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In this research study, we investigate the impact of multiple exposure of individuals on 

the prevalence of COVID-19 and the efficacy of high-risk immunity measures in 

controlling its transmission dynamics. Through a qualitative analysis of a mathematical 

model, which includes the positivity of solutions, existence and uniqueness of solutions, 

and study of invariant regions, we demonstrate that the model can be utilized to examine 

pandemic outbreaks in a physical system. Our analysis of the basic reproductive ratio 

reveals that the implementation of high-risk immunity can reduce the number of 

secondary infections even in scenarios of multiple exposures. Numerical simulations, 

based on real-life COVID-19 data from the Nigeria center for disease control, were 

conducted using the homotopy perturbation method, yielding results that support the 

outcome of the basic reproductive ratio analysis and providing insight into strategies to 

mitigate the spread of the disease. 

 

1. Introduction 

The SARS-CoV-2 virus, responsible for the COVID-19 pandemic, rapidly spread globally, with initial outbreaks 

in Wuhan, China, in December 2019 [1]. By mid-July 2020, it had infected over 213 countries, resulting in 

millions of confirmed cases and hundreds of thousands of deaths [2]. The World Health Organization (WHO) 

confirmed respiratory droplets as a mode of transmission, leading to further infections [1]. The virus's incubation 

period ranges from 2 to 14 days, with approximately 97.5% of infected individuals exhibiting symptoms 11 days 

post-infection [1]. Del Rio and Malani's paper in 2020 provided new insights into the COVID-19 epidemic [1]. 

Though exact details aren't mentioned, it likely covered aspects like global spread, epidemiology, clinical 

presentation, and healthcare challenges [1]. Another paper discussed challenges posed by the closely related 

SARS-CoV, shedding light on unique COVID-19 characteristics [3]. A research article in 2020 focused on the 

early transmission dynamics of the virus in Wuhan [4]. It likely explored the initial spread and reproductive 

number (R0) [4]. In 2021, a study proposed a fractional order model of COVID-19, considering the effects of 

fear induced by media and social networks on community behavior [5]. This model provides insights into the 

impact of human behavior on virus spread [5]. 

Several studies aimed at mitigating the spread of COVID-19 have been published by distinguished researchers 

and scientists. In particular, the study presented in [6] quantifies the fear impact of media exposure into two 

categories: fear of infection toll and fear of death toll, utilizing a mathematically formulated model. Another 

study [7] evaluated the impact of the convex incidence rate on the transmission dynamics of COVID-19 and 
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found that double exposure of vulnerable individuals could result in elevated rates of infection in the general 

population. A comprehensive assessment of COVID-19 transmission dynamics was conducted in [8], examining 

the effects of the convex incidence rate and proposing various strategies aimed at stabilizing the pace of disease 

reduction. The results showed that the dynamics of the disease are significantly influenced by factors such as 

immigration and population mixing in affected areas, leading to substantial decreases in infection rates. 

High-risk immunity refers to a public health measure aimed at containing the spread of infectious diseases, 

such as COVID-19, by isolating individuals who are at elevated risk of transmitting the disease. This measure is 

usually implemented when an individual has been diagnosed with an infectious disease or has had close contact 

with someone who has been diagnosed. The goal of high-risk immunity is to prevent the infected individual from 

spreading the disease to others, thereby controlling the spread of the outbreak [9]. High-risk immunity is a crucial 

component of public health response strategies, particularly during pandemics, as it helps to reduce the 

transmission of the disease and slow down the spread of the outbreak. However, it can also have significant 

impacts on individuals and society, including loss of income, social isolation, and psychological distress. It is 

important for public health authorities to balance the benefits of high-risk immunity with its potential harms and 

to implement measures to mitigate the negative effects. 

A convex incidence rate of disease occurs when the rate of disease or infection increases at a faster rate than 

it decreases [10]. This means that the rate of infection is increasing as time passes. The incidence rate of a disease 

or infection is the number of new cases per unit of time. Convex incidence rates can be caused by a variety of 

factors, such as the spread of a disease, the emergence of new strains, or a lack of access to treatment [11]. It can 

also be caused by environmental factors such as overcrowding and poor sanitation. Convex incidence rates can 

lead to a rapid increase in the number of cases of a disease or infection. This can have serious implications for 

public health, as more people may become ill, and the healthcare system may not be able to cope with the 

increasing demand. To prevent a convex incidence rate, it is important to identify the risk factors for a particular 

disease or infection and implement strategies to reduce these risk factors. This could include improving access to 

healthcare, providing education on preventive measures, or implementing control measures such as vaccinations. 

The prediction of epidemic spread can be achieved through numerical simulations of epidemic models. To 

forecast the COVID-19 virus's progression, a mathematical model was constructed using real-world data from 

Pakistan, as described in [12]. A stochastic analysis of a COVID-19 model with effects of vaccination and 

different transition rates using real data approach was performed in [13]. The logistic growth model was evaluated 

in [14] as a potential method for determining the extent of the COVID-19 epidemic. In [15], a mathematical 

analysis of a stochastic model for coronavirus transmission, utilizing the Legendre collocation method, was 

performed and validated through simulations. Recent research [16] demonstrated the application of the Laplace-

Adomian decomposition method in simulating fractional-order Caputo's derivative on a COVID-19 disease 

model and a study involving Lyapunov stability and wave analysis of Covid-19 omicron variant using real data 

with fractional operator was studied in [17]. Mathematical models often exhibit nonlinearity, necessitating the 

use of advanced numerical techniques for accurate solutions [18]. The homotopy perturbation method has been 

effectively utilized in various studies to solve complex nonlinear differential equations. For instance, in studies 

related to the EIAV infection epidemic [19] and the impact of disease transmission on the death seizure epidemic 

[20], the homotopy perturbation method provided valuable insights and solutions. Moreover, researchers have 

extended the use of the homotopy perturbation method to develop semi-analytical solutions for nonlinear models 

[17]. This modified approach allows for a more efficient and accurate solution to complex nonlinear problems. 

In addition to the homotopy perturbation method, other numerical techniques have also been employed in 

different modeling areas to solve classical and coupled systems of ordinary differential equations. Olayiwola et 

al. introduced an efficient algorithm for solving nonlinear partial differential equations [21]. Muideen et al. 

proposed an optimized three-step hybrid block method for stiff problems in ordinary differential equations [22]. 

Furthermore, a modified variational iteration method was employed for the solution of a class of differential 

equations [23]. The researchers Olayiwola, Gbolagade, and Akinpelu contributed to the field of mathematical 

physics with their work on approximate analytical methods for the solution of fractional-order integro-differential 

equations [13]. Their studies provide valuable insights into solving fractional-order equations, which have 
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applications in various scientific disciplines. In summary, the literature showcases various numerical methods, 

such as the homotopy perturbation method, variational iteration method, and hybrid block method, to address the 

challenges posed by nonlinear mathematical models. These methods have been instrumental in solving complex 

differential equations, providing researchers with valuable tools for understanding and analyzing real-world 

problems. 

Several researchers, notably [8] and [10], have independently studied the application of convex incidence 

rates and high-risk immunity to the prevalence of COVID-19. As a subject of active research, we shall conduct 

an analysis of the impact of high-risk immunity on a proposed mathematical model that incorporates convex 

incidence rates, accounting for the rate of multiple COVID-19 exposures in the presence of vaccines, treatments, 

and curfews. Since such an analysis would require standard data and information as well as the application of 

advanced mathematical techniques, it is essential to accurately model the dynamic interactions between immunity 

measures, exposure risk, and the spread of the virus. We will conduct theoretical and qualitative analyses to 

establish the study's potential real-life applications and apply numerical simulations using results generated by 

the homotopy perturbation method with standard real-life and literature data through the modification of a 

mathematical model proposed in [24]. 

1.1. Basic Mathematical Model 

   

     

 

 
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dt
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EQI
dt

dQ

IdE
dt
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EISIw
dt
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dt
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







11

11

         (1) 

 

Subject to the following initial conditions  

  00 sS 
, 

  00 eE 
, 
  00 iI 

, 
  00 qQ    00 0  rR

. 

1.2. Description of variables and parameters 

From the model, S (t) represents the population of susceptible individuals, i.e. those who are not infected with 

COVID-19 and can potentially contract the virus. E (t) represents the population of exposed individuals, i.e. those 

who have been infected with COVID-19 but are not yet infectious. I (t) represents population of infected 

individuals, i.e. those who have been infected with COVID-19 and are currently infectious. Q (t) is the population 

of isolated individuals, i.e. those who have been infected with COVID-19 and are currently in quarantine or 

isolation. R (t) stands for the population of recovered individuals, i.e. those who have been infected with COVID-

19 and have recovered from the disease. w represents the high risk quarantine rate, i.e. the proportion of 

susceptible individuals who are quarantined due to their high risk of exposure to COVID-19 as a result of their 

existence in infected zone.  denotes the coefficient of multiple exposure of susceptible individuals to COVID-

19. It is a measure of how likely susceptible individuals are to be exposed to COVID-19, based on factors such 

as their occupation, living conditions, and social interactions.  denotes the recruitment rate of individuals: it is 

the rate at which new individuals enter the susceptible population, e.g., through birth or immigration.  is the 

successful contact rate. It is the rate at which infected individuals come into contact with susceptible individuals 

and transmit the virus.  represents the progression rate from exposed to infectious: it is the rate at which exposed 

individuals become infected and become part of the infected population.   is the progression rate from infected 
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to isolated class. It is the rate at which infected individuals are identified and quarantined.   represents the 

progression rate from exposed to isolated class: it is the rate at which exposed individuals are identified and 

quarantined.   is the recovery rate of isolated individual. It is the rate at which isolated individuals recover from 

COVID-19 and become part of the recovered population. The natural death rate is denoted by . It is the rate at 

which individuals in the population die from causes other than COVID-19. 

Table 1: Description of parameters  

VARIABLES DEFINITION 

)(tS
 

Population of susceptible individuals 

)(tE
 

Population of exposed individuals 

)(tI
 

Population of infected individuals 

)(tQ
 

Population of isolated individuals 

)(tR
 

Population of recovered individuals 

INTRODUCED PARAMETERS DEFINITION 

w  High risk quarantine rate 

  Coefficient of multiple exposure of Susceptible individuals to COVID-19 

Parameters DESCRIPTION 

  Recruitment rate of Individuals 

  Successful contact rate 

  Progression rate from Exposed to Infected 

  Progression rate from Infected to Isolated class 

  Progression rate from Exposed to Isolated class 

  Recovery rate of isolated individual 

  Natural death rate 

 

Table 2: Values of model’s parameter and references 

Parameters VALUE REFERENCES 

  
1750 day

 
[24] 

  
10.0000124 day

 
[24] 

  10.0000124 day
 

[24] 

  1010939586.0 day
 

[24] 

  1-8 x1004.01300000 day
 

[24] 

  10766169.0 day
 

[24] 

  1001466848.0 day
 

[24] 

w  0  
- 

  0  
- 

 

2. Model Analysis 

2.1. Positivity and Boundedness of Solution  

Consider the following classes of the system of equations given by: 
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  5R(t),Q(t), , I(t) , E(t) S(t), . 

The total population at any time t  is given by (1) and the derivatives obtained as; 

 R(t)Q(t) + I(t) + E(t) + S(t)
)(


dt

d

dt

tdN
, 

such that         

dt

dR

dt

dQ

dt

dI

dt

dE

dt

dS

dt

tdN


)(
,   

  dIRQIES
dt

tdN
 

)(
; N

dt

tdN


)(
;  

Such that 

 N
dt

tdN


)(
,           (2) 

Which upon integration yields 

CeetN tt 


 


)( . 

The time dependent number of human population is
tCetN 






)( ,      (3) 

Which is the birth and death ratio of human population. And as time progressively increases indefinitely i.e  

0  tCet 
. Such that




)(tN . 

This shows that it is sufficient to consider the dynamics of the model in 
5  which infers that the model is 

mathematically and epidemiologically well posed. Hence the nonnegative solution set of the model equations 

enters the feasible region, , which is a positively invariant set.  

2.2. Existence and Uniqueness of Solution 

Let: 

    SISIwf   111  

     EISIwf   112         (4) 

 IdEf  3       
             

  EQIf  4   

RQf  5  

Then, 
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     Iw
dS

df
111

,  01

dE

df
,      111 w

dI

df
,  01

dQ

df
,  01

dR

df
  

     Iw
dS

df
112

,    
dE

df 2
,      112 w

dI

df
,  02

dQ

df
, 

 ,02

dR

df
  

 03

dS

df
,  

dE

df3
,    d

dI

df
3

,  03

dQ

df
,  ,03

dR

df
  

                                         

 04

dS

df
,  

dE

df4
,  

dI

df4
,    

dQ

df4
,  04

dR

df
 

 05

dS

df
,  05

dE

df
,  05

dI

df
,  

dQ

df5
,  

dR

df5
 

The solution of the model is bounded, therefore is well-posed in 5  

2.3. Disease Free Equilibrium State  

At disease free equilibrium point, there is no outbreak of disease. Therefore, 0 IE .  Thus equating the left 

hand side of (1) to zero, yields:      

    011  SISIw    

      011  EISIw           (5) 

  0 IdE   
         

             

  0 EQI    

0 RQ   

Such that the disease-free equilibrium  00000 ,,,, RQIES  is given by 






 
0,0,0,


 

2.4. Endemic Equilibrium Point 

At endemic equilibrium, there is a persistence of disease in the system thus, 0 IE . Let 

 

 RQIESEe ,,,   be the endemic equilibrium of (1), and let,  

        jdefwg ,,,1 .  

The endemic equilibrium points are obtained as: 

    




IgI
S

1
, 

  















IgIf

g
E

1
, 

 
efg

efggf
I



 


2
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 


eghefj

eegheghp
Q






222

, 
 



eghefj

eegheghp
R






222

. 

2.5. Basic Reproduction Number  0R  

The model has three disease states, but only one causes new infections. This is represented by the connection 

between the exposed, infected and quarantined compartments in equation (1), which shows the number of 

secondary infections caused by infected individuals in the population. We apply the next generation matrix to 

obtain the basic reproductive ratio. Hence, consider: 

     

 

  .

,

,11

EQI
dt

dQ

IdE
dt

dI

EISIw
dt

dE













        (6)

                                          

We create the following transition matrix  












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
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

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


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x
V

)(
3,2,1i

 . 

which Jacobian yields:

  

 

   
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0110  oSw
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 
  
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













EQI

IdE

E

V







 

Since



0S , therefore
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
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
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




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0
11

0


 w

F ,  

 
 

 











 0

00

dV  

and 

 
 

     
 

        

























1

0
1

00
1

1

dd

d
dd

V .  

The required 0R  is the spectral radius of matrix 0 IG   where
1 VFG .  

Hence, the basic reproductive ratio is: 
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  
  d

w
R








 11
0       (7) 

 

2.5.1. Analysis of the Basic reproductive ratio 0R  

Here, the significant effect of the incorporated parameters is examined on the basic reproductive ratio. We initiate 

the step by evaluating the 0R  using the baseline parameters on Table 2. The proceedings of the evaluation yields 

) +  w)(1- 9(12.204147660 R  

Table 3: Effect of Induced parameters on 0R  

Rate of w  effect on 0R  Rate of   effect on 0R  Combined Rate of 
,w  

Simultaneous 

effect on 0R  

0,0  w  2.204147669 0,0  w  2.204147669 0,0  w  2.204147669 

0,3.0  w  1.542903369 3.0,0  w  2.865391970 3.0,3.0  w  2.005774379 

0,6.0  w  0.8816590677 6.0,0  w  3.526636271 6.0,6.0  w  1.410654509 

0,9.0  w  0.2204147669 9.0,0  w  4.187880571 9.0,9.0  w  0.4187880571 

Table 3 shows the impact of the two factors on 0R  . The initial examination illustrates that elevating the 

degree of High-risk immunity exerts a noteworthy influence on the basic reproductive number 0R . Conversely, 

a rise in the value of the multiple exposure factor results in an elevation of 0R , signifying that without an adequate 

plan in place for individuals who do not follow the curfew regulation, the system may become destabilized as 

every person will eventually be contaminated. The concurrent evaluation of both variables on 0R  reveals that 

even in cases of recurrent COVID-19 exposures, 0R would still decrease with maximum implementation of High-

risk immunity. 

2.6. Local Stability of Disease Free Equilibrium 

The local stability of the disease-free equilibrium suggests that a small number of infected individuals introduced 

into a disease-free population will not cause a major outbreak, and the infection will eventually die out. However, 

this does not ensure long-term absence of the disease, as larger perturbations or parameter changes could still 

lead to an outbreak. For long-term eradication of the disease, global stability is necessary. The Disease-Free 

Equilibrium (DFE) of the proposed Epidemic Model is locally asymptotically stable if 10 R and unstable if  

.10 R  The local stability of the disease-free equilibrium at 






 
 0,0,0,0,),,,,(


RQIES  

The Jacobian matrix of the system (1) is obtained, and the characteristic polynomial obtained using 

0
1

 IJ iE  will be solved to obtain the eigen-values 5,2,1, ii . Hence,  
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 

  

 
  

 
 






























000

00

000

00
11

0

00
11

0

1

d

w

w

J E      (8)

 

and 0
1

 IJ iE   implies
 

  

 
  

 
 

0

000

00

000

00
11

0

00
11

0

5

4

3

2

1






























d

w

w

       

Such that we obtain 

 1 ,

































wdd

dd

d

d














442

222

222
2

2

1

2

222

222

22222222

2

2

 

w

dd

d

d

d
























44

222

222
2

2

1

222

222

22222222

2

3
 

  4 ,  5  

All the obtained eigen values are negative, therefore system (1) is Locally Asymptotically Stable. Therefore the 

disease will eventually die out in the system. 

2.7. Local Stability of Endemic Equilibrium 

The endemic equilibrium of the proposed mathematical Model is locally asymptotically stable if 10 R and 

unstable otherwise. We apply the linearization technique to prove this. Hence, to linearize the mathematical 

model, we substitute the following parameters
 SxS , 

 EyE  , 
 IzI , , QpQ  

 RqR  

into (1) yields 
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        

         

    

      

   








































RqQp
dt

dq

EyQpIz
dt

dp

IzdEy
dt

dz

EyIzIzSxw
dt

dy

SxIzIzSxw
dt

dx











11

11

     (9)

 

Such that we have  

   xxzzw
dt

dx
  11 + higher order nonlinear terms 

    yxxzzw
dt

dy
  11 + higher order nonlinear terms 

 zdy
dt

dz
  + higher order nonlinear terms 

  ypz
dt

dp
  + higher order nonlinear terms

 

qp
dt

dq
  + higher order nonlinear terms 

The Jacobian matrix of the system is: 

 

 

      
       

 
 























000

00

000

001111

0011011

d

xzwzzw

xwzzw

J
E

     (10) 

 

Such that the characteristic polynomial 0
1

 IJ iE   yields: 

      
       

 
 

0

000

00

000

001111

0011011























d

xzwzzw

xwzzw

 

The resulting eigen-values are: 
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Let       zzwA 11 ,   B ,  dC   ,   D , E  

We have 

      0  EDCBA
        (11) 

Equation (11) that the system is locally asymptotically stable. Thus, this also assures that the disease will 

eventually be wiped out as time progresses. 

2.8. Global Stability of Disease-Free Equilibrium 

Here we construct a Lyapunov function approach to proceed for the result for Global Asymptotic Stability of the 

proposed model, at Disease Free Equilibrium State. Hence we have: 

     

 

  EQI
dt

dQ

IdE
dt

dI

EISIw
dt

dE











 11

 







 

 


N:Q(t), , I(t) , E(t) 3

 
  332211,,,,, ICICICRQIEStV 

       

  332211 ICICIC
dt

dV

 

            13232121221 11 IIICIdICIIISwC o    

 

          133323221211221 11 ICICICIdCICICIISwC o  
 

 

             3323211312 11 ICICdCSwCICCC o  
 

 

  
  

     SNICICdC
w

CICCC ,
11

3323211312 










 






  

As



0S , Let 

  d
C






1
1  , 

  
  

,
11

22
d

w
C









03 C

  

 
  

  

 
  

  
  

   

  
I

d

dw

d

w

I
dd

w
d







































2

2

1111

11

















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  
  

I
d

w
V 













 1

11




 

 IRV 10 

         

It is imperative to note that 0V  only when E = 0, the substitution of E = 0 into the model system of equation 

(1) shows that 



0S  at t . Based on LaSalle’s invariance principle of model stability. Hence 0E = 0 is 

globally asymptotically Stable whenever 10 R  

 

2.9. Sensitivity analysis of 0R  

We are to test for the sensitivity of 0R by differentiating 0R  with respect to all the parameters in 0R . The 

normalized forward sensitivity index is defined:  

As 
  

  d

w
R








 11
0   

Tabular representation of parameter and indices of sensitivity analysis is deduced from the initial values of the 

said parameters.

 
       Table: Parameter and indices sensitivity analysis 

Parameter Sensitivity 

  1 

  1 

  0 

  0 

  0 

  -2.748752009 

w  0 

  0 

 

3. Homotopy perturbation method 

An objective of this study is to undertake numerical simulations of a mathematical model through the 

development of an approximation solution. This objective is being achieved by utilizing the homotopy 

perturbation method. An in-depth examination of this technique will be presented by analyzing the following 

differential equation. 

.),()(  rrk      (12) 

Subject to the boundary condition  

.0),(  rn       (13) 

Operator   denotes the differential operator, the boundary operator is , k(r) is an analytic function, the 

boundary of the domain  is denoted by , and n is the normal vector derivative drawn externally from . 

We can split the operator )(  into two parts such that 

),()()(  TT NL        (14) 
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The operator )(),(  TT NL denotes the linear and nonlinear term respectively such that equation (14) implies. 

   .),()()(  rrkNL TT       (15) 

We can construct a Homotopy for (15) so that  

    .0)()()()()1(),( 0  rkfpLfLppfH TT      (16) 

Where p is an embedding parameter which can undergo a deformation process of changing from ]1,0[ . Equation 

(16) is further simplified to obtain: 

  ,0)()()]([)()(),( 000  rkNpLpLfLpfH TTTT      (17) 

as ,0p equation (17) gives: 

0)()()0,( 0  TT LfLfH        (18) 

And when ,1p  

.0)()()1,(  rkffH        (19) 

We can naturally assume the solution (12) as a power series such that 

  )()()()()( 2

2

10 tfptfptpftftf n

n       (20) 

Evaluating (19) with (20), and comparing coefficients of equal powers of p. 

The values of )(),(),( 210 tftftf  are obtained by solving the resulting ordinary differential equations. Thus, the 

approximate solution of (25) is: 




)()()()(lim)( 210
1

tftftftftf n
p

     (21) 

3.1. Numerical Solution 

In this part, we use the homotopy perturbation approach to conduct the numerical simulation that produces the 

SEIQR epidemic model's approximate solution. Constructing a homotopy for (1), 

  

 

 

 

  .0)()(
)()(

)1(

,0)()()()(
)()(

)1(

,0)()()(
)()(

)1(

,0)()()1)(()()1(
)()(

)1(

,0)(1)()()1(
)()(

)1(



















































tRtQ
dt

tdR
p

dt

tdR
p

tQtItE
dt

tdQ
p

dt

tdQ
p

tIdtE
dt

tdI
p

dt

tdI
p

tEItItSc
dt

tdE
p

dt

tdE
p

tSItItSc
dt

tdS
p

dt

tdS
p











    (22) 

The approximate solution of (1) can be assumed as: 
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)()()()()(

)()()()()(

)()()()()(

)()()()()(

)()()()()(

2

2

10

2

2

10

2

2

10

2

2

10

2

2

10

tsptrptprtrtR

tsptqptpqtqtQ

tsptiptpititI

tspteptpetetE

tsptsptpststS

n

n

n

n

n

n

n

n

n

n





















       (23) 

Substituting (34) into (33) and comparing coefficients of equal powers of p ,  

,0)(,0)(,0)(,0)(,0)(: 00000

0 


trtqtitetip      (24) 

Solving (36) yields 

 0000000000 )(,)(,)(,)(,)( rtrqtqitietests      (25) 

Similarly comparing the coefficients of
1p , 

 

 

)()(
)(

),()()()(
)(

),()()(
)(

),()(1)()()1(
)(

),(1)()()1(
)(

00
1

000
1

00
1

0000
1

0000
1

tRtQ
dt

tdR

tQtItE
dt

tdQ

tIdtE
dt

tdI

tEItItSw
dt

tdE

tSItItSw
dt

tdS





















       (26) 

Evaluating (37) using (36), and then solving the resulting system of equations, produces; 

  

  

 

 

 ttRtQtR

ttQtItEtQ

ttIdtEtI

ttEItItSwtE

ttSItItSwtS

)()()(
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The coefficients of 
2p equally yields: 
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The second Approximation are obtained by solving these equations. 

The second Approximations are 
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4. Results 

Here, we obtain the solutions of each class by taking the sum of their partial iterations hence, we have: 
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To study the impact of the incorporated parameters on the mathematical model, we evaluated the obtained 

results using the following COVID-19 data of Lagos acquired from the Nigeria center for disease control on 1st 

December 2020 [19] presented as ,2003)0( E  ,416)0( I  ,404)0( Q 115)0( R . The current 

population of Ikeja, Lagos Nigeria is applied as the susceptible population [24] 470200)0( S  such that the 

evaluated results yield the following series results containing the parameters whose influences are to be examined.
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 4.1. Numerical Simulation 

Here we examine the influence of high risk quarantine w  and multiple COVID 19 exposure   on the interval 

1),0[ to analyze their influence in Control and Spread of COVID-19 respectively. We assess the model's validity 

by numerically projecting the impact of the induced parameters on the dynamics of transmission of each classes 

at an increasing time using the baseline parameters in Table 2.  

            

 

                                   Figure 1: Effect of COVID-19 multiple exposure on susceptible population. 
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Figure 2: Effect of COVID-19 multiple exposure on Exposed population. 

 

Figure 3: Effect of COVID-19 multiple exposure on Infected population. 
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Figure 4: Effect of High risk quarantine on susceptible population. 

 

 

 

Figure 5: Effect of High-risk quarantine on Exposed population 
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                                           Figure 6: Effect of High risk quarantine on Infected population. 

5. Discussion 

The figures presented in this section reveal critical insights into the dynamics of COVID-19 transmission and the 

effectiveness of high-risk quarantine and multiple exposures in controlling its spread. Figure 1 depicts the 

relationship between the coefficient of multiple exposure and the number of susceptible individuals. As the 

coefficient of multiple exposures increases, the number of susceptible individuals decreases. This trend can be 

attributed to the fact that individuals exposed to the virus multiple times are more likely to become infected, 

transitioning into the exposed or infected populations. Consequently, the susceptible population is reduced. 

Notably, the graph shows that the rate of decrease in the susceptible population is more pronounced for higher 

values of the coefficient of multiple exposure. This indicates that multiple exposures have a more substantial 

impact on reducing the number of susceptible individuals when the exposure rate is higher. In Figure 2, we 

explore the effect of multiple COVID-19 exposures on the exposed population. As expected, an increase in the 

coefficient of multiple exposure leads to a rise in the number of exposed individuals. Those who experience 

repeated exposure to the virus are more susceptible to infection, and as a result, they contribute to the growing 

number of exposed individuals in the population. Similar to Figure 1, we observe that the rate of increase in the 

exposed population is more significant for higher values of the coefficient of multiple exposure. This underscores 

the heightened impact of multiple exposures on increasing the exposed population when the exposure rate is 

higher. Figure 3 takes a closer look at the impact of multiple COVID-19 exposures on the infected population. 

As the coefficient of multiple exposure rises, the number of infected individuals also increases. This is 

understandable, as individuals exposed to the virus multiple times are more susceptible to infection and 

consequently contribute to the spread of the disease. This finding highlights the importance of mitigating multiple 

exposures to control the overall infection rate. Shifting our focus to the effect of high-risk quarantine, Figure 4 

demonstrates how the number of susceptible individuals is affected by an increase in the high-risk quarantine 

rate. As the high-risk quarantine rate rises, the number of susceptible individuals decreases. This trend arises 

from the fact that individuals at high risk of exposure to COVID-19 are more likely to be quarantined, effectively 

preventing them from contracting the virus and thus reducing the number of susceptible individuals in the 

population. Figure 5 explores the impact of high-risk quarantine on the exposed population. As the high-risk 

quarantine rate increases, the number of exposed individuals decreases. This is due to the identification and 

quarantine of individuals who have been exposed to the virus. By promptly isolating these individuals, we prevent 

them from becoming part of the infected population and further curtail the spread of the disease. Finally, in Figure 

6, we examine the effect of high-risk quarantine on the infected population. As the high-risk quarantine rate 
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increases, the number of infected individuals decreases. This is because infected individuals are more likely to 

be identified and isolated through quarantine measures, effectively halting their ability to transmit the virus to 

others. Consequently, this results in a decline in the infected population. Taken together, these discussion 

underscore the significance of high-risk quarantine and the impact of multiple exposures on controlling the spread 

of COVID-19. Implementing measures to identify and quarantine individuals at high risk of exposure or those 

who have been exposed to the virus can lead to a reduction in the number of susceptible, exposed, and infected 

individuals in the population, thereby slowing down the transmission dynamics of the disease. 

6. Conclusions 

To achieve full elimination of COVID-19 outbreaks, we conducted a study examining the effect of High-risk 

immunity on a COVID-19 positive system with repeated exposure of susceptible individuals. Our research 

objective was accomplished as the numerical simulation results clearly illustrated the transmission of COVID-

19 under High-risk immunity conditions with multiple exposures. To eliminate the virus, we advise widespread 

immunization of vulnerable populations. The efficacy of governmental control measures to mitigate transmission 

can only be realized through public cooperation in adhering to preventative measures such as curfew, self-

isolation, and proper utilization of face masks. The complete elimination of COVID-19 requires collective efforts 

from all individuals to strictly abide by these preventive measures. Our study highlighted the various responses 

of a vulnerable population to High-risk immunity with repeated exposure. Future studies could consider 

combining the examination of proportional vaccination and High-risk immunity. Furthermore, utilizing fractional 

order analysis in the existing mathematical model through the implementation of fractional operators such as 

Caputo [25], Caputo-Fabrizio [26], or Antangana-Baleanu [27] could provide a more in-depth evaluation of the 

disease's dynamics using actual data.  
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