

eight different spectroscopy instruments; each has 

different ranges and resolutions. Of these, NIRScan 

Nano (Texas Instrument), MicroNIR1700 (Viavi), and 

TellSpec were included in this study. The main reason 

for our choice is that all three devices operate in a spec-

tral range close to each other. Detailed information 

about the chosen instruments is shown in Table 1. The 

dataset also included four reference values: Total sugar 

content (TS), crude protein (CP), ADF, and IVOMD. 

Because (Ryckewaert et al. 2022) used TS and CP in 

their study, only ADF and IVOMD parameters were in-

cluded. Statistical information of these parameters is 

given in Table 2. Absorbance spectra and their relation 

to the ADF and IVOMD parameters are shown in Fig-

ures 1 and 2. The dataset is available at (Zgouz et al. 

2020).  

Table 1 

Spectral range and resolution of the instruments used in 

the study 

Instrument 

Spectral 

Range 

(nm) 

Resolution 

(nm) 

Number of 

Features 

NIRScan Nano 901-1701 3.9 228 

MicroNIR1700 908-1676 6.1 125 

TellSpec 900-1700 3.8 256 

Table 2 

Statistical information on ADF and IVOMD parameters 

Parameter Min Max Mean Std 

ADF (% DM) 25.99 59.30 39.17 8.61 

IVOMD (% DM) 13.03 66.59 41.03 14.97 

DM: Dry Matter

 
a) b) c) 

Figure 1 

The relation of used spectra and ADF content. These spectra belong to a) NIRScan Nano, b) MicroNIR1700, c) TellSpec 

 
a) b) c) 

Figure 2 

The relation of used spectra and IVOMD content. These spectra belong to a) NIRScan Nano, b) MicroNIR1700, c) Tell-

Spec 
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2.2. Preprocessing the spectra 

Preprocessing the spectra is one of the crucial steps 

in NIRS that directly affects the performance of models. 

The sugarcane spectra were preprocessed before apply-

ing regression analysis using a combination of common 

preprocessing methods. Standard Normal Variate 

(SNV) (Barnes et al. 1989), Multiplicative Scatter Cor-

rection (MSC) (Geladi et al. 1985), Savitzky-Golay 

(SG) (Savitzky & Golay 1964), and a combination of 

these methods were used as preprocessing method.  

2.3. Partial least squares regression 

The main goal of a regression model is to find a re-

lationship between independent variables and dependent 

variable(s). However, in some cases, as in spectroscopy 

data, many independent variables correlate with others. 

This situation is named as multicollinearity problem 

(Frank & Friedman 1993). To deal with this problem, 

(Wold et al. 1983) proposed partial least squares regres-

sion. PLSR proposes a solution by reducing the dimen-

sionality of correlated variables. 

2.4. Spectra combination procedure 

In this study, a spectrum combining technique was 

proposed that combines spectra from three instruments. 

Since the spectra of different instruments contain base-

line differences, each spectrum in the dataset was first 

normalized to a range between 0 and 1. After, these 

spectra were combined column by column and sorted by 

wavelength number. In this new spectrum, peaks were 

seen across the spectrum. A five-point moving average 

filter was used to eliminate these peaks. The combined 

dataset contains 609 features. The combination proce-

dure is illustrated in Figure 3. 

3. Results and Discussion 

In this paper, preprocessing methods and regression 

models were implemented in Python (version 3.7.13) us-

ing scikit-learn library (version 1.0.2) (Lemaitre 2021). 

Two popular metrics were chosen to evaluate model per-

formance. One of them, the coefficient of determination 

(R2), is a measure that corresponds to the proportion of 

variation for a dependent variable that is explained by 

the independent variables. R2 values close to 1 are 

preferable. The second metric, root mean squared error 

(RMSE), represents the square root of the average 

squared difference between the target value and the pre-

dicted value. Since RMSE is based on error, values 

closer to 0 indicate that the model performs better. The 

formulas of R2 and RMSE are given in Equations 1 and 

2. 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖−�̅�𝑖)
2𝑁

𝑖=1

             (1) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2
𝑁
𝑖=1            (2) 

In Equations 1 and 2, N is the number of samples, 

𝑦𝑖, �̂�𝑖, and �̅�𝑖 are real, predicted, and mean values of 

the target, respectively. 

This study proposes a chemometrics-based method 

for determining ADF and IVOMD parameters of sugar-

cane. The first experiment was carried out using classi-

cal PLSR. Different preprocessing methods were ap-

plied to the spectra taken from NIRScan, Mi-

croNIR1700, and TellSpec instruments. At this point, 

popular preprocessing methods such as SNV, MSC, SG, 

and their binary combinations were preferred. In addi-

tion, a search space was created to determine the optimal 

values of window length, the order of the polynomial, 

and the order of derivative for SG. This search space was 

5-29 for window length and 0-2 for the order of polyno-

mial and derivative. Models were built to determine 

ADF and IVOMD parameters with preprocessed spectra 

and PLSR. At this stage, the dataset was randomly di-

vided for calibration and testing at a rate of 66% to 33%. 

That is, 40 samples are used for the calibration of the 

model and 20 samples are reserved for the testing. Then, 

the optimal latent variables (LV) value for PLSR was 

determined using 5-fold cross-validation (CV) with the 

calibration set. In determining the LV, 1-15 values were 

selected as the search space. Table 3 and Table 4 show 

the performance results of the created CV model for the 

most appropriate LV value. Then, a new model was cre-

ated using the calibration data set for the most appropri-

ate LV value. The performance of this model was eval-

uated using the test set and is given in Table 3 and Table 

4. 

Table 3 

Obtained results on prediction of the ADF parameter.  

Instrument Preprocessing LV R2
test R2

CV RMSEtest RMSECV 

Combined SG(1,2,9) 7 0.885 0.953 3.281 1.743 

NIRScan Nano SG(1,2,13) + MSC 8 0.823 0.935 4.074 2.044 

NIRScan Nano MSC + SG(0,1,21) 13 0.912 0.899 2.868 2.553 

MicroNIR1700 SG(2,2,5) + SNV 4 0.926 0.849 2.639 3.118 

Combined MSC + SG(2,2,19) 9 0.939 0.797 2.385 3.628 

MicroNIR1700 SG(2,2,9) + SNV 3 0.951 0.797 2.138 3.624 

TellSpec SNV + SG(1,2,19) 5 0.845 0.671 3.813 4.610 

TellSpec SNV + SG(2,2,25) 4 0.945 0.606 2.276 5.047 

The results are sorted based on R2
CV in descending order. LV: Latent variables, SG: Savitzky-Golay (window length, the order of the polynomial, the 

order of the derivative) 
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Figure 3 

Application steps of the proposed spectrum combining algorithm 

In the second experiment, the spectra of three instru-

ments were combined, as explained in section 2.4. After 

the combination, the obtained spectra had a mean reso-

lution value of 1.318 ± 0.899 nm. Similar preprocessing 

and regression process was done for the new spectra. 

Obtained results are shown in Table 3 and Table 4. 

When we examine Table 3, the best performance ac-

cording to R2
CV and RMSECV metrics belongs to the 

combined spectra. The higher R2
test value was obtained 

with MicroNIR1700 spectra. For predicting the IVOMD 

parameter, the spectra of NIRScan Nano showed higher 

R2
CV and lower RMSECV values, while the combined 

spectra showed higher R2
test and lower RMSEtest values. 

  
a) b) 

  
c) d) 

Figure 4 

Predicted vs. Measured ADF values. Best values are given according to R2
CV for instruments; a) Combined, b)NIRScan Nano, 

c) MicroNIR1700, d) TellSpec 
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Table 4 

Obtained results on prediction of the IVOMD parameter.  

Instrument Preprocessing LV R2
test R2

CV RMSEtest RMSECV 

NIRScan Nano SG(1,2,19) + MSC 12 0.746 0.953 8.064 3.128 

Combined SG(1,2,17) 10 0.858 0.945 6.037 3.375 

NIRScan Nano SG(0,0,5) + SNV 13 0.899 0.879 5.089 5.023 

MicroNIR1700 SNV + SG(2,2,5) 4 0.893 0.867 5.228 5.257 

Combined SG(2,2,21) 5 0.930 0.861 4.244 5.373 

MicroNIR1700 SG(2,2,13) 4 0.866 0.778 5.863 6.797 

TellSpec SG(1,2,21) + SNV 4 0.789 0.673 7.363 8.241 

TellSpec SNV + SG(2,2,13) 3 0.909 0.541 4.840 9.770 
The results are sorted based on R2

CV in descending order. LV: Latent variables, SG: Savitzky-Golay (window length, the order of the polynomial, the 

order of the derivative) 

  
a) b) 

  
c) d) 

Figure 5 

Predicted vs. Measured IVOMD values. Best values are given according to R2
CV for instruments; a) Combined, b) 

NIRScan Nano, c) MicroNIR1700, d) TellSpec 

Table 5 

The mean value of obtained results for every prepro-

cessing combination 

Instrument 
ADF IVOMD 

R2
test R2

CV R2
test R2

CV 

Combined 0.876 0.830 0.843 0.849 

NIRScan Nano 0.848 0.869 0.808 0.879 

MicroNIR1700 0.832 0.685 0.819 0.734 

TellSpec 0.817 0.602 0.767 0.598 

Each value in this table was calculated by taking the average of 390 

combinations. 

Figure 4 and Figure 5 show the predicted and meas-

ured output for each spectra. As expected, more success-

ful results were obtained with the spectra from the 

NIRscan Nano, since the NIRscan Nano has a higher 

spectral resolution than the MicroNIR1700 device. On 

the contrary, the worst performance for both parameters 

was obtained with the spectra of TellSpec, although it 

has the highest spectral resolution among the three in-

struments. This may be due to the spectral sensitivity of 

the device. 

One of the conclusions from this study is that the pre-

processing method to be used varies according to the 

spectrum. All of the high-success models were obtained 

with different combinations of preprocessing methods 

or different parameters. This is the weakest point of clas-

sical chemometrics. Another conclusion is that combin-

ing the spectra of different instruments can yield better 

results. Table 5 shows the mean values of obtained 

results. It is essential to take the mean of all combina-

tions to eliminate the parameter selection effect of pre-

processing methods. According to Table 5, combined 

spectra give the highest scores according to the R2
test 

metric for both targets and the second highest scores ac-

cording to the R2
CV metric. 

4. Conclusion 

In this study, the ADF and IVOMD parameters of 

sugarcane were determined noninvasively using near-in-

frared spectroscopy. PLSR, coupled with common pre-

processing methods, was utilized for the building pre-

diction model. The best results were obtained with 

NIRScan Nano according to R2
CV for both parameters 

(0.928 for ADF and 0.947 for IVOMD). The spectra 

from three instruments were combined to increase spec-

tral resolution. New PLSR models were developed using 

these spectra. Obtained results have shown that combin-

ing spectra from different spectrometers helps to im-

prove model performance. Future studies can focus on 

developing machine learning-based spectra combination 

algorithms. 
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