
Universal Journal of Mathematics and Applications, 6 (3) (2023) 122-129
Research paper

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653
DOI: https://doi.org/10.32323/ujma.1288015

On the Study of Semilinear Fractional Differential Equations
Involving Atangana-Baleanu-Caputo Derivative

Samira Zerbib1*, Khalid Hilal1 and Ahmed Kajouni1

1Laboratory of Applied Mathematics and Scientific Computing Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
*Corresponding author

Article Info

Keywords: Atangana-Baleanu-Caputo
derivative, Fractional semi-linear dif-
ferential equation, Krasnoselskii fixed
point theorem, Resolvent family
2010 AMS: 34A12, 35B50, 32G34
Received: 26 April 2023
Accepted: 23 September 2023
Available online: 24 September 2023

Abstract

This work aims to study the existing results of mild solutions for a semi-linear Atangana-
Baleanu-Caputo fractional differential equation with order 0 < θ < 1 in an arbitrary Banach
space. We rely on some arguments to present the mild solution to our problem in terms
of an θ -resolvent family. Then we study the existence of this mild solution by using
Krasnoselskii’s fixed point theorem. Finally, we give an example to prove our results.

1. Introduction

Fractional calculus has been developed intensively since the first conference on this area in 1974 [1]. Then, it gained popularity and
significant consideration mainly due to the numerous applications in various fields of applied sciences and engineering. Its purpose is to
extend fractional order derivation or integration using non-integer orders. the fractional calculus has been used in mechanics since 1930
and in electrochemistry since 1960. There are some examples of current applications of fractional calculus: fluid circulation, chemical
physics, probability and statistics, viscoelasticity, dynamic processes in structures, optics and processing of signals, etc. See [2]- [5]. several
mathematicians and physicists studied differential operators and fractional order systems. In [6], the authors studied the existence and
uniqueness results to the linear and nonlinear proposed fractional differential equations involving the Atangana–Baleanu fractional derivative.
In [7], optimal control for a fractional-order nonlinear mathematical model of cancer treatment is presented and the fractional derivative is
defined in the Atangana–Baleanu Caputo sense. The advantage of the ABC-fractional derivative is that it is non-local and has a non-singular
kernel. Therefore, it has many applications to demonstrate different problems including the fractional epidemiological model [8], such
as, free motion of a coupled oscillator [9], coronavirus and smoking models [10, 11], etc. For more details on the theory of nonlinear
ABC-fractional derivative. See [12]- [16].
In what follows, we discuss the existence of the mild solution of the following Atangana-Baleanu-Caputo fractional semi-linear differential
equation


ABCDθ

0+

(
w(t)−Q(t,AB Iθ

0+w(t))
)
= A

(
w(t)−Q(t,AB Iθ

0+w(t))
)
+Y (t,AB Iθ

0+w(t), t ∈ [0,T ]

w(0) = w0, w0 ∈ R,
(1.1)

where 0 < θ < 1, ABCDθ
0+(.) is the Atangana-Baleanu-Caputo fractional derivative of order θ , A : D(A) ⊂ X → X is the infinitesimal

generator of an θ -resolvent family {Tθ (t)}t≥0, {Sθ (t)}t≥0 is solution operator defined on the Banach space (X ,‖ . ‖), Q ∈C(J×X ,X), and
Y ∈C(J×X ,X).
To the best of our knowledge, this is the first time that the problem (1.1) is being studied.
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2. Preliminaries

This section will be devoted to some definitions and lemmas on which we base ourselves to study our problem.
Let J = [0,T ] be a finite interval of R. We denote by C(J,R) the Banach space of continuous functions with the norm ‖Ψ‖= max{|Ψ(t)| :
t ∈ J}.

Definition 2.1. [16]. Let m ∈ [1,∞) and B be an open subset of R, the Sobolev space Hm(B) is defined as

Hm(B) =
{

Φ ∈ L2(B) : Dδ
Φ ∈ L2(B),∀|δ | ≤ m

}
.

Lemma 2.2. (Holder Inequality). Let Λ⊂ R and p,q≥ 1 with 1
p +

1
q = 1. If Φ ∈ Lp(Λ,R), ϕ ∈ Lq(Λ,R), then Φϕ ∈ L1(Λ,R), and

‖Φϕ ‖L1(Λ,R)≤‖Φ ‖Lp(Λ,R)‖ ϕ ‖Lq(Λ,R) .

Definition 2.3. [17]. The left-sided Riemann-Liouville fractional integral of order n−1 < θ < n of a function Φ, such that n = [θ ]+1 is
given by

Iθ

0+Φ(t) =
1

Γ(θ)

∫ t

0
(t− s)θ−1

Φ(s)ds,

where Γ(.) is the Euler gamma function defined by

Γ(z) =
∫ +∞

0
e−t tz−1dt,z > 0.

Definition 2.4. [6]. We define the left-sided Atangana-Baleanu fractional integral of order 0 < θ < 1 of a function Φ, as follows

ABIθ

0+Φ(t) =
1−θ

B(θ)
Φ(t)+

θ

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1

Φ(s)ds,

where B(β ) = 1−β + β

Γ(β )
is a normalization function such that B(0) = B(1) = 1.

Definition 2.5. [6]. Let 0 < θ < 1 and Φ ∈ H1(0,T ). We define the left-sided Atangana-Baleanu fractional derivative of Φ of order θ in
Riemann-Liouville sense as follows

ABRDθ
0+Φ(t) =

B(θ)
1−θ

d
dt

∫ t

0
Eθ

[
−γ(t− s)θ

]
Φ(s)ds,

where γ = θ

1−θ
and Eθ is one parameter Mittag-Leffler function defined by [18].

Eθ (λ ) =
n=∞

∑
n=0

λ n

Γ(nθ +1)
.

Definition 2.6. [19]. Let 0 < θ < 1 and Φ ∈ H1(0,T ). We define the left-sided Atangana-Baleanu-Caputo fractional derivative of the
function Φ of order θ as follows

ABCDθ
0+Φ(t) =

B(θ)
1−θ

∫ t

0
Eθ (−γ(t− s)θ )Φ

′
(s)ds.

Lemma 2.7. [19]. Let 0 < θ < 1, then we have
ABIθ

0+(
ABCDθ

0+Φ(t)) = Φ(t)−Φ(0).

Definition 2.8. [20]. We denote by ρ(A) = {β ∈ C;(β −A) : D(A)→ X is bi jective} the resolvent set. The resolvent R(β ,A) :=
(β −A)−1, β ∈ ρ(A), is a bounded operator on X.

Definition 2.9. [20]. We say that A is a sectorial operator if the following conditions satisfies

i) A is linear and closed operator.
ii) there exist constants M > 0, v ∈ R, and β ∈ [ π

2 ,π], such that
Σ(β ,v) = {λ ∈ C;λ 6= v, |λ − v|< β} ⊂ ρ(A)

iii) ‖ R(λ ,A) ‖≤ M
|λ−v| , λ ∈ Σ(β ,v).

Theorem 2.10. [21]. Let S be a convex, closed, and nonempty subset of the Banach algebra X. Suppose that P,F : S→ X are two operators
such that:

a) Pw+Fv ∈ S for all w,v ∈ S.
b) P is a contraction on S.
c) F completely continuous on S.

Then, the operator w = Pw+Fw has a solution in S.
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3. Main Results

In this section, we give and prove an existence theorem of the mild solution to the ABC fractional semi-linear differential equation (1.1).
The first, we give the following remark on which we will rely to prove our major results.

Remark 3.1. To give the mild solution of the problem (1.1), we rely on the same arguments that the authors used in [22], [23] to determine
the solution to the following Cauchy problem

ABCDθ
t u(t) = Au(t)+g(t), t ∈ [0,T ],0 < θ < 1

u(0) = u0 ∈ X .
(3.1)

The problem (3.1) has a mild solution given by

u(t) = χTθ (t)u0 +
χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1g(s)ds+

θ χ2

B(θ)

∫ t

0
Sθ (t− s)g(s)ds,

where χ and ϕ are linear operators such that:
χ = ζ (ζ I−A)−1 and ϕ =−γA(ζ I−A)−1 with ζ =

B(θ)
1−θ

, γ = θ

1−θ
, and

Tθ (t) = Eθ (−ϕtθ ) =
1

2πi

∫
Γ

etτ
τ
(θ−1)(τθ I−ϕ)−1dτ

Sθ (t) = tθ−1Eθ ,θ (−ϕtθ ) =
1

2πi

∫
Γ

etτ (τθ I−ϕ)−1dτ,

where Γ is a certain path lying on Σ(β ,v) and g ∈C(J,X). See [24].

Based on the above arguments, we give the following definition

Definition 3.2. Let Q ∈C(J×X ,X), J = [0,T ] and Y ∈C(J×X ,X). Then the problem (1.1) admits a mild solution given by

w(t) = χTθ (t)(w0−Q(0,AB Iθ w0))+
χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ w(s))ds

+
θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ w(s))ds,

where χ = ζ (ζ I−A)−1 and ϕ =−γA(ζ I−A)−1 with ζ =
B(θ)
1−θ

and γ = θ

1−θ
.

Lemma 3.3. [22]. If A ∈ Aθ (β0,v0) then ‖ Tθ (t) ‖≤Metv and ‖ Sθ (t) ‖≤Cetv(1+ tθ−1), for all t > 0, v > v0.

According to the Lemma above if we set L1 = supt≥0 ‖ Tθ (t) ‖ and L2 = supt≥0 Cetv(1+tθ−1). We get ‖ Tθ (t) ‖≤ L1 and ‖ Sθ (t) ‖≤ tθ−1L2.
For more details see [22].
Next, we introduce the following assumptions:
(A1) Both operators Tθ (t) and Sθ (t) are compact operators, ∀t ∈ J.
(A2) There is a constant δ such that for each p,q ∈ X , and t ∈ J we have: |Y (t, p)−Y (t,q)| ≤ δ |p−q|.
(A3) The function Y (t, .) : X → X is continuous, for all t ∈ J and the function Y (., p) : X → X is strongly measurable, ∀p ∈ X .
(A4) There exists a constant α ∈ (0,θ ] and h ∈ L

1
α (J,R+), for all p ∈ X , and t ∈ J we have

|Y (t, p)| ≤ h(t).

Define S = {v ∈ X ,‖v‖ ≤ R}, such that:

R =‖ χ ‖

(
L1(|w0|+ |Q(0,AB Iθ w0)|)+(

‖ ϕ ‖ (1−θ)

|Γ(θ)|
+L2 ‖ χ ‖) T (1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

)
,

where C = θ−1
1−α
∈ (−1,0).

It is easy to see that S is a convex, closed, and nonempty subset of the Banach algebra X. Define the operators P : S→ X and F : S→ X , for
each t ∈ J by:

Pw(t) = χTθ (t)(w0−Q(0,AB Iθ w0))+
χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ w(s))ds.

Fw(t) =
θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ w(s))ds.

We consider the mapping G : S→ X defined by

Gw(t) = Pw(t)+Fw(t), t ∈ J.
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Theorem 3.4. If assumptions (A1)-(A4) hold. Then, the fractional semi-linear differential equation (1.1) admits a mild solution w ∈ X
provided:

‖ χ ‖‖ ϕ ‖ (1−θ)T θ

|B(θ)||Γ(θ +1)|
δΘ < 1, (3.2)

where

Θ =
(1−θ)

B(θ)
+

T θ

Γ(θ +1)B(θ)
. (3.3)

Proof. To prove the Theorem 3.4 is equivalent to proving that the mapping G has a fixed point, we show that the operators P and F satisfy
the conditions of the Theorem 2.10.
Before proceeding to the proof of the Theorem 3.4, we will need the following lemma

Lemma 3.5. If there exists a constant α ∈ (0,θ ] and h ∈ L
1
α ([0,T ],R+) such that |Y (t, p)| ≤ h(t) for all p ∈ X, and almost all t ∈ [0,T ],

we have the following inequality∫ t

0
|(t− s)θ−1Y (s,AB Iθ w(s))|ds≤ T (1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

.

Proof. Assuming that all the conditions of the above lemma are satisfied. By a direct calculation, we get (t− s)θ−1 ∈ L
1

1−α [0, t] for t ∈ J and
α ∈ (0,θ ]. Then by using Lemma 2.2, we have∫ t

0
|(t− s)θ−1Y (s,AB Iθ w(s))|ds≤

∫ t

0
|(t− s)θ−1||h(s)|ds

≤
(∫ t

0
(t− s)

θ−1
1−α ds

)1−α (∫ t

0
|h(s)|

1
α ds
)α

≤ T (1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

,

where C = θ−1
1−α
∈ (−1,0).

We now move on to continue the proof of the theorem, then the proof is as follows:
Step 1:
Let w,v ∈ S, then for all t ∈ [0,T ] according to the assumptions A1, A4, Lemma 3.3, and the Lemma 3.5, we have:

|(Pw(t)+Fv(t))|

=

∣∣∣∣χTθ (t)(w0−Q(0,AB Iθ w0))+
χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ w(s))ds+

θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ v(s))ds

∣∣∣∣
≤‖ χ ‖‖ Tθ (t) ‖ (|w0|+ |Q(0,AB Iθ w0)|)+

‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|

∫ t

0
|(t− s)θ−1||Y (s,AB Iθ w(s))|ds

+
θ ‖ χ2 ‖
|B(θ)|

∫ t

0
‖ Sθ (t− s) ‖ |Y (s,AB Iθ v(s))|ds

≤‖ χ ‖ L1(|w0|+ |Q(0,AB Iθ w0)|)+
‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|

∫ t

0
|(t− s)θ−1||Y (s,AB Iθ w(s))|ds+

‖ χ2 ‖
|B(θ)|

L2

∫ t

0
|(t− s)θ−1||Y (s,AB Iθ v(s))|ds

≤‖ χ ‖ L1(|w0|+ |Q(0,AB Iθ w0)|)+
(
‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|
+

L2 ‖ χ ‖2

|B(θ)|

)
T (1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

≤‖ χ ‖

{
L1(|w0|+ |Q(0,AB Iθ w0)|)+

(
‖ ϕ ‖ (1−θ)

|Γ(θ)|
+L2 ‖ χ ‖

)
T (1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

}
,

this gives:

‖ (Pw(t)+Fv(t)) ‖≤ R,

this implies, (Pw(t)+Fv(t)) ∈ S for all w,v ∈ S.
Step 2: P is a contraction on S:
Let w,v ∈ S, then from assumption (A2), we have

|Pw(t)−Pv(t))|=
∣∣∣∣χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ w(s))ds− χϕ(1−θ)

B(θ)Γ(θ)

∫ t

0
(t− s)θ−1Y (s,AB Iθ v(s))ds

∣∣∣∣
≤ ‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|

∫ t

0
(t− s)θ−1|Y (s,AB Iθ w(s))−Y (s,AB Iθ v(s))|ds

≤ ‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|
δ

∫ t

0
(t− s)θ−1|ABIθ w(s))−AB Iθ v(s))|ds. (3.4)
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We have

∣∣∣ABIθ w(s))−AB Iθ v(s))
∣∣∣= (1−θ)

B(θ)
|w(s)− v(s)|+ θ

B(θ)

RL
Iθ |w(s)− v(s)|

≤ (1−θ)

B(θ)
|w(s)− v(s)|+ 1

Γ(θ)B(θ)

∫ s

0
(s− τ)θ−1|w(τ)− v(τ)|dτ

≤‖ w− v ‖
(
(1−θ)

B(θ)
+

1
Γ(θ)B(θ)

∫ s

0
(s− τ)θ−1dτ

)
≤‖ w− v ‖

(
(1−θ)

B(θ)
+

T θ

Γ(θ +1)B(θ)

)
≤‖ w− v ‖Θ,

where Θ is given by (3.3).
Therefore

(3.4)≤ ‖ χ ‖‖ ϕ ‖ (1−θ)

|B(θ)||Γ(θ)|
δΘ ‖ w− v ‖

∫ t

0
(t− s)θ−1

≤ ‖ χ ‖‖ ϕ ‖ (1−θ)T θ

|B(θ)||Γ(θ +1)|
δΘ ‖ w− v ‖,

this implies that

‖ Pw(t)−Pv(t)) ‖≤ ‖ χ ‖‖ ϕ ‖ (1−θ)T θ

|B(θ)||Γ(θ +1)|
δΘ ‖ w− v ‖ .

Then, according to the condition (3.2) the operator P is a contraction on S.
Step 3: F is completely continuous:
i) F is continuous.
Let (wn)n∈N be a sequence of S such that wn→ w as n→ ∞ in S. We prove that Fwn→ Fw as n→ ∞ in S. By using Lemma 3.3, we get

|Fwn(t)−Fw(t)|=
∣∣∣∣ θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ wn(s))ds− θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ w(s))ds

∣∣∣∣
≤ θ ‖ χ2 ‖
|B(θ)|

∫ t

0
‖ Sθ (t− s) ‖ |Y (s,AB Iθ wn(s))−Y (s,AB Iθ w(s))|ds

≤ θ ‖ χ2 ‖
|B(θ)|

L2

∫ t

0
(t− s)θ−1|Y (s,AB Iθ wn(s))−Y (s,AB Iθ w(s))|ds

≤ ‖ χ2 ‖
|B(θ)|

T θ L2 sup
s∈[0,T ]

|Y (s,AB Iθ wn(s))−Y (s,AB Iθ w(s))|ds.

By using the assumption A3 and Lebesgue dominated convergence theorem, we get:
‖Fwn−Fw‖→ 0 as n→ ∞.
This implies that the operator F : S→ X is continuous.
ii) F(S) = {Fw : w ∈ S} is uniformly bounded.
Using assumptions (A1) and (A4), Lemma 3.3, and the Lemma 3.5, for any w ∈ S and t ∈ [0,T ], we have:

|Fw(t)|=
∣∣∣∣ θ χ2

B(θ)

∫ t

0
Sθ (t− s)Y (s,AB Iθ w(s))ds

∣∣∣∣
≤ ‖ χ2 ‖
|B(θ)|

L2

∫ t

0
|(t− s)θ−1||Y (s,AB Iθ v(s))|ds

≤ L2 ‖ χ ‖2 T (1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

.

Therefore,

‖ Fw(t) ‖≤ L2 ‖ χ ‖2 T (1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

,

this proves that F(S) = {Fw : w ∈ S} is uniformly bounded.
iii) F(S) is equicontinuous
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Let t1, t2 ∈ J such that t1 < t2 and w ∈ S, then using assumptions (A1) and (A2), we have

|Fw(t2)−Fw(t1)|

=

∣∣∣∣ θ χ2

B(θ)

∫ t2

0
Sθ (t2− s)Y (s,AB Iθ w(s))ds− θ χ2

B(θ)

∫ t1

0
Sθ (t1− s)Y (s,AB Iθ w(s))ds

∣∣∣∣
≤ ‖ χ2 ‖
|B(θ)|

∣∣∣∣∫ t2

0
|Sθ (t2− s)||Y (s,AB Iθ w(s))|ds−

∫ t1

0
|Sθ (t1− s)||Y (s,AB Iθ w(s))|ds

∣∣∣∣
≤ ‖ χ2 ‖
|B(θ)|

L2

∣∣∣∣∫ t1

0
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds+

∫ t2

t1
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds−

∫ t1

0
(t1− s)θ−1|Y (s,AB Iθ w(s))|ds

∣∣∣∣
≤ ‖ χ2 ‖
|B(θ)|

L2

∣∣∣∣∫ t2

t1
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds

∣∣∣∣+ ‖ χ2 ‖
|B(θ)|

L2
∣∣∫ t1

0 ((t2− s)θ−1− (t1− s)θ−1)|Y (s,AB Iθ w(s))|ds
∣∣

If we set

I =
∣∣∣∣∫ t2

t1
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds

∣∣∣∣ ,

J =

∣∣∣∣∫ t1

0
((t2− s)θ−1− (t1− s)θ−1)|Y (s,AB Iθ w(s))|ds

∣∣∣∣ ,
and by using the arguments of lemma 3.5 we get

I =
∣∣∣∣∫ t2

t1
(t2− s)θ−1|Y (s,AB Iθ w(s))|ds

∣∣∣∣
≤ (t2− t1)(1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

,

and

J =

∣∣∣∣∫ t1

0
((t2− s)θ−1− (t1− s)θ−1)|Y (s,AB Iθ w(s))|ds

∣∣∣∣
≤
∫ t1

0
((t1− s)θ−1− (t2− s)θ−1)|h(s)|ds

≤
(∫ t1

0
((t1− s)θ−1− (t2− s)θ−1)

1
1−α ds

)1−α (∫ t1

0
|h(s)|

1
α ds
)α

≤
(∫ t1

0
((t1− s)C− (t2− s)C)ds

)1−α

‖ h ‖
L

1
α1 [0,t]

≤

(
t1+C
1 − t1+C

2 +(t2− t1)1+C
)1−α1

(1+C)1−α1
‖ h ‖

L
1
α [0,t]

≤ (t2− t1)(1+C)(1−α)

(1+C)1−α
‖ h ‖

L
1
α [0,t]

.

Then, we have

|Fw(t2)−Fw(t1)| ≤
‖ χ2 ‖
|B(θ)|

L2(I + J)

≤ 2L2 ‖ χ2 ‖ (t2− t1)(1+C)(1−α)

|B(θ)|(1+C)1−α
‖ h ‖

L
1
α [0,t]

.

Therefore, if |t1− t2| → 0 then |Fw(t2)−Fw(t1)| → 0, this implies that F(S) is equicontinuous.
According to parts (ii), (iii), and Arzela-Ascoli theorem, it is deduced that F(S) is relatively compact. And according to the part (i) deduce
that it is completely continuous.
According to steps 1, 2, and 3, we notice that all the conditions of Theorem 2.10 hold. Then operator G admits a fixed point in S. This proves
that the problem (1.1) admits a mild solution in C(J,X).

4. Example

This section is devoted to an illustrative example that shows the results of this work.

Let X = L2([0,1]), w(t) = w(., t), Y (t,AB I
1
2

0+w(., t)) = 1
19 (1+ cos(ABI

1
2

0+w(., t)), Q(t,AB I
1
2

0+w(., t)) = 1+ tABI
1
2

0+w(., t)), J = [0,1].
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We Consider the following problem

ABC∂
1
2

t

(
w(x, t)− (1+ tABI

1
2

0+w(x, t))
)
= ∆

(
w(x, t)− (1+ tABI

1
2

0+w(x, t))
)

+ 1
19 (1+ cos(ABI

1
2

0+w(x, t)), t ∈ [0,1],x ∈ [0,1]

w(0, t) = w(1, t) = 0, t ∈ [0,1]

w(x,0) = w0(x), x ∈ [0,1],

(4.1)

where ABC∂
1
2

t is the ABC-fractional partial derivative of order 1
2 , and A : D(A)⊂ X −→ X be an operator defined by

D(A) := H2(0,1)∩H1(0,1) and Au = ∆u.

The operator A generates a uniformly bounded semi-group T (t)t≥0 in X. See [20].

Let v(t) =AB I
1
2

0+w(., t), then Y (t,v(t)) = 1
19 (1+ cos(v(t)). It is clear that

|Y (t,u(t))−Y (t,v(t))| ≤ 1
19 |u− v| and |Y (t,u(t))| ≤ 1. We take h(t) = 1, (‖ χ ‖,‖ ϕ ‖≤ 1), and δ = 1

19 . then the assumptions A2, A3 and
A4 are satisfied.
Now we check for condition (3.2). We have T = 1, θ = 1

2 , then after some calculations, we find

‖ χ ‖‖ ϕ ‖ (1−θ)T θ

|B(θ)||Γ(θ1 +1)|
δΘ≤

1− 1
2

19B( 1
2 )Γ(

1
2 +1)

(
1− 1

2

B( 1
2 )

+
1

B( 1
2 )Γ(

1
2 +1)

)

≤ 1
19B( 1

2 )Γ(
3
2 )

(
1

B( 1
2 )

+
1

B( 1
2 )Γ(

3
2 )

)
' 0,114 < 1.

Then from the results above, deduce that the ABC-fractional semi-linear differential problem (4.1) has a mild solution w in C([0,1]× [0,1],X).

5. Conclusion

In this paper, we have studied the existence of the mild solutions of a fractional semi-linear differential equation involving Atangana-Baleanu-
Caputo fractional derivative with order 0 < θ < 1 by using the Krasnoselskii fixed point theorem. In the end, an illustrative example is
presented to demonstrate our results.
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