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ABSTRACT 

Aramid fabrics are used to produce most of the flame resistant protection clothes to fulfil the 

protection requirements. Even though aramid fibers have good thermal stability and flame resistance 

properties, fabrics used in protective clothing age and loss some of their essential functions under 

various environmental and operational conditions during their lifetime. These conditions cause 

serious limitations in the use of clothing. In this study, various woven fabrics produced from aramid 

(Nomex, Kevlar) fabrics were exposed to accelerated aging tests under varying temperature and time 

period in order to construct Neural Network models to predict weight loss and tensile strength loss 

percentages of the fabrics. The results of Artificial Neural Network models demonstrate that 

regression values are 0.98405 for weight loss percentages and 0.99935 for tensile strength loss 

percentages of the fabrics. Accordingly, the proposed Artificial Neural Network models were 

correctly constituted and the losses in determined fabric properties was successfully predicted. 
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1. INTRODUCTION 

Since textiles are used in many technical fields apart from 

the fashion industry today, predicting performance 

properties of these textiles in design phase has become even 

more important. Since textile structures are highly complex, 

features of fiber and yarn affect characteristic of the final 

fabric and fabric properties determine the performance of 

the end product [1, 2]. These behaviors of textiles have led 

researchers to use different computational modeling 

methods for forecasting. Artificial neural networks (ANN) 

are very effective tools in solving many prediction-related 

problems in textiles such as classification and analysis of 

defects, prediction of characteristics of textiles, process 

optimization, identification, marketing and planning [3,4]. 

Artificial neural networks attempt to mimic capabilities of 

human brain. In order to form the network, a large number 

of artificial neurons are connected to each other by weights 

of variables. The knowledge that is gained from the system 

is processed with some simple connecting functions and the 

network learns from the previously acquired experimental 

results [4, 5]. It learns from examples through iterations 

without any prior knowledge of relationship between 

variables under investigation. Unlike a computer, the 

network has the ability to process and learn patterns 

efficiently when properly trained [6]. Thus, artificial neural 

network modelling is a suitable tool to predict losses in 

performance properties of aramid fabrics.  

The performance of materials used for protective clothing 

of workers at high risk of heat and flame exposure and 

firefighters, is critical for ensuring the safety of workers 

wearing them [7, 8]. They must also exhibit good 

mechanical performance to maintain the physical 

completeness of the clothing during service [9, 10]. 

However, during their lifetime, fabric structure of these 

garments degrades under the influence of many external 

factors like fire, extreme heat and hot water vapor. 

Furthermore, the loss in performance may not always be 

easily detected unless it has reached an extreme level. 

Therefore, it is of great importance to know and predict the 

mechanism underlying this aging process [11, 12].  

Liu et al. [13] also indicated that predicting service life of 

firefighters’ clothing before taking it out of service is 
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necessary during the usage and maintenance of the uniform 

and they investigated the tensile strength of flame-retardant 

fabrics under fire exposure. They used regression analysis 

and ANN models to estimate the tensile strength of 

Kevlar/polybenzimidazole and polyimide/Kevlar fabrics. 

Lemmi et al. [14] investigated effects of aging temperature 

and time on the mechanical and surface structural 

properties of high tenacity polyester yarn. The investigation 

illustrated that aging time and temperature influenced the 

surface structure of fibers, tenacity and elongation 

properties of the yarn. In another study, thermal aging of 

high-performance fibers (Kevlar and PBI) was also 

investigated and tensile strength tests were carried out on 

aged and unaged samples. The tensile strength data was 

fitted using the Arrhenius model following two different 

approaches [15]. Some researchers [16, 17] used regression 

analysis to investigate the relationship between the tensile 

strength and reflection coefficient of flame-retardant fabrics 

and to estimate the tensile strength of these fabrics after 

heat exposure. The previous researches indicated that the 

multi linear regression (MLR) models could predict some 

properties of a fabric, however ANN model showed higher 

accuracy for prediction when compared with MLR model 

[13, 18, 19]. 

Factors like heat exposure time, temperature, and fabric 

type affect properties of fabrics after thermal aging process 

[20, 21, 22]. The temperature of the fabric during heat 

exposure procedure, such as glass transition, surface and 

degradation temperature can expound the thermal aging 

mechanisms in some degree. The loss in mechanical 

properties of the fabric may not be revealed visually and 

some measurements are essential to verify the losses after 

heat exposure [13]. Losses in weight and thickness of the 

fabrics occurred for aramid fabrics with the rise of heat 

exposure intensity and duration [23]. Thus, the best way to 

understand the damage occurred on the clothing is to 

predict the losses in the fabric mechanic properties without 

destruction by using modeling methods. For this purpose, 

woven fabrics with varying amounts of Kevlar and Nomex 

yarns were subjected to accelerated thermal aging processes 

for two different temperatures and four time periods. After 

the selected exposure durations, fabric tensile strength and 

weight values were measured and loss percentages of these 

fabric properties were calculated. Artificial neural network 

models were generated for the estimation of tensile strength 

and weight loss percentages. 

The aim of this article is to predict the weight and strength 

loss percentages of aramid woven fabrics after accelerated 

thermal aging by using ANN models and to determine the 

best fit model to evaluate the service life of the fabrics. The 

models based on the developed neural network can describe 

and estimate the strength and weight loss of aramid fabrics 

under different conditions.  The recommended models will 

be helpful for predicting service life of firefighter’s clothing 

and ensuring the safety of workers wearing them. 

2. MATERIAL AND METHOD 

2.1 Material 

Nm 50 Kevlar and Nomex yarns were procured from Erba 

Foreign Trade Ltd. Com. and woven fabrics were produced 

by using these yarns in various proportions. Plain woven 

fabric structure was selected for experiments since most 

ballistic and body protection fabrics made from Kevlar are 

manufactured as plain woven fabrics. Weft and warp 

densities for all fabric types were 20 weft/cm, 40 warp/cm, 

respectively. Five plain woven fabrics were manufactured 

for the experiments with varying Kevlar and Nomex 

contents: %100 Kevlar, %100 Nomex, %50 Kevlar/%50 

Nomex, %33.3 Kevlar/%66.7 Nomex, %16.6 Kevlar/%83.4 

Nomex. 

2.2 Accelerated thermal aging test 

Accelerated thermal aging tests were carried out with James 

Heal drying oven. 220°C and 300°C were selected for aging 

processes when the operating temperatures of Nomex and 

Kevlar were 200°C and 260°C, respectively. Since, it was 

reported that fire-fighters operate under 100–300°C 

standard conditions [15, 24]. The durations of cumulative 

exposures were 48, 240, 480, 720 hours for 220°C and 24, 

48, 120, 240 hours for 300°C. The effects of accelerated 

aging process on weight and tensile strength loss were 

observed faster at high temperatures, thus the heat treatment 

durations for 220°C were chosen longer than the periods for 

300°C [25]. 

2.3 Measurements of weight loss 

Fabric samples were conditioned before weight 

measurements under standard atmospheric conditions and 

fabric weights were measured prior to thermal aging and 

after each selected exposure time. Percentage of variation in 

weight (%wl) after thermal aging was determined as:  

%wl = (∆w/w0) × 100   (1) 

where ∆w = w0 – wheat treated, w0 and wheat treated is the weight 

of a fabric sample before and after heat treatment, 

respectively. 

2.4 Measurements of tensile strength loss 

Zwick/Roell Z010 universal testing machine was used to 

determine tensile strength of aramid fabrics before and after 

accelarated thermal aging periods. The tests were 

performed with 10 kN load cell and the cross-head speed of 

testing machine was 100 mm/minute according to the ISO 

13934-1 standard [26]. 

2.5 ANN modelling 

In this study, multilayer perceptron ANN modelling was 

performed to estimate weight loss percentages and tensile 

strength loss percentages of Kevlar/Nomex woven fabrics.  

ANN is a powerful modelling tool to determine and exhibit 
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any type of connection between input and output variables. 

The ANN structure proposed for the estimation of fabric 

weight loss percentage and tensile strength loss percentage 

is shown in Figure 1. These networks consist of an input 

layer, hidden layer(s) and an output layer, respectively. The 

input variables were selected as Kevlar and Nomex yarn 

percentages in the fabrics, thermal aging temperature and 

aging duration. The output dependents were fabric weight 

loss percentage and tensile strength loss percentage. 

The hidden layer is used for optimization of network and 

the number of hidden layers and neurons in each hidden 

layer are changed in order to find the best neural network 

architecture for the predictions with less error. According to 

the literature, the number of neurons were chosen as 5, 10, 

15 and 20 in the hidden layer(s) [27 - 30]. Furthermore, 

various neuron numbers, close to the number of neurons in 

the best fit model, were also investigated for even better 

prediction results. 

3. RESULTS AND DISCUSSION 

3.1 Losses in fabric properties 

The results of weight and tensile strength loss percentages 

of fabrics after thermal aging at 220°C and 300°C are given 

in Table 1 and Table 2, respectively. Weight loss 

percentages altered between 3.12% and 9.16% and average 

tensile strength loss percentages varied between 0.37% and 

94.99%. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of the proposed artificial neural network model 

 

 

Tablo 1. Weight loss and tensile strength loss % of fabrics at 220oC 

Experiment Kevlar % Nomex % Duration (hours) Weight Loss % Tensile Strength Loss % 

1 100 0 48 4.18 62.03 

2 100 0 240 4.39 82.69 

3 100 0 480 5.01 87.06 

4 100 0 720 5.26 91.89 

5 0 100 48 3.47 1.52 

6 0 100 240 3.70 2.23 

7 0 100 480 3.83 2.96 

8 0 100 720 4.35 3.47 

9 50 50 48 3.70 28.47 

10 50 50 240 4.20 36.39 

11 50 50 480 4.26 36.78 

12 50 50 720 4.46 37.41 

13 33.3 66.7 48 3.40 22.99 

14 33.3 66.7 240 3.89 27.56 

15 33.3 66.7 480 3.91 28.86 

16 33.3 66.7 720 3.97 29.98 

17 16.6 83.4 48 3.63 12.91 

18 16.6 83.4 240 3.77 14.50 

19 16.6 83.4 480 4.18 15.03 

20 16.6 83.4 720 4.50 16.06 
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Tablo 2. Weight loss and tensile strength loss % of fabrics at 300oC 

Experiment Kevlar % Nomex % Duration (hours) Weight Loss % Tensile Strength Loss % 

21 100 0 48 4.00 53.63 

22 100 0 240 4.11 64.32 

23 100 0 480 7.01 91.06 

24 100 0 720 9.16 94.99 

25 0 100 48 3.12 1.37 

26 0 100 240 3.17 1.64 

27 0 100 480 4.57 1.79 

28 0 100 720 4.98 4.10 

29 50 50 48 4.01 34.02 

30 50 50 240 4.83 34.19 

31 50 50 480 5.15 36.58 

32 50 50 720 6.59 39.15 

33 33.3 66.7 48 4.71 26.73 

34 33.3 66.7 240 4.86 27.19 

35 33.3 66.7 480 5.27 29.16 

36 33.3 66.7 720 6.59 30.24 

37 16.6 83.4 48 4.06 11.99 

38 16.6 83.4 240 4.49 12.90 

39 16.6 83.4 480 5.11 13.88 

40 16.6 83.4 720 5.89 18.21 

 
 
 

 
 

Fabric produced with %100 Kevlar yarns reached the 

maximum thermal decomposition rate with a 94.99% 

tensile strength loss percentage and 9.19% weight loss 

percentage at 300oC after 720 hours accelerated thermal 

aging process. The results showed that less tensile strength 

loss occurred when the Nomex yarn percentage was 

increased in the fabric composition. This was attributed to a 

disorder of the crystalline lattice in the perpendicular 

direction to the coplanar sheets that occurs simultaneously 

with an increase in the crystallite size in the direction 

parallel in the case of Kevlar [7]. Nomex shows a gradual 

decrease in crystallinity with increasing exposure time and 

this leaded to a reduction in tensile strength. Jain et.al. [31] 

investigated the weight loss after thermal aging and 

similarly it was observed that thermal aging was 

accompanied by the weight loss. This loss can be attributed 

to degradation and chemical reactions leading to flowing of 

gaseous components and small molecular weight 

compounds from the fabrics. 

3.2 ANN model performance for weight loss percentages 

In this study, the ANN models were implemented with 

Neural Network Toolbox of MATLAB R2021b software. 

The Levenberg-Marquardt [32] algorithm was used to train 

the proposed feed forward back propagation neural network 

model since previous studies showed that it is one of the 

most operative neural network training algorithms [33]. The 

training subset was first loaded to neural network in the 

Levenberg-Marquardt algorithm and the network 

parameters were updated and network was trained by 

utilizing the differences between the output and target 

values. After this process, another subset of parameters was 

used to verify the network. Required accuracy of training 

was achieved by repeating these processes for several times 

until the mean squared error (MSE) reaches to the 

minimum error value. The MSE was calculated as 

          (2) 

where y is an observed value and y’ is a predicted value 

[27, 34]. The Gradient Descent with Momentum (GDM) 

learning algorithm was applied for the learning algorithm in 

MATLAB software. A TANSIGMOID transfer function for 

the hidden layer nodes was used to produce faster output 

rates in this study.  

Various combinations for the number of hidden layers and 

number of neurons were tested to find the best fit model 

with maximum correlation on a hit and trial basis. The 

condition at which the maximum regression value was 

obtained in terms of training, testing and validation was 

considered as the final model infrastructure. The ANN 

model with one hidden layer and 20 neurons was found as 

the best model to predict the weight loss values. Table 3 

shows observed and predicted values of weight loss 

percentages for ANN models with different number of 

neurons in the hidden layer. The selected number of 

neurons are represented with S.  

The observed and proposed results were found very similar 

in most of the experiments in Table 3. Moreover, various 

Multilayer Perceptron (MLP) ANNs were also investigated 

for better estimations. However, the regression values of 

these networks weren’t substantial as the ANN with one 

hidden layer/20 neurons. The results of the proposed 

networks for weight loss percentages in terms of MSE and 

regression (R) are exhibited in Table 4. R value measures 

the correlation between experiments and predictions.  
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Table 3. Observed and predicted weight loss percentage values for various ANN models 

 

Experiment 

Observed values 

for weight loss 

percentage 

ANN (predicted)  

results 

Difference (%) between observed and ANN 

results 

S=5 S=10 S=15 S=20 S=5 S=10 S=15 S=20 

1 4.18 4.68 3.12 4.34 4.24 11.96 25.36 3.76 1.37 

2 4.39 4.43 3.12 4.54 4.45 0.98 28.92 3.32 1.39 

3 5.01 4.45 4.96 5.01 5.30 11.12 1.02 0.03 5.82 

4 5.26 5.35 5.26 5.17 5.27 1.66 0.02 1.71 0.25 

5 3.47 3.66 3.62 3.43 3.39 5.39 4.20 1.11 2.23 

6 3.7 3.60 3.65 3.52 3.72 2.77 1.34 4.86 0.51 

7 3.83 3.64 3.84 3.76 3.87 4.91 0.39 1.75 1.13 

8 4.35 4.03 4.46 4.32 4.35 7.26 2.57 0.66 0.05 

9 3.7 3.92 3.64 3.71 3.64 5.86 1.62 0.29 1.56 

10 4.2 3.87 4.23 4.17 4.18 7.92 0.74 0.75 0.56 

11 4.26 4.02 4.56 4.38 4.25 5.65 6.96 2.88 0.35 

12 4.46 4.78 4.42 4.19 4.47 7.24 0.90 6.05 0.23 

13 3.4 3.75 3.51 3.53 3.49 10.19 3.10 3.94 2.61 

14 3.89 3.68 3.79 3.88 3.91 5.36 2.44 0.23 0.52 

15 3.91 3.78 4.00 4.09 4.05 3.26 2.24 4.62 3.63 

16 3.97 4.40 3.93 4.27 4.51 10.75 1.04 7.47 13.59 

17 3.63 3.68 3.59 3.47 3.39 1.45 1.12 4.53 6.62 

18 3.77 3.62 3.75 3.60 3.75 4.10 0.60 4.40 0.47 

19 4.18 3.67 4.18 3.69 3.93 12.22 0.02 11.65 5.89 

20 4.5 4.11 4.35 4.32 4.44 8.63 3.37 4.11 1.34 

21 4 5.21 4.04 4.85 4.03 30.34 1.06 21.28 0.70 

22 4.11 5.38 4.56 5.20 4.52 30.82 10.99 26.49 9.97 

23 7.01 5.93 7.11 6.51 7.03 15.40 1.44 7.20 0.33 

24 9.16 6.88 9.01 8.22 9.03 24.94 1.63 10.27 1.39 

25 3.12 3.95 3.61 3.63 3.44 26.73 15.58 16.49 10.31 

26 3.17 4.02 3.73 3.69 3.56 26.96 17.66 16.47 12.41 

27 4.57 4.32 4.53 3.99 4.09 5.54 0.92 12.63 10.43 

28 4.98 5.16 8.32 5.08 5.04 3.61 67.09 1.99 1.21 

29 4.01 4.84 4.32 4.43 4.11 20.74 7.75 10.38 2.48 

30 4.83 4.97 4.50 4.67 4.33 2.87 6.83 3.38 10.35 

31 5.15 5.43 5.16 5.61 5.14 5.50 0.18 8.88 0.13 

32 6.59 6.39 6.66 7.15 6.55 2.96 1.13 8.44 0.56 

33 4.71 4.60 4.80 4.52 4.59 2.24 1.96 4.11 2.62 

34 4.86 4.72 4.94 4.68 4.84 2.84 1.67 3.76 0.36 

35 5.27 5.16 5.43 5.27 5.56 2.06 3.08 0.02 5.55 

36 6.59 6.14 6.54 6.37 6.39 6.86 0.77 3.30 3.02 

37 4.06 4.24 4.30 4.07 4.05 4.45 5.83 0.22 0.35 

38 4.49 4.34 4.41 4.14 4.30 3.35 1.69 7.82 4.27 

39 5.11 4.73 4.84 4.49 5.13 7.49 5.21 12.18 0.30 

40 5.89 5.70 6.03 5.61 5.97 3.24 2.41 4.82 1.31 

 

Table 4. Results of some MLP-ANNs for weight loss percentages of fabrics after thermal aging 

Number of hidden layers Number of neurons in hidden layers R values of weight loss % MSE 

1 5 0.86494 0.35425 

1 10 0.87897 0.38205 

1 15 0.94170 0.15010 

1 20 0.98405 0.04164 

2 5-5 0.96325 0.09655 

2 10-5 0.92834 0.18360 

2 10-10 0.97668 0.19425 

3 5-5-5 0.96534 0.11076 

3 10-10-10 0.96564 0.09286 

 
 

 

As it is shown in Table 4, the R values are close to 1 for 

most of the proposed networks and vary between 0.86494 

to 0.98405. The best R value, 0.98405, and minimum MSE, 

0.04164, was obtained for ANN with 20 neurons in one 

hidden layer. The detailed results of training, validation and 

testing subsets of the ANN which gave the highest R value 

are shown in Figure 2. According to the results, the ANN 

model with 20 neurons in one hidden layer can be used as 

an effective model for prediction of weight loss percentage 

of aramid fabrics. 
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Figure 2. Results of the ANN for weight loss % (one hidden layer-20 neurons) 

 

The performance of the ANN model is illustrated in Figure 3 for the estimated and observed values of weight loss 

percentages against the input variables. 

 

Figure 3. Comparative results for estimated and experimentally observed tensile strength loss percentages of aramid fabrics 

 
 

 

 
 

 

3.3 ANN model performance for tensile strength loss 

percentages 

Determining the amount of hidden layers and the number of 

neurons in each hidden layer is the challenge of using 

ANNs. Too many or too few number of neurons or layers 

will result in inaccurate output. Thus, different 

combinations for the number of hidden layers and neurons 

were tested for maximum correlation. The models with only 

one hidden layer didn’t give good correlation between real 

experimental data and estimated values. Thus, the best fit 

models with two and three hidden layers were selected to 

be given on Table 5.  

Table 5 shows the observed and predicted values of tensile 

strength loss percentages for ANN models with two and 

three hidden layers. 
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Table 5. Observed and predicted tensile strength loss percentage values for various ANN models 

 

Experiment 

Observed value 

for tensile 

strength loss % 

ANN (predicted) results Difference (%) between observed and 

ANN results 

S=10,10 S=10,15 S=15,15 S=5,5,5 S=10,10 S=10,15 S=15,15 S=5,5,5 

1 62.03 62.02 62.03 65.49 61.30 0.02 0.00 5.58 1.17 

2 82.69 86.38 82.69 82.69 79.05 4.47 0.00 0.00 4.40 

3 87.06 85.56 87.06 87.06 86.53 1.72 0.00 0.00 0.61 

4 91.89 84.93 91.89 91.89 91.64 7.57 0.00 0.00 0.28 

5 1.52 1.71 1.53 1.52 1.64 12.24 0.42 0.00 8.22 

6 2.23 1.97 2.23 3.60 2.14 11.61 0.16 61.65 4.04 

7 2.96 3.05 2.96 4.64 2.76 2.92 0.04 56.91 6.90 

8 3.47 2.20 3.47 3.47 3.30 36.52 0.00 0.00 4.91 

9 28.47 28.47 28.47 28.47 30.95 0.00 0.00 0.00 8.72 

10 36.39 31.48 32.12 36.39 35.80 13.49 11.74 0.00 1.63 

11 36.78 36.79 36.78 36.78 36.09 0.03 0.00 0.00 1.87 

12 37.41 37.40 40.38 37.41 38.29 0.01 7.94 0.00 2.35 

13 22.99 25.42 23.34 22.99 22.69 10.55 1.50 0.00 1.31 

14 27.56 27.57 27.56 27.56 27.69 0.03 0.00 0.00 0.48 

15 28.86 28.87 28.86 34.36 31.52 0.04 0.00 19.05 9.21 

16 29.98 29.98 29.98 29.98 29.35 0.00 0.00 0.00 2.09 

17 12.91 12.90 12.91 8.36 13.30 0.07 0.00 35.24 3.03 

18 14.5 16.71 21.50 14.50 14.04 15.28 48.31 0.00 3.17 

19 15.03 16.33 15.03 15.03 14.76 8.66 0.01 0.00 1.77 

20 16.06 16.06 16.39 16.06 16.35 0.01 2.05 0.00 1.80 

21 53.63 53.56 52.88 51.58 53.80 0.14 1.41 3.82 0.33 

22 64.32 64.69 65.71 64.32 64.10 0.57 2.17 0.00 0.34 

23 91.06 90.72 91.06 85.97 91.10 0.37 0.00 5.59 0.04 

24 94.99 94.88 94.95 92.57 94.22 0.12 0.05 2.55 0.81 

25 1.37 1.60 0.86 1.69 1.38 16.58 37.45 23.32 1.08 

26 1.64 1.57 1.13 1.64 1.52 4.13 31.21 0.00 7.13 

27 1.79 1.78 1.89 1.79 2.17 0.36 5.67 0.00 21.40 

28 4.1 3.91 3.02 4.10 3.49 4.75 26.29 0.00 14.92 

29 34.02 33.10 34.02 34.02 34.59 2.71 0.00 0.00 1.68 

30 34.19 34.22 34.29 34.19 34.94 0.10 0.28 0.00 2.20 

31 36.58 36.53 35.79 36.58 36.04 0.13 2.17 0.00 1.47 

32 39.15 39.15 39.15 39.15 37.93 0.00 0.00 0.00 3.12 

33 26.73 26.64 26.73 26.73 27.25 0.33 0.01 0.00 1.96 

34 27.19 27.35 27.19 27.19 27.70 0.60 0.01 0.00 1.89 

35 29.16 29.18 29.16 29.16 29.14 0.08 0.01 0.00 0.07 

36 30.24 37.69 30.24 30.24 31.68 24.65 0.00 0.00 4.77 

37 11.99 12.87 11.99 12.72 12.72 7.34 0.01 6.06 6.06 

38 12.9 12.60 12.78 12.90 13.55 2.31 0.91 0.00 5.04 

39 13.88 11.98 14.71 13.74 15.70 13.70 6.00 0.98 13.09 

40 18.21 18.24 18.21 17.09 19.25 0.19 0.01 6.15 5.73 

 

The MSE and regression (R) results of the proposed networks for tensile strength loss percentages are shown in Table 6. 
 

Table 6. Results of some MLP-ANNs for tensile strength loss percentages of fabrics after thermal aging 

Number of hidden layers Number of neurons in hidden 

layers 

R MSE 

2 10-10 0.99718 4.09710 

2 10-15 0.99923 2.04817 

2 10-20 0.97861 7.30801 

2 15-15 0.99822 2.63852 

3 5-5-5 0.99935 1.04743 

3 10-10-10 0.99381 9.45802 

 

The most suitable network model, which produced the 

minimum value of MSE and maximum regression value, 

was found as ANN with 3 hidden layers that included 15 

neurons in hidden layers totally. The R value of this model 

was calculated as 0.99935 which indicated that the model 

had a very high potential for the prediction of tensile 

strength loss percentages of aramid woven fabrics close to 

the real experimental results. Thus, these results confirm 

that the neural network model reproduces tensile strength 

loss values for this system, within the experimental ranges 
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adopted in the fitting model. The detailed training, 

validation and testing results of the proposed ANN with the 

highest R value are shown in Figure 4.  

The results of the best fit ANN model were also observed 

by plotting the estimated and observed values of weight 

loss percentages against the varying parameters (Figure 5). 

 

 

 

Figure 4. Results of the proposed MLP-ANN for tensile strength loss % (three hidden layers-5,5,5 neurons) 

 

 

Figure 5. Comparison of results for estimated and experimentally observed tensile strength loss percentages of aramid fabrics 

 

4. CONCLUSION 

In this study, loss percentages of some physical properties 

of aramid woven fabrics after accelerated thermal aging 

processes were investigated and predicted by using artificial 

neural network. Repeated heat and flame exposures can 

cause continuous decreases in mechanical properties of 
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materials and thermal protection given by flame-resistance 

protective clothing and increase injuries caused by body 

burn. Thus, it is important to determine the lifetime of the 

clothing for certain conditions before permanent damage 

occurs on the fabric structure. The losses in the properties 

of aramid fabrics after accelerated thermal aging process 

were successfully predicted by applying multi-layered 

neural networks and using a backpropagation algorithm in 

this study. On the basis of the proposed ANN models, it 

was possible to obtain quantitative information on changes 

in fabric properties for any temperature and exposure time. 

An analysis was also conducted to investigate the 

relationship between the estimated results of the proposed 

ANN models and the experimental data. As a result of 

using the ANN model, the values of the determination 

coefficient (R) for weight loss percentage and tensile 

strength loss percentage were found to be 0.98405 and 

0.99923, respectively. The time required for the fibers to 

loss 50% of their original tensile strength is defined as the 

material thermal life. Thus, the ANN models generated in 

this study help to predict the lifetime of protective flame-

retardant clothing according to the durations that the clothes 

expose to a certain degree of heat. Further studies could be 

investigated for other performance properties and thermal 

resistance of different fiber blended aramid fabrics after 

accelerated thermal aging. 
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