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Highlights 

• This paper addresses the state space MRAC design for the class of fractional order systems (FOSs). 

• The addressed FOS’s have all their poles different. 

• An extension of adaptive control with fractional order dynamics is designed for second-degree FOSs. 

• The stability analysis is performed and the control efficiency is illustrated with a simulation example. 
 

Article Info 

 

Abstract 

This study proposes an adaptive control synthesis for a class of second-degree fractional order 

systems with different eigenvalues in the state-space domain. The proposed fractional order 

adaptive controller is a generalization of the MRAC controller for the class of scalar fractional 

order systems. In order to control the fractional order plant, an adaptive state space feedback 

controller is applied based on the error between the system output and a chosen reference model 

using a fractional adaptation law to make the fractional order plant track the fractional order 

reference model. We show that the resulting adaptive regulator is able to stabilize the fractional 

order second degree system with a satisfying performance. A simulation example illustrating 

these performance properties is provided along with a comparison with a fractional order sliding 

mode control (FOSMC) to demonstrate the superiority of the proposed control scheme. 
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1. INTRODUCTION 

 

Fractional Order Model Reference Adaptive Control (FOMRAC) became a leading research area in the 

field of automatic control engineering since its first apparition in the literature which was pioneered by the 

teams of Winagre et al. [1] and Ladaci et al. [2,3]. Many design configurations and various applications of 

FOMRAC have been developed since by a continuously growing research community [4].  

 

Engineers soon realized that integer-order linear models often didn't correspond to reality in the field. As a 

result, there was a move towards more complex adaptive MRAC control structures, often requiring a 

minimum of process information. 

 

The most widely used methods are based on the input-output model approach proposed by Narendra and 

Annaswamy in 1989 [5], but for many systems such as power systems and robot manipulators, all state 

information can be measured or observed in real time. As a result, much work has focused on the state-

space MRAC approach, which can be very efficient and more accurate, and which easily allows the 

application of Lyapunov's stability theorem for its analysis [6].Moreover, by introducing fractal-order 

operators for process modeling and/or closed-loop control, we have become able to ensure the stability of 

certain complex systems while achieving better temporal performance and robustness. 

http://dergipark.gov.tr/gujs
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The great interest of the control engineering community for FOMRAC could be justified by the following 

four facts: 

- Fractional order models are able to describe physical systems better than the classical ‘integer-

order’ models. 

- Introducing fractional order dynamics in the closed-loop control system, can improve the system’s 

behaviour, 

- The inherent properties of fractional-order systems, including a fairly wide gain margin and the 

memory effect, make the control system more robust against disturbances and noise than integer-

order systems. 

- FOMRAC configuration is still a very simple scheme and easy to implement compared to other 

adaptive controllers. 

 

So, compared with conventional integer-order MRAC, the FOMRAC control scheme not only improves 

the performance of the controlled system, increasing its robustness against external noise and disturbances 

that are often associated with processes operating in hostile environments, but also enables a wider class of 

systems with more complex or higher-order models to be tackled [7,8]. 

 

A multitude of research works have proposed FOMRAC-based adaptive control configurations;Some 

examples of the research work performed in this area are: robust fractional adaptive control based on 

MRAC structure [9], FOMRAC for scalar systems in state space domain [10], indirect MRAC for a class 

of linear FOSs [11], MRAC for FOSs using discrete-time approximation methods [12],  fractional order 

composite MRAC for MIMO systems [13,14], fractional order tube MRAC applied to fractional order 

linear systems [15], direct FOMRAC for a class of fractional order commensurate linear systems [16] and 

[17], optimal fractional order Lyapunov based MRAC [18], …etc. 

 

A number of these aforementioned design proposals for adaptive controllers were done in the state space 

domain, which justifies the growing number of publications dealing with this topic [19-21].Additionally, 

numerous applications have used FOMRAC-based to achieve their control, e.g., blood pressure supervision 

for postoperative patients [22], the control of a tank’s level in [23], and of a magnetic levitation system in 

[24], adaptive control for anaesthesia [25], an electrical vehicle cruise adaptive control [26], adaptive 

control strategy for piezo-actuated active vibration isolation systems [27], control of an active suspension 

system [28], MRAC configuration for robust fuzzy control for uncertain FOSs [29],MRAC control of an 

F15 aircraft pitch angular motion [30], …etc. 

 

Many researchers are currently investigating the use of reference model control for systems represented by 

a fractional-order model. Various sub-classes of this type of model can represent many industrial or 

technological processes. 

 

A fractional model reference adaptive control design is proposed in [31] to deal with fractional order scalar 

systems.  In [8] FOMRAC adaptive control is applied to the class of fractional-order multivariable system 

with parameter uncertainty while in [32] the adaptive control design addresses the class of systems whose 

orders are switched among a fractional value in the interval (0,1) and 1 at certain time instants. In [33], the 

class of fractional order systems with matched uncertainty was addressed and in [34], the ‘composite’ 

MRAC control was extended to the class of multivariable fractional-order systems with arbitrary relative 

degree. More recently, the authors in [35] addressed the problem of constrained performance FOMRAC 

control design for a class of fractional order transfer functions with unknown parameters. 

 

In this paper, a direct FOMRAC synthesis is introduced to deal with the class of second degree non-integer 

order systems represented in the state space domain with a state matrix having different eigenvalues. The 

resulting fractional adaptive controller is a generalization of the controller introduced in [10] for the class 

of scalar FOSs.  

 

In particular, the proposed FOMRAC scheme is designed to control fractional-order systems described in 

state space by a state vector of order 𝑛 > 1. To the best of our knowledge, this is the first time that a 

FOMRAC adaptive controller has been proposed in the literature for this class of fractional-order systems. 
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Besides, the processes modelized by Equation (8) present greater complexity than those most often studied 

in the literature. For this reason, in this study we consider only the subclass of second-order systems whose 

state matrix has distinct eigenvalues. 

 

The remainder of this paper is organized as follows: section 2 presents the main definitions and concepts 

of fractional order systems. In section 3, the main control problem is detailed whereas section 4 presents 

the proposed state space FOMRAC scheme. In section 5 a numerical simulation example is given and 

discussed. Finally, some concluding remarks are given in section 6. 

 

2. BASIC CONCEPTS FOR FRACTIONAL ORDER SYSTEMS 

 

2.1. Definitions 

 

The most popular definitions for fractional order derivation and integration are named Riemann-Liouville, 

Caputo and Grünwald-Letnikov [36].  

 

The Riemann-Liouville (RL) fractional order integral of order 𝜂 > 0 for the function 𝑥(𝑡) is defined as 

𝐼𝑅𝐿 𝑡0

𝜂
𝑥(𝑡) =  

1

Γ(𝜂)
∫ (𝑡 − 𝜏)𝜂−1𝑥(𝜏)𝑑𝜏

𝑡

𝑡0
 , (1) 

 

whereas the definition of RL fractional order derivative of order 𝜂 > 0  for the function 𝑥(𝑡) is given by 

𝐷𝑅𝐿 𝑡0

𝜂
𝑥(𝑡) =  𝐷𝑛𝐼𝑛−𝜂𝑥(𝑡) ,  

                    =
𝑑𝑛

𝑑𝑡𝑛 [
1

Γ(𝑛−𝜂)
∫ (𝑡 − 𝜏)𝑛−𝜂−1𝑥(𝜏)𝑑𝜏

𝑡

𝑡0
], (2) 

where Γ(. ) represents the Euler’s gamma function, such that (𝑛 − 1 < 𝜂 < 𝑛, 𝑛 ∈ 𝑁). 

 

The definition of the fractional order Caputo(C) derivative of order 𝜂 > 0 is given by: 

 

𝐷𝐶 𝑡0

𝜂
𝑥(𝑡) =  

1

Γ(𝑛−𝜂)
∫ (𝑡 − 𝜏)𝑛−𝜂−1𝑥(𝑛)(𝜏)𝑑𝜏

𝑡

𝑡0
 , (3) 

 

where 𝜂 is a real number verifying: 𝑛 − 1 < 𝜂 < 𝑛. 

 

The definition of Grünwald-Letnikov (GL) is presented as: 

 

𝐷𝐺𝐿 𝑡0

𝜂
𝑥(𝑡) =  lim

ℎ→0
∑ 𝜔𝑗

(𝜂)
𝑥(𝑘ℎ − 𝑗ℎ)𝑘

𝑗=0  , (4) 

 

where ℎ is the sampling time, whereas the coefficients 𝜔𝑗
(𝜂)

 are computed as follows: 

 

𝜔𝑗
(𝜂)

=
(−1)𝑗Γ(𝜂+1)

Γ(𝑗+1)Γ(𝜂−𝑗+1)
, j=0, 1, ..., k. 

 

(5) 

This last definition is also used as a numerical approximation technique for the fractional order integral and 

derivative by taking the time 𝑡 = 𝑘ℎ. 

 

2.2. Fractional-Order Systems Representation 

2.2.1. Fractional-order transfer functions and matrices 

Many natural dynamic systems have behavior that can be modeled by differential equations with fractional-

order derivatives. By applying the Laplace transform to such equations and assuming zero initial conditions 

we obtain transfer functions with non-integer powers of the complex Laplace variable ′𝑠′. 
A general form of this function is given below: 
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𝐹(𝑠) =  
∑ 𝑏𝑖𝑠

𝑞𝑖𝑀
𝑖=1

∑ 𝑎𝑗𝑠
𝑝𝑗𝑁

𝑖=1

,    𝑀,𝑁 ∈ ℕ∗, 𝑎𝑗 , 𝑏𝑖, 𝑝𝑗 , 𝑞𝑖 ∈ ℛ. 

 

(6) 

If the fractional-order process is MIMO (Multiple Input – Multiple Output) its m inputs and its 𝑛 outputs 

will be linked by an 𝑛 × 𝑚 transfer matrix whose elements are similar to Equation (6). 

 

2.2.2. Bode ideal transfer function 

In order to illustrate some interesting properties of fractional-order models, let us consider the ideal transfer 

function proposed by Bode in his works about amplifying feedbacks which used as reference model in 

many fractional-order control schemes [37]. 

 

This function has the form:  

 

𝐿(𝑠) = (
𝑠

𝜔𝑐
)
𝛼

 
(7) 

where 𝜔𝑐is the desired cut frequency and𝛼is the ideal characteristic slope of the gain. The phase margin is 

constant and equal to 𝜙𝑚 = 𝜋(1 +
𝛼

2
)for all the gain values whereas the gain margin𝐴𝑚is infinite. The 

bode diagram of this function is represented in Figure 1. 

 

Figure 1. Bode diagram of the ideal transfer function 

 

2.2.3. Fractional-order state representation 

Fractional-order systems can also be represented in state space [38]: 

𝐷𝑡0
𝛼 𝑥 = 𝐴𝑥 + 𝐵𝑢  

     𝑦 = 𝐶𝑥 + 𝐷𝑢 

 

(8) 

where 𝑢 is the input vector, 𝑥 the state vector and 𝑦 the system output vector. The state space 

representation of integer order systems is a particular case of Equation (8) with 𝛼 = 1. 

Theorem 2.1. [38] The state space representation Equation (8) corresponds to the transfer matrix, 

𝑦 = [𝐶(𝑠𝛼𝐼 − 𝐴)−1𝐵 + 𝐷]𝑢 (9) 

 

with the assumption that all initial conditions are zero. 
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2.3. Mathematical tools for stability analysis 

 

We recall here, some important results on the stability of FOSs. 

 

Lemma 2.2. (Meyer–Kalman–Yakubovich) [39] 

 

Consider a stable matrix A, vectors B, C and a scalar 𝑑 ≥ 0, then: If 

 

𝐺(𝑠) = 𝑑 + 𝐶𝑇(𝑠𝐼 − 𝐴)−1𝐵 

 

(10) 

is strictly positive real (SPR), then for any given 𝐻 = 𝐻𝑇 > 0, there exist a scalar 𝑟 > 0, a vector 𝑧 and a 

matrix 𝑃 = 𝑃𝑇 > 0 such that: 

 

𝐴𝑇𝑃 + 𝑃𝐴 =  −𝑧𝑧𝑇 − 𝑟𝐻 

𝑃𝐵 − 𝐶 = ∓𝑧√2𝑑. (11) 

 

Now, if we consider a non-integer order nonlinear time-varying system of the form: 

 

𝐷𝐶 𝑡0

𝜇
𝑓(𝑡) =  𝑓(𝑥, 𝑡) 

 

(12) 

where 𝑡 represents the time and 𝜇 ∈ (0,1) with Caputo derivative. The following important result for the 

stability analysis of the fractional order system depicted byEquation (12) is obtained. 

 

Definition 2.3. [39] We say that a continuous function 𝜑: [0, t) → [0,∞) is a class-K function if it is strictly 

increasing and 𝜑(0) = 0. 

 

Theorem 2.4. [40] If we consider a non-autonomous FOSof the form Equation (12), with an equilibrium 

point at 𝑥 = 0. If a Lyapunov function 𝑉(𝑡, 𝑥(𝑡))and the class −K functions𝜑𝑖 (𝑖 = 1,2,3)exist and satisfy: 

 

𝜑1(‖𝜉‖) ≤ 𝑉(𝑡, 𝜉(𝑡)) ≤ 𝜑2(‖𝜉‖) 

 

(13) 

𝐷𝐶 𝑡0

𝜇
𝑉(𝑡, 𝜉(𝑡)) =  −𝜑3(‖𝜉‖) 

 

(14) 

with 𝜇 ∈ (0,1), then the FOS Equation (12) is asymptotically stable. 

 

We recall also the following lemma, 

 

Lemma 2.5. [40] Suppose that 𝑥(𝑡) ∈ ℜ𝑛 𝑖𝑠 𝑎 derivable function, with 𝑄 = 𝑄𝑇 ≥ 0 ∈ ℜ𝑛×𝑛 then, for 

any time instant 𝑡0 

 
1

2
𝐷𝐶 𝑡0

𝜇
𝜑𝑇(𝑡)𝑄𝜑(𝑡) ≤  𝜑(𝑡)𝑄

1

2
𝐷𝐶 𝑡0

𝜇
𝜑(𝑡)   

(15) 

 

3. PROBLEM STATEMENT 

 

We consider the fractional order system described by the following standard state space controllable form: 

 

𝐷𝛼𝑥 = 𝐴𝑥 + 𝐵𝑢, 
𝑦 = 𝐶𝑥  
 

(16) 

where 𝛼 is the fractional order lying between (0, 1), 𝑦 is the plant output, 𝑢 is the input, and 𝐴 ∈ ℜ𝑛×𝑛, 

𝐵 ∈ ℜ1×𝑛and 𝐶 ∈ ℜ𝑛×1are constant plant parameters that are assumed to be unknown, and are given as 

follow: 
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𝐴 =

[
 
 
 
 

0     1     0     …         0
0      0      1     …        0
⋮      ⋱      ⋱      ⋯       0
0           …         0        1

−𝑎0 − 𝑎1  ⋯     − 𝑎𝑛−1]
 
 
 
 

, 𝐵 =

[
 
 
 
 
 
0
⋮
⋮
⋮
0
1]
 
 
 
 
 

,          C=[1 

0 … 0] 

(17) 

 

Hypothesis 3.1.  

 

The state matrix 𝐴 has eigenvalues that are all different. 

 

This Hypothesis means that it is possible to decouple the system directly to a diagonal (real or complex) 

one by making use of congruence or strict equivalence transformations to  𝐴 [41]. 

 

A chosen reference model specified by a fractional state space equation is given by: 

 

𝐷𝛼𝑥𝑚 = 𝐴𝑟𝑥𝑚 + 𝐵𝑟𝑟(𝑡), 
𝑦𝑚 = 𝐶𝑟𝑥𝑚 

(18) 

 

where 𝐴𝑚 ∈ ℜ𝑛×𝑛, 𝐵𝑚 ∈ ℜ𝑛×1and 𝐶𝑚 ∈ ℜ1×𝑛are constant parameters and 𝑟(𝑡)is a bounded external 

reference signal. 

We define the tracking error  

𝑒 = 𝑦 − 𝑦𝑚. 
 

(19) 

We propose an adaptive feedback control scheme using a fractional adaptation law to make the fractional 

order plant Equation (16) track the fractional order reference model Equation (18), as follows 

 

𝑢 = 𝐾𝑥𝑥 + 𝐾𝑟𝑟 

 

(20) 

where 𝐾𝑥 ∈ ℜ1×𝑛and 𝐾𝑟 ∈ ℜ are the adaptive gains. 

 

4. FRACTIONAL-ORDER ADAPTIVE CONTROL SCHEME 

 

We propose the following adaptations laws for the control gain matrix 𝐾 update: 

𝐷𝛼𝐾 = −𝛾𝐵𝑇𝑃𝑒𝑥𝑎
𝑇 (21) 

  

where 𝐾 = [𝐾𝑥𝐾𝑟], 𝑥𝑎 = [
𝑥
𝑟
], and 𝛾, a positive scalar, is the adaptation gain. The overall adaptive controller 

configuration is represented in Figure 2. 
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Figure 2. Proposed adaptive control configuration 

 

4.1. Stability Result 

 

Our main result can be stated in the following theorem. 

 

Theorem 4.1. Consider the FOS of Equation (16), and the reference model Equation (17) then the MRAC 

controller given by Equation (20) and Equation (21) stabilizes the closed loop system and all the error signal 

Equation (19) converge to zero. 

 

4.2. Stability Analysis and Proof 

 

To prove Theorem 4.1, we will have to need some important results. First, when considering the scalar 

system case, that is 𝑛 = 1. 

 

Theorem 4.2. (Scalar system, 𝒏 = 𝟏) [10] Consider the FOS given by Equation (16), and the reference 

model given by Equation (17) with 𝑛 = 1, then the MRAC controller given by Equation (20) and Equation 

(21) stabilizes the closed loop system and the error signal Equation (19) converge to zero. 

 

Proof of Theorem 4.2. See ref. [10]. 

 

Now let us consider the fractional order system of Equation (16), and the reference model of Equation (17) 

with 𝑛 = 2.  

 

Since the system verifies Hypothesis 3.1, then the matrix 𝑃 for which the columns are the eigenvectors of 

the state matrix 𝐴 is invertible and we have the following: By putting, 

 

𝑧 = 𝑃𝑥.             
                                                                                                                                          (22) 

And using the dynamics of x given in Equation (16), the dynamics of z can be written as follows: 

𝐷𝛼𝑧 = 𝑃𝐴𝑃−1𝑧 + 𝑃𝐵𝑢,                                                                                                                                (23) 

𝑦 = 𝐶𝑃−1𝑧.  

And if we decompose the state vector𝑧 = [
𝑧1

𝑧2
], the control action 𝑢 into two scalar controls 𝑢1 and 𝑢2, and 

defining the command vector 𝑃𝐵 adequately we can rewrite the system Equation (16) into two subsystems: 

 

Σ1: 𝐷
𝛼𝑧1 = �̌�1𝑧1 + �̌�1𝑢1,                                                                                                                         (24) 

𝑦1 = �̌�1𝑧1 

Σ2: 𝐷
𝛼𝑧2 = �̌�2𝑧2 + �̌�2𝑢2,                                                                                                                         (25) 

𝑦2 = �̌�2𝑧2. 

Using two FOMRAC controllers of the forms Equation (16) and Equation (17) to the subsystems Σ1 

Equation (24) and Σ2 Equation (25) respectively, 
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𝑢𝑖 = 𝑘𝑧𝑖𝑧𝑖 + 𝑘𝑟𝑟  (26) 

𝐷𝛼𝐾 = −𝛾𝐵𝑇𝑃𝑒𝑧𝑎
𝑇   

 

where 𝐾 = [𝑘𝑧𝑘𝑟], 𝑧𝑎 = [
𝑧𝑖

𝑟
], and 𝑖 ∈ [1, 2]. 

 

Then from Theorem 4.2, both the closed loop systems are stabilized, and thus the original system Equation 

(16). 

 

5. SIMULATION EXAMPLE AND DISCUSSION 

 

We will proceed now with a numerical simulation example for the application of the proposed FOMRAC 

regulator strategy to a plant with a fractional order model given by Equation (16), and then we'll compare 

it to a fractional-order FOPID controller which is optimized using the Particle Swarm Optimization (PSO) 

algorithm. Simulations are implemented on Matlab Simulink. 

The plant model is given by, 

𝐷𝛼𝑥 = [
0 1

−1 0.5
] 𝑥 + (

0
1
)𝑢                                                                                                                    (27) 

 

and let us choose a reference model as, 

Dαxm = [
0 1

−1 −2
] xm + (

0
1
) r.                                                                                                               (28) 

 

 

5.1. Application of the proposed FOMRAC scheme 

 

Let us apply the proposed MRAC algorithm with 𝐵𝑇𝑃 = [3.4  4]Tand different values of the fractional-

order𝛼 ∈ ℜ+. Simulations results are illustrated in Figures 1 to 5. 

We made a comparison between the conventional MRAC and the fractional one while changing 𝛼 from 0.8 

to 1.9 by computing the quadratic error criterion 𝐽𝛼, 

𝐽
𝛼
= ∫ 𝑒2(𝑡)𝑑𝑡

𝑇

0
                                                                                                                                         (29) 

 

where 𝑇 is the simulation time window. 

 

The variation of the quadratic error criterion 𝐽𝛼 versus 𝛼 ∈ [0.8  1.9] is given in Figure 3. The conventional 

MRAC is a special case of the proposed fractional order adaptive controller when 𝛼 = 1. 
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Figure 3. Quadratic error criterion 𝐽𝛼 for 𝛼 = 0.8 to 1.9 

 

 

 
Figure 4. State 𝑥1behavior for 𝛼 = 1.8 
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Figure 5. State 𝑥2 behavior for 𝛼 = 1.8 

 

 
Figure 6. Control signal 𝑢  for 𝛼 = 1.8 
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Figure 7. Control law gains evolution 

 

Figures 4 and 5 illustrate the system’s states  𝑥1 and  𝑥2 for 𝛼 = 1.8 (for which the quadratic criterion 𝐽𝛼is 

minimal). The control signal 𝑢 is depicted in Figure 6 whereas the control law’s gains Equation (20), 𝐾𝑥 

and 𝐾𝑟 are given in Figure 7. 

 

From this simulation results, it is seen that all the variables (states and gains) converge rapidly to their final 

values. The system’s states follow the reference model states with precision. We notice that the time 

response is very short 𝜏𝑟 < 0.02 𝑠𝑒𝑐. 
 

The oscillations in the transitory phase are mainly due to the unstable dynamics of the open loop system 

Equation (27) and to the aggressiveness of the fractional-order adaptive controller, which makes it rapidly 

converge to the desired set point. 

 

From the results shown in Figures 4 and 5, we can draw the conclusion that the states of the system Equation 

(22) controlled by the proposed adaptive regulator track the reference signal 𝑥𝑚(𝑡)with remarkable 

performance under the control signal 𝑢(𝑡), and the tracking error 𝑒(𝑡). The simulation illustrates the 

efficiency of the state space FOMRAC adaptive control scheme for stabilizing the considered class of 

fractional order systems Equation (16).  

 

Figure 7 shows that the adaptation gain 𝐾 = [𝐾𝑥  𝐾𝑟] stabilizes quickly at final values, as expected in [42].  

 

5.2. Comparison with a FOSMC Controller   

 

In order to demonstrate the effectiveness of this fractional-order adaptive control scheme, we will compare 

it with the results obtained with a fractional-order sliding mode controller (FOSMC)designed on the basis 

of the power rate reaching law approach used to reduce the chattering phenomena in the control signals 

[43,44]. In particular, we consider the fractional order version of this SMC approach proposed by Efe in 

[45]. 

 

The siding surface is defined as follows: 

 

𝑠(𝑡) = 𝑎𝑒(𝑡) + 𝐷𝛼𝑒(𝑡)                                                                                                                                          (30) 
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with 𝑒 = 𝑟 − 𝑥1 and α is the fractional order of the system Equation (27). 

 

This leads to, 

 

Dαe = Dαr − Dαx1                                                                                                                                   (31) 

Considering a step reference signal r, we obtain 

 

Dαe = −Dαx1 = −x2.                                                                                                                               (32) 

From Equation (30), we get 

 

s = ar − ax1 − x2.                                                                                                                                    (33) 

We define 

Dαs = −ksγ                                                                                                                                              (34) 

where 𝛾 is a positive real number.  

Taking the fractional order derivative of the sliding surface Equation (33), we obtain 

𝐷𝛼𝑠 = −𝑎𝐷𝛼𝑥1 − 𝐷𝛼𝑥2 

          =  −𝑎𝑥2 + 𝑥1 − 0.5𝑥2 − 𝑢 = −𝑘𝑠𝛾.                                                                                               (35) 

So, the control law is given by, 

𝑢(𝑡) = −(𝑎 + 0.5)𝑥2 + 𝑥1 + 𝑘𝑠𝛾                                                                                                            (36) 

The stability analysis of this command can be found in [44,45]. 

The FOSMC simulation results were performed using the following parameters’ values: 

𝑘 = 10, 𝑎 = 5, 𝛾 = 1.4 .                                                                                                                         (37) 
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Figure 8. Comparative response of FOMRAC and FOSMC controllers 

 

 

 

 

Figure 9. Control signals of FOMRAC and FOSMC controllers 
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The comparative responses are given in Figures 8 and 9. They illustrate that the response of the proposed 

adaptive controller is far superior to that obtained with a FOSMC regulator. The latter exhibits a slower 

response time than the FOMRAC. 

 

It appears also from Figure 9 that the control effort of FOSMC controller presents a huge initial overshoot 

comparatively to the control signal of the proposed FOMRAC controller. This validates the superiority of 

the proposed fractional adaptive controller as confirmed also recently in [46]. 

 

5.3. Comparison Study with an Uncertain Fractional-order System 

 

In this experiment, uncertainty is introduced into the system state matrix Equation (27) in order to test and 

compare the robustness of the proposed FOMRAC control scheme with that of a FOSMC control. We 

obtain the following uncertain model, 

𝐷𝛼𝑥 = (
0 1

−1 𝛿
) 𝑥 + (

0
1
) 𝑢                                                                                        (38) 

 

where 𝛿 is a random number such that 𝛿 ∈ [0, 1]. 
 

Applying the proposed FOMRAC controller and the FOSMC given by Equation (36) with the parameters 

of Equation (37) we obtain the comparative output responses and control efforts illustrated in Figure 10 and 

Figure 11, respectively. 

 

 
Figure 10. Comparative response with a FOSMC controller for an uncertain model 
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Figure 11. Comparative control efforts with a FOSMC controller for an uncertain model 

It can be seen that the response of the proposed controller is better than that of the PID controller in terms 

of response time and transient behavior, as shown in Figure 10.Figure 11 also clearly shows that the effort 

required by the FOMRAC controller is smaller and less oscillatory than that of the FOSMC controller. 

 

6. CONCLUSION 

 

In this study, a model reference adaptive controller for a class of FOSs of second degree with different 

poles has been proposed. The proposed FOMRAC adaptive controller is a generalization of the MRAC 

controller for the class of scalar FOSs. In order to control the fractional order plant, an adaptive state space 

feedback controller is applied based on the error between the system output and the chosen reference model. 

We showed that the FOS can be stabilized using the proposed fractional order state space feedback 

controller which is based on the MRAC configuration for a second-degree system. A numerical example 

illustrating the effectiveness of this generalized control solution was also provided and its superiority to 

FOSMC control illustrated even in presence of model uncertainties. 

 

Future research work will include experimental application of the proposed FOMRAC control scheme and 

validation of the obtained theoretical and simulation results. 
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