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This study proposes an adaptive control synthesis for a class of second-degree fractional order
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systems with different eigenvalues in the state-space domain. The proposed fractional order
adaptive controller is a generalization of the MRAC controller for the class of scalar fractional
order systems. In order to control the fractional order plant, an adaptive state space feedback
controller is applied based on the error between the system output and a chosen reference model
using a fractional adaptation law to make the fractional order plant track the fractional order
reference model. We show that the resulting adaptive regulator is able to stabilize the fractional
order second degree system with a satisfying performance. A simulation example illustrating
these performance properties is provided along with a comparison with a fractional order sliding

Different eigenvalues

mode control (FOSMC) to demonstrate the superiority of the proposed control scheme.
Stability analysis

result, there was a move towards more complex adaptive MRAC control structures, often requiring a
minimum of process information.

The most widely used methods are based on the input-output model approach proposed by Narendra and
Annaswamy in 1989 [5], but for many systems such as power systems and robot manipulators, all state
information can be measured or observed in real time. As a result, much work has focused on the state-
space MRAC approach, which can be very efficient and more accurate, and which easily allows the
application of Lyapunov's stability theorem for its analysis [6].Moreover, by introducing fractal-order
operators for process modeling and/or closed-loop control, we have become able to ensure the stability of
certain complex systems while achieving better temporal performance and robustness.
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The great interest of the control engineering community for FOMRAC could be justified by the following
four facts:
- Fractional order models are able to describe physical systems better than the classical ‘integer-
order’ models.
- Introducing fractional order dynamics in the closed-loop control system, can improve the system’s
behaviour,
- The inherent properties of fractional-order systems, including a fairly wide gain margin and the
memory effect, make the control system more robust against disturbances and noise than integer-
order systems.
- FOMRAC configuration is still a very simple scheme and easy to implement compared to other
adaptive controllers.

that are often associated with processes operating in hostile environments, but
systems with more complex or higher-order models to be tackled [7,8].

examples of the research work performed in this area are: robu i%e control based on
MRAC structure [9], FOMRAC for scalar systems in state spac i indi MRAC for a class
of linear FOSs [11], MRAC for FOSs using discrete-time a i 12], fractional order

[17], optimal fractional order Lyapunov based MRA!

A number of these aforementioned design propd8als for adaptive controllers were done in the state space
domain, which justifies the growing number of piblications dealing with this topic [19-21].Additionally,
numerous applications have used FOMR sedfo achieve their control, e.g., blood pressure supervision
for postoperative patients [22], the contfol 0 s level in [23], and of a magnetic levitation system in
[24], adaptive control for anaesthesia [25], an eleG@iicad vehicle cruise adaptive control [26], adaptive
control strategy for piezo-actuateglactive vibration isgfation systems [27], control of an active suspension
system [28], MRAC configuratio robust fizzy control for uncertain FOSs [29], MRAC control of an
F15 aircraft pitch angular mation [30

Many researchers are €0
a fractional-order model.

the use of reference model control for systems represented by
asses of this type of model can represent many industrial or

adlaptive control is applied to the class of fractional-order multivariable system
ainty while in [32] the adaptive control design addresses the class of systems whose

degree. Moreffecently, the authors in [35] addressed the problem of constrained performance FOMRAC
control design for a class of fractional order transfer functions with unknown parameters.

In this paper, a direct FOMRAC synthesis is introduced to deal with the class of second degree non-integer
order systems represented in the state space domain with a state matrix having different eigenvalues. The
resulting fractional adaptive controller is a generalization of the controller introduced in [10] for the class
of scalar FOSs.

In particular, the proposed FOMRAC scheme is designed to control fractional-order systems described in
state space by a state vector of order n > 1. To the best of our knowledge, this is the first time that a
FOMRAC adaptive controller has been proposed in the literature for this class of fractional-order systems.
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Besides, the processes modelized by Equation (8) present greater complexity than those most often studied
in the literature. For this reason, in this study we consider only the subclass of second-order systems whose
state matrix has distinct eigenvalues.

The remainder of this paper is organized as follows: section 2 presents the main definitions and concepts
of fractional order systems. In section 3, the main control problem is detailed whereas section 4 presents
the proposed state space FOMRAC scheme. In section 5 a numerical simulation example is given and
discussed. Finally, some concluding remarks are given in section 6.

2. BASIC CONCEPTS FOR FRACTIONAL ORDER SYSTEMS

2.1. Definitions

The most popular definitions for fractional order derivation and integration are iouville,

Caputo and Griinwald-Letnikov [36].

The Riemann-Liouville (RL) fractional order integral of ordern > 0 f jon x(t) is defined as
1 t —
RLIZ)x(t) = @fto(t — )" x(v)dr,

whereas the definition of RL fractional order derivative of ordeffgy > 0

ruDp x(8) = D™ x(t)

the fyAction x(t) is given by

_ar[_1 -n-1 2
= [F(n—n) fto(t — )" x(r)dr], (2)
where I'(.) represents the Euler’s gamma functigff, such that (n — 1'®7n < n, n € N).
The definition of the fractional order Cap ivative of order n > 0 is given by:
1 t —n—
cDix(t) = = - J, =" LxM(1)dr, 3
where 7 is a real number verifying:
The definition of Griin presented as
GLDZ,x(t) = 4)
where h ig 0 vhereas the coefficients wj(”) are computed as follows:
ok ()

This last de fn is also used as a numerical approximation technique for the fractional order integral and
derivative byAaking the time t = kh.

2.2. Fractional-Order Systems Representation

2.2.1. Fractional-order transfer functions and matrices

Many natural dynamic systems have behavior that can be modeled by differential equations with fractional-
order derivatives. By applying the Laplace transform to such equations and assuming zero initial conditions
we obtain transfer functions with non-integer powers of the complex Laplace variable s’

A general form of this function is given below:
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Zli‘i1 bisqi (6)

F(s) = T ajstT’ M,N € N*,a;,b;, pj, q; € R.

If the fractional-order process is MIMO (Multiple Input — Multiple Output) its m inputs and its n outputs
will be linked by an n x m transfer matrix whose elements are similar to Equation (6).

2.2.2. Bode ideal transfer function

In order to illustrate some interesting properties of fractional-order models, let us consider the ideal transfer
function proposed by Bode in his works about amplifying feedbacks which used as reference model in
many fractional-order control schemes [37].

This function has the form:

1= (=) )

where w,is the desired cut frequency andeis the ideal characteristic slopg@f the gain. Th se margin is
constant and equal to ¢,, = (1 + g)for all the gain values whereas t in 'ﬁis infinite. The

bode diagram of this function is represented in Figure 1.
4

20logo |G (jw)]

. —20adB/dec

ary £ G(jw)) logw
]

logw

e 1. Bode diagram of the ideal transfer function

Fradtional-Ogder state representation

Fractio ems can also be represented in state space [38]:
Dy, (8)
y=Cx+Du
where u is the input vector, x the state vector and y the system output vector. The state space
representation of integer order systems is a particular case of Equation (8) with a = 1.
Theorem 2.1. [38] The state space representation Equation (8) corresponds to the transfer matrix,
y=[C(s*I —A)"'B+ Dlu 9)

with the assumption that all initial conditions are zero.
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2.3. Mathematical tools for stability analysis
We recall here, some important results on the stability of FOSs.
Lemma 2.2. (Meyer—Kalman-Yakubovich) [39]
Consider a stable matrix A, vectors B, C and a scalar d > 0, then: If
G(s)=d+CT(sI—A)™'B (10)

is strictly positive real (SPR), then for any given H = HT > 0, there exist a scalar r > 0, & vector z and a
matrix P = PT > 0 such that:

ATP 4+ PA= —zzT —rH

PB —C = FzV2d. (11)
Now, if we consider a non-integer order nonlinear time-varying system
Def®) = f(xt) (12)

where t represents the time and u € (0,1) with Caputo derivatiye. TheS@hNlowing important result for the
stability analysis of the fractional order system depicted pyEquat®n (12) i ined.

Definition 2.3. [39] We say that a continuous function ¢: [0,
increasing and ¢ (0) = 0.

) is a class-K function if it is strictly

Theorem 2.4. [40] If we consider a non-
pointat x = 0. If a Lyapunov function V*

onom@us FOSof the form Equation (12), with an equilibrium
the class —K functionse; (i = 1,2,3)exist and satisfy:

1 (I1D = V(& E(®) < @2l (13)

DEV(EE(®) = —s(] (14)

with u € (0,1), then the is asymptotically stable.
We recall also tRggfollowing

x(t) € R" is a derivable function, with Q = QT > 0 € R™™" then, for

1
< 9(0)Q5 D p(®) (15)

3. PROBLEM STATEMENT
We consider the fractional order system described by the following standard state space controllable form:

D%x = Ax + Bu, (16)
y=Cx

where « is the fractional order lying between (0, 1), v is the plant output, u is the input, and A € R™",
B € R™Mand € € R™*are constant plant parameters that are assumed to be unknown, and are given as
follow:
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01 0 0 0 (17)
0 0 1 0
A= - o[B=| c=l1
0 0 1 :
Ao —aq * an-1
0...0]
Hypothesis 3.1.

The state matrix A has eigenvalues that are all different.

This Hypothesis means that it is possible to decouple the system directly to a diagogal (reafor complex)
one by making use of congruence or strict equivalence transformations to A [41].

A chosen reference model specified by a fractional state space equation is gixen by®

D%x,, = Ayxy + Byr(t),
Ym = CrX

(18)

where 4,, € R™", B,, € R™*1and C,,, € R *"are constant jlrame a bounded external

reference signal.
We define the tracking error

e=y—Yn. (19)

We propose an adaptive feedback control
order plant Equation (16) track the fracti

hemelusing a fractional adaptation law to make the fractional
eference model Equation (18), as follows

u=Kux+K,r (20)
where K, € R1*"and K,. € R are th
4. FRACTIONAL-OR
We propose the following ad

D®K = —yBT (21)
where FNK, K, | N = | ¥ and y, a positive scalar, is the adaptation gain. The overall adaptive controller

T
ratiolais reprégented in Figure 2.

Reference Model

r anm = A?'xﬂl + B"r(t)'
| y"l = CJ' ’r??l ym
x [K K] | x
e - e
M
r x +
\ ) T
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Figure 2. Proposed adaptive control configuration
4.1, Stability Result

Our main result can be stated in the following theorem.

Theorem 4.1. Consider the FOS of Equation (16), and the reference model
controller given by Equation (20) and Equation (21) stabilizes the closed |
Equation (19) converge to zero.

4.2. Stability Analysis and Proof

To prove Theorem 4.1, we will have to need some important resflts. Fir henvConsidering the scalar

system case, thatisn = 1.

Theorem 4.2. (Scalar system, n = 1) [10] Consjder the FOS by Equation (16), and the reference
model given by Equation (17) with n = 1, then e MRAC controller given by Equation (20) and Equation
(21) stabilizes the closed loop system and the errdg signal Equation (19) converge to zero.

Proof of Theorem 4.2. See ref. [10].

Now let us consider the fraction ion (16), and the reference model of Equation (17)
withn = 2.
Since the system verifieg is 3. the matrix P for which the columns are the eigenvectors of

the state matrix A4 is ifV€

z = Px.
(22)

And using the dyn ven in Equation (16), the dynamics of z can be written as follows:

(23)

And if we
defining the command vector PB adequately we can rewrite the system Equation (16) into two subsystems:

Zq i .
ose the state vectorz = [Zz]’ the control action u into two scalar controls u, and u,, and

21: Dazl = /1121 + Blul, (24)
y1 =0z
22: DaZZ = Av222 + le‘,z, (25)
Y2 = C22;.

Using two FOMRAC controllers of the forms Equation (16) and Equation (17) to the subsystems X,
Equation (24) and X, Equation (25) respectively,
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u; = kZiZi + krT (26)
D®K = —yBTPezl

where K = [k,k,], z, = [Zr‘] andi € [1, 2].

Then from Theorem 4.2, both the closed loop systems are stabilized, and thus the original system Equation
(16).

5. SIMULATION EXAMPLE AND DISCUSSION

We will proceed now with a numerical simulation example for the application of the gropoSgd FOMRAC
regulator strategy to a plant with a fractional order model given by Equation (16), 'Il compare
it to a fractional-order FOPID controller which is optimized using the Particle S jon (PSO)
algorithm. Simulations are implemented on Matlab Simulink.
The plant model is given by,

D% = [_01 0?5] x + (2) u (27)

and let us choose a reference model as,

DY)y, = [_01 _12] Xm + (2) r. (28)

5.1. Application of the proposed FOMRAC schigme

Let us apply the proposed MRAC algorithm wi = [3.4 4]Tand different values of the fractional-

ordera € R*. Simulations resul e illustrated in Figlires 1 to 5.

We made a comparison between the 8@gventiondl MRAC and the fractional one while changing a from 0.8
to 1.9 by computing the iCc error\Ghiterigh /.,

(29)

is a 3gecial case of the proposed fractional order adaptive controller when a = 1.
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Figure 3. Quadratic error criterion

<Y

_xm1

0 0.005 0.01 0015 002 0.025 0.03 0.035 0.04
Time (s)

Figure 4. State x, behavior for « = 1.8
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Figure 6. Control signal u fora = 1.8

\



SeifEddine KHELAS, Samir LADACI, Yassine BENSAFIA/ GU J Sci, 37(3): x-x(2024)

\

4 i i i i i i i
0 0.005 0.01 0.015 002 0025 0.03 0.035 0.04

Time (s)
lution ’

1.8 (for wHich the quadratic criterion J,is
ntrol law’s gains Equation (20), K,

Figure 7. Control law gains e

Figures 4 and 5 illustrate the system’s states x; and
minimal). The control signal u is depicted in Figyre 6 wherea
and K, are given in Figure 7.

From this simulation results, it is seen th
values. The system’s states follow the rete odel states with precision. We notice that the time
response is very short 7, < 0.02 seg.

From the results shown i A8, e can draw the conclusion that the states of the system Equation
d adaptive regulator track the reference signal x,,(t)with remarkable
performance undg
efficiency of the ¢

In order to demonstrate the effectiveness of this fractional-order adaptive control scheme, we will compare
it with the results obtained with a fractional-order sliding mode controller (FOSMC)designed on the basis
of the power rate reaching law approach used to reduce the chattering phenomena in the control signals
[43,44]. In particular, we consider the fractional order version of this SMC approach proposed by Efe in
[45].

The siding surface is defined as follows:

s(t) = ae(t) + D%e(t) (30)
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with e = r — x; and a is the fractional order of the system Equation (27).

This leads to,

D% = D% — D%x, (31)
Considering a step reference signal r, we obtain

D% = —D%, = —x,. (32)

From Equation (30), we get

S = ar — ax; — Xy. (33)
We define
D% = —ksY (34)

where y is a positive real number.

Taking the fractional order derivative of the sliding surface Equatighi (33), btain
D%s = —aD%x; — D%x,
= —ax, +x; —0.5x, —u = —ks?. (35)

So, the control law is given by,

u(t) = —(a+ 0.5)x, + x; + ks? (36)
The stability analysis of this command ¢ ounyd in [44,45].
The FOSMC simulation results were performed usi following parameters’ values:

(37)

k=10, a=5, y=14. V
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Figure 9. Control signals of FOMRAC and FOSMC controllers
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The comparative responses are given in Figures 8 and 9. They illustrate that the response of the proposed
adaptive controller is far superior to that obtained with a FOSMC regulator. The latter exhibits a slower
response time than the FOMRAC.

It appears also from Figure 9 that the control effort of FOSMC controller presents a huge initial overshoot
comparatively to the control signal of the proposed FOMRAC controller. This validates the superiority of
the proposed fractional adaptive controller as confirmed also recently in [46].

5.3. Comparison Study with an Uncertain Fractional-order System

der to test and
control. We

In this experiment, uncertainty is introduced into the system state matrix Equation (27) in
compare the robustness of the proposed FOMRAC control scheme with that of a FO
obtain the following uncertain model,

a. (0 1 0
Dx-(_1 6)x+(1)u (38)
where & is a random number such that § € [0, 1].
Applying the proposed FOMRAC controller and the FOSMC giv, ith the parameters
of Equation (37) we obtain the comparative output responses ang con ated in Figure 10 and

Figure 11, respectively.

e AN

EFOMRAC
FOSMC
2
15
AAAMA A o
VUV
"
5t - -
0 0.5 1 15 2 2.5 3

Time (s)

Figure 10. Comparative response with a FOSMC controller for an uncertain model
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Figure 11. Comparative control effortsdffith a FOSMC controller for an uncertain model
It can be seen that the response of the proposed c@ntroller is better than that of the PID controller in terms
of response time and transient behavior, Figure 10.Figure 11 also clearly shows that the effort
required by the FOMRAC controller is ss oscillatory than that of the FOSMC controller.

6. CONCLUSION

ler for a class of FOSs of second degree with different
AC adaptive controller is a generalization of the MRAC

RAC configuration for a second-degree system. A numerical example
is generalized control solution was also provided and its superiority to
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