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Abstract

In this paper, we are interested to study a nonlinear Volterra equation with conformable deriva-
tive. This kind of such equation has various applications, for example physics, mechanical
engineering, heat conduction theory. First, we show that our problem have a mild soltution
which exists locally in time. Then we prove that the convergence of the mild solution when the
parameter tends to zero.
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1. Introduction

In this paper, we consider the fractional Sobolev equation

t
Difw — Aw — kAD}w = F(w) + b/ (t — 2)Pw(z)dz, (z,t) € Qx(0,T),
0

w=0, (z,t)€dNx (0,T), (1)

w(z,0) = f(x)
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where F, f are the functions which are later mentioned. The constant k,b are two positive
constant.

If £ = 0, the main problem (30) is the classical heat equation|L1(, 1], is a special case
of the non-classical diffusion equation and plays an important role in liquids mechanics, solid
mechanics and heat conduction theory, such as [8, [0, [18]. Aifantis in the interesting paper [§]
indicated that the classical reaction-diffusion equation does not include aspects of the reaction
problem - diffusion. He has established mathematical models with many concrete examples that
can contain elasticity and pressure according to the following equation:

wy — Aw — kAw, = F(w) + g, (2)

As we know, pseudoparabolic-type equations have applications in many areas of mathematics
and physics to describe many physical phenomena. A significant point of interest in examining
this equation is the presence of the quantity —Aw, in the first equation of . Under the
appearance of this term, we call Problem pseudo-parabolic equation (see |17, 12]).

As we know, there are various papers on semilinear Volterra integrodifferential equations with
integer order derivative. The paper [20] considered the following Volterra integro-differential
equation. The paper [21] focused on the fractional Volterra integro-differential equation with
y-Hilfer fractional derivative. In [2], the authors showed the existence of the mild solution of
nonlinear fractional integro-differential equations in Banach spaces.

A new point of the main equation of is the appearance of the conformable derivative
Dy, In the following, we introduce the definition of conformable derivative. Let A be a Banach
space and the function v : [0,00) — A. If the following limitation

t+ 9t —a(t
D = gy LI — )

(3)

for each t > 0, then we call it the conformable dertivative. More information about conformable,
we can provide some papers [I], B, [4) 5], 14, [15], 16].

Let us assume that the function f is a real function and s > 0, then f has a conformable
fractional derivative of order «v at s if and only if it is (classically) differentiable at s, and

Dy f(s) = s'""f'(s) (4)

where 0 < o < 1.

To the best of our knowledge, there are not any results concerning to the . Motivated
by this reason, in this paper, we study with some various directions. The apperance of
memory term on the right hand side of making computation cumbersome. The principal
contributions of our paper are described in detail as follows

e The main first result is to prove the existence of local solutions. The key of the proof is
based on Banach fixed point theorem.

e The second major contribution is the proof that the solution of the problem converges
to the solution of the classical heat equation.

The analysis of our paper is learn from the ideas of the paper of Van [22]. However, we have
a new few points different from [22] since the singularity of some proper integrals. In addition,
we used some interesting techniques in the recent paper [15, [19]. The complexity of this problem
also comes from the memory component.

The structure of the paper is shown as follows. In section 2, we introduce premilinaries.
Section 3 shows that the local existence of mild solution. In section 4, we prove that the
convergence of the mild solution when k& — 0.
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2. Preliminaries

For each number 8 > 0, we define the following space

X°(Q) = {f =D faen € L(Q) < | flzo() = Zfﬁ/\% < OO} : ()

n=1

It is obvious to remind that D&w(t) = t!~%w'(s). By a simple calculation, we get the following
ordinary differential equation

dw; Aj 1 1
—« J J (1) = —

i 1y T
Then we get the following identity

wy(t) = exp ( _ ﬁ)wg + ! /t 59 Lexp ( S N i Sa>Fn(w)(s)d8
0 n

tl

14+ kN, o 14+ kN, 14+ kX o
+ ku')‘n/o s Lexp ( ~7 —{-)\Z:)\n 7 ; Sa)Gn(w)(s)ds, (6)
where
wp(t) = /Qw(x)en(x), F,(w)(t) = /QF(w(t))en(:c) / / r—2z) (z)dzen(x)

Definition 2.1. Let us call w the mild solution of the problem . ) if it satisfies the following
equality

where B(t) is defined by

_ S _ An
= nZleXP ( T k)\nt)@nen(x)a

for any f € L*(Q2). Here j3 is chosen later.

Lemma 2.1. Let ¢ be the function in X" (). Let v be a positive number such that 0 < v < 1.
Then we get

|20, 0 < Cot ™ ellzmien (®)

Proof. The proof of above Lemma can be found in [22]. O

3. Local existence
Theorem 3.1. The function F' satisfies the globally Lipschitz condition
1) = F(0)lyoy < Ersllw = vl o0y (9)
Let f € X%(Q). Then Problem has a local existence u € LS(0,T;X%(Q)) where
M<m< o
m< —.
7=

In addition, we also have

HUHL%(O,T;XG(Q)) < Cula) T e 10
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Proof. Let us define the following function

ta ta _ Sa

t
Qu(®) =3()1 + [ B Flu(s)ds
« 0 «
t a1 $t¥ _ g@ s 5
+b [ s“T'B(———) [ (s —2) Pw(z)dzds. (11)
0 @ 0
It is obvious to see that "
Q(w(t) =0) =B()f
Using Lemma , we have that
e — - —v
[BE) ] < T (5) I 0 < Cult™ 1 g (12)

Multiplying both sides of the above expression by t”*, we immediately have

()]

(%

< m=ay .
- Ci(a,y)t [ fllxo(0) (13)

Since m > oy, we deduce that Q (w(t) = 0) € L2(0,T;X%(Q)). Our next goal is to estimate the

norm of the difference HQu — QUH for any functions u,v € L3(0, T;X%(Q)). Indeed,
L5z (0,73X0(Q))

we have that

a Sa)

Qu(t) — Qu(t) = /0 t o1 (! (F(u(s)) - F(v(s)))ds

(0}

a

t $t¥ _ g@ S
n b/ g2 / (s—2)7P (u(z) - v(z))dzds = L)+ Jo(t).  (14)
0 0
Let us consider the first term Ji(¢) on the right above. Using Lemma ({2.1]), one has
o _ g
: |
|21

Here % < 7y < 1. Since this equality and using the inequality, we bound J; as follows

t* — s®

ral - « a)
woiey < O by < Calan ) (1= %) oy (19)

0]y < ot [ 5777 (1 = 57) 7 Ftaton = Pt o
< K¢Ci(a,7) /Ot st (to‘ - so‘)i'yHu(s) - v(s)‘ XG(Q)ds. (16)
Multiplying both sides of the above expression by t”*, we infer that
thJ1 (t)ng(Q) < KCy(a,y)t™ /Ot g1 (ta _ sa)’”Hu(s) - v(s)‘ oo™
= K:Ci(a,y)t™ /Ot ga—i=m (to‘ - sa) 775mHu(s) - U(S)‘ Xg(ﬂ)ds
< K¢Ci(a,y)t™ [/Ot ga—l-m <t°‘ - sa)ivds} Hu - UHL%(O,T;XG(Q))' (17)

Let us construct the integral term on the right above. Using Hdélder inequality, we find that

( /0 st o) Tas)” < /0 se-amg) ( /0 st i =) )

= Ofa;; ( /t 5ot (to‘ - so‘)iwds). (18)
- 0
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It is not difficult to check that the following equality

t —92 -1 t _9
/ st (to‘ - 50‘) [ — (to‘ - so‘> 7d(to‘ —59)
0 @ Jo

1 [t ) ta(le'y)
- = —Vdw = 19
a/o v v a(l —2y) (19)
Combining (17), and ([19)), we derive that
K:C
tm“Jl(t)‘ < ) jaan ‘U—UH . (20)
X)) T y/ala —2m)(1 — 27) L3z (0,T:X9 ()

Let us move to the considering of J>. Indeed, by using similar claim of , we know that

HJQ(t)HXQ(Q) < bCy(a,7y) /Ot st (to‘ - sa) M/H /OS(S —2)7P (u(z) - v(z))dszg(Q)ds. (21)

We have the following observation

H /Os(s —2)7F (u(z) — v(z))dz‘

X0(Q) = </08(8 B ZYﬂZ?mdz) Hu B v”ng(o,T;xe(Q))

—s1f-mp(1 1 - m)Hu — UHL%(&T;XQ(Q)). (22)

Combining and , we derive that

thJQ(t)HX9(Q) < bCi{e,7)B(1 - 4,1~ m)Hu B UHL%(O,T;XO(Q))

([ () ). &

Using Hélder inequality, we find that

(/ s (e ) s’

IN

([ mmmas) ([ =) Vs

ta72mfﬁ+1 t o N N —2y
:a—2m—ﬁ—|—1</08 l(t —s) ds). (24)

This estimate together with allows us to get that

20—2m—2avy—B+1
2

A N N t
t (/Os 8 (t —S) ds) S\/a(l—Q'y)(a—ﬁ—Qm—i—l)‘ (25)

Combibining and , we find that
bCi(a,7)B(1 = 5,1 —m) tL—?m—;aw—ﬂH

t"™ || Ja(t — . 26
H 2( )‘ X0(Q) \/04(2’}/ — 1)(a — ﬂ —2m + 1) HL%(O,T;XG(Q)) ( )
Combining (14), and (26)), we derive that
ot 000 <70 + 0],
< Kfcl (CY, ’7) oY bCl (Oé, ’Y)B(l — /8’ 1- m) t2a72m722(W76+1 Hu — UH
Veala —2m)(1 —2y) Val—2y)(a—B-2m+1) Lz (0,T5X0(2))
(27)
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Since 0 < v < % and 8 <1 and m < §, we know that the following bound

HQU B Q’UHL%LO(U,T;XQ(Q))

< KfCl(Oé7 7) ey + bCl (a7 V)B(l — /8’ 1 - m) tza_zm—gaw—Lﬂ-l H’U, — UH
Veala —2m)(1 —27) Vol —2y)(a—B—2m+1) L3z (0,15X0())

(28)

By choosing the appropriate T, we will immediately have
K:Ci(a,7) a—ary bCi(a,v)B(1 —p,1 —m) plesimter=pil
Vala—2m)(1 —2y) Val —2y)(a—B-2m+1) B
This implies that Q is a contraction in the space Lo(0,T;X%(Q)). By applying Banach fixed
point theorem, we can deduce that Q has a fixed point u € L(0,T;X%(Q)). So, Problem (30])

has a unique solution in the space LS(0,7;X%(Q)). In addition, using triangle inequality, we
find that

N

= o
m 0 T; X )) L% (O’TQXQ (Q))

< HQu—Q(v:O)H + sup thB ‘

L (0,T5X%(Q)  o<i<T
< M-y 9
< a1l o oy T CHENT N o e (29)

which claims that .

4. Convergence of the mild solution

In this section, we focus the convergence of the mild solution to problem when k — 0%.
Theorem 4.1. Let w®) be the solution of followingProblem

Dfw + (—A)Pw — kADSw = F(w) + b/t(t —2)%w(2)dz, (z,t) € Qx (0,T),
0

w=0, (z,t)€dNx(0,T), (30)
w(z,0) = f(z)
and w* be the solution of the following classical heat problem
t
Dow + (—AYPw = F(w) + b/ (t— 2)Pw(x)dz, (z,1) € Q x (0,T),
0
(31)

w=0, (z,t)€ I x(0,T),

E(p )

Here 0 < 8 < 1. Let us assume that f € X~ PpHBato+=5—
enough small then the following estimate holds

[w® (t) — w* ()l zos 0.7x0()) < 2C(a, p, q)k

Q) NXQ) for g >p . Then for T

2q—52q+5p Tm+o¢qfo<p

f”;g%p%ﬁ%@ ()

2q9—eqtep Eq+sp

+2C(m, o, p, q) T PTOE =2 —

n bC’(oz,p, q, ,3, m) k2q eqtep
a—pF—m+1
where m is defined in Theorem (3.1) and max(1,25) < e < 2.
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To(g—p)+a—B—m+1 (32)
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Proof. Let us define that

+o t 3 ¢ — g™
W0 =3(5) 1+ [ s m () Pt s))ds
0
t a1 & — g s 5k
+b [ s M ( ) [ (s —2)"Pw"(2)dzds, (33)
0 @ 0
where we remind that where My(t) is defined by
Zexp( ) fren(a),
for any f € L?(Q). The function u* is defined by
* 2 0 ! a—1 t* — s *
w*(t) :Mo(g)w + [ s Mo )F(w*(s))ds
0
t a1 ta _ SOL S _/8 .
+b [ s Mo ( - ) | (s—2)"Pw(z)dzds, (34)
0 0

where Mo(¢)f = >_,° | exp (— )\nt) fnen(x) for any f € L%(Q). Two equalities above provide us
to get that

a0 - ) =365 -3+ [ 53T (F) - Pl () ds
+/0 (a le ta;S )—sa_lj\/[o(ta;sa)> F(w*(s))ds
t t—s Ss—z_ﬁwkz—woz zds
s [t () [T 07 (w0 - w0 )ded
/ a-l Mk ;S )—Mo(t ;S ))/0 (s — 2) Pw*(2)dzds
(t)+J2( )+ J3(t) + Ju(t) + J5(1). (35)

In view of step 1 of Proof of Theorem 5.1 [15], we confirm the following result

Ao te

__n ) _\BZ

exp( 1—|—/~c)\na> exp( A”a)
for any ¢ > p > 0 and 1 < € < 2. Thus, we have

2
PV to
_ 20 Y _ ﬁ7> 2
S (e () e (40))

o
< |C(a,p, q)’2k2q—aq+apt2aq—2ap Z A%9—25p+26q+6(p—q)’fn|2'

n=1

—e £ _ E(P*Q)
< Cla, p, q)k ™5 goa—ow ) AT (36)

HMk ).f = Mo( a)f‘;

Hence, using Parseval’s equality, we obtain that

2q9—eq+tep
2

toa—ap

o)

T W

f ‘ ‘ X—,@p+l3Q+€+ Ts(p_q) (Q) '
(37)

Cla,p,q)k
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Multiplying bothsides to ", we deduce that

29—eqtep 0t oo
1Tl < Clawp, @k 2 T 07er| HX—BMBHWW” ) (38)
For the second term Jo, using the estimate , we obtain the following bound
P .k
< a— a o P ]
HJQ(t)ng(Q) < KfCl(oz,q/)/O st (10— 52) 7wk (s) —ws)| oo (39)
By a similar explanation as in , we obtain
K:C
thJQ(t)) < f 1(047’7) ta—a'yH ] (40)
X0Q) T y/ala —2m)(1 - 2v) L39(0,T5X0(02))
This implies that the following bound
K;Ci(a,v) - k
Ja2l| poo (0.7 oy —w* . 41
| QHL’“ OTX) = \/a(a —2m)(1 —2y) L2(0,T:X0(Q)) (41)

Let us now return to the term J3. Indeed, in view of Proof of Theorem 5.1 [15], we find that

| [ (el

t
29—cqtep oa—1{ a\P *
< C(a7p’ q)k 2 /0 S (t - S ) HF(UJ (5))Hx_ﬁp+ﬁq+9+€@*q) (Q)ds (42)

Sa

sa a1 ta _
) — S Mo( o

)) Flw(9)as

X9(Q)

Let us choose € such that
max(1,20) < e < 2.

Then, it is easy to verify that the following condition

e(p—q)
2

—0Bp+ Bqg+ 0+ <.

Thus, using globally Lipschitz of F as in (9)), we obtain the following estimate
[P D] apseins ey ) < CEopra.0) [Pl (5))

< C(B,p:q 9)Kwa*(8)‘

X0 (%)
(43)

X(Q)

It is easy to show that w* € LZ(0,7;X(Q)). By a similar proof of (L0)), we have the following
result

[y = €57 ] (44
Combining and , we derive that
2g9—eqtep 5q+5p a— 17m< @ a>q—P
t < t& — ds. 4
ng( )‘ X0(Q) — Clewp )k f’ X0(Q) / g § (45)
It is obvious to claim that
t _ t ag—apt+a—m
/ ga—l1-m (tcx _ Sa)q pdS < tozq—ap/ P S e (46)
0 0 a—m
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From two latter obsevations, we have immediately that

m < ag—apta g, 24=gater ’
950y < Clmopg)Torr ok g (47)
which allows us to obtain that
ag—anto 2g—egtep eq+ep
5]l 0o < Clomo o TPk 52 g (48)

For the term Jy, we use the same techniques as in (26)) in order to obtain that

bCl (a, ’Y)B(]_ — ﬁ, 1-— m) T2a727n722a’yfﬁ+1

k *
)S\/a(Q'y—l)(a—B—%n—l—l) v

HJ4||L;§1°(O,T;X9(Q) L%O(O,T;XG(Q))‘

(49)

Let us now return to the term Js. Indeed, in view of Proof of Theorem 5.1 [15], we find that
Hb/t st (Mk(ta — Sa) - Mo(ta — Sa)) /S(s - z)_ﬁw*(z)dzds‘
0 o o 0 X0(Q)

t s
2g—eq+ep a—-1{.a o \47P —B, *
< bC(a, p, )k 3 /0 s (e ) /0 (s = 2P0 (2|1 v00 stz o

(50)
It is easy to see that
S B 75 N
A (S Z) w (Z)dZHXf5P+5LI+9+W(Q)
< _ N\N—B.—m mH * ’
_/0(3 z2) PzMz w(z)XQ(Q)z
< — ) Bym ’
- (/0 (5=2)"2 dz) L2 (0,TX0(Q2))
e 2
Combining and , we derive that
2q—eq+tep Eq+€p t q—p
m a—pf-m(;a  «
O] < O D Bk g ([ (1= ) )
t
2q—eq+e —B—m
<8 B g0 ([ s
bC(a,p,q, B,m) | 20-cqier (g—p)+a—B-m+1
= 07 oa— m 2
a—ﬁ—m—i—l ‘f” t (52)
This inequality implies that
bC(Oz,p,q,ﬁ, ) 2q—eqtep sq+sp a—B—m
15| oo (0,70 (02)) < | fllxe 0 a(g=p)to—f-mtl, (53)

a—ﬁ—m—Fl
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Combining , , , , , we derive that

lw ™ (t) — W ()| oo (0,7:x0 ) < 111l Lo 0,7:x0 () + 1921 Loe (0,70 (02)) + 13l Los (0,7:x0 (02))

+ 1 all oo 0,70 )y + 1195 Los (0,:x0 (02))
2g—eq+tep Eq+sp

m-+togq—o;
e L A V) I,
KfCl (O[, 7) a—aoy ’wkz . U)*
Vala —2m)(1—2y) L35 (0.1 ()
Taq,ap+ak2q £q+tep ‘
+C(m, o, p,q) Tlgo ey
bCl (Oé, ’}/)B(l — 67 1 — ) T2a72m722awfﬁ+1 wk _ w*

\/a(2fy —1)(a—F—-2m+1) L2 (0,T;X8(Q))

bC(a,p,q,B,m)  2a-catep cqtep Vo Bt
taiomait Mgt Gy

Let us choose T such that

KyCi(,7) amay ,  VCUY)BA—B1—m) zecamoser-pn 1
Vala —2m)(1 - 2y) Va@y—1)(a—B-2m+1) -2
Then we get
* 29—eq+tep 6q+5p m4ag—ao
w0) = 0" Ollz o0y < 2@ p FE el
+ 20 (m, a, p, q)T9—oPte 5"
bC(a,p,q,,B,m) 29—eq+tep a(qg—p)+a—B—m+1
T h—my1 }Mwmﬂwqm ’ (55)
The proof is completed. O
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