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NUMERICAL APPROXIMATION WITH THE SPLITTING

ALGORITHM TO A SOLUTION OF THE MODIFIED

REGULARIZED LONG WAVE EQUATION

Melike KARTA

Department of Mathematics, Ağrı İbrahim Çeçen University, Ağrı, TÜRKİYE

Abstract. In this article, a Lie-Totter splitting algorithm, which is highly
reliable, flexible and convenient, is proposed along with the collocation finite

element method to approximate solutions of the modified regular long wave
equation. For this article, quintic B-spline approximation functions are used in

the implementation of collocation methods. Four numerical examples includ-

ing a single solitary wave, the interaction of two- three solitary waves, and a
Maxwellian initial condition are presented to test the closeness of the solutions

obtained by the proposed algorithm to the exact solutions. The solutions pro-

duced are compared with those in some studies with the same parameters that
exist in the literature. The fact that the present algorithm produces results as

intended is a proof of how useful, accurate and reliable it is. It can be stated

that this fact will be very useful the application of the presented technique
for other partial differential equations, with the thought that it may lead the

reader to obtain superior results from this study.

1. Introduction

Nonlinear partial differential equations play an important role in the modeling
of many disciplines. The generalized regularized long wave (GRLW), presented in
the form below, is among these equations

Ut + Ux − µUxxt + ϵUpUx = 0 (1)

in which p is positive integer, µ and ϵ non-negative constants. The solutions of this
equation, which have an important place in the propagation of nonlinear dispersion
waves, are among the solitary wave types, which are packets or pulses propagat-
ing in a nonlinear dispersion medium. They have shapes that are not affected by
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collisions. These waves preserve their stable wave form since the nonlinear and
dispersive effects have dynamical balance. Sometimes it is not easy to obtain ana-
lytical solutions of all partial differential equations. In this case, various numerical
methods have been developed to obtain approximate solutions to such problems.
Some authors have proposed various approaches to solve Eq.(1) numerically. A few
of them can be given as Petrov-Galerkin finite element method, Petrov-Galerkin
scheme and lumped Galerkin method based on cubic B-splines, respectively, by
Refs. [6, 37, 46], and a collocation method with cubic, septic and quintic B-splines,
respectively, by Refs. [10, 20, 47], and also Chebyshev-spectral collocation scheme
by Ref. [14], parabolic Monge-Ampere moving mesh and uniform by Ref. [2], an
approximate quasilinearization approach by Ref. [33], basis of reproducing kernel
space by Ref. [27], exponential B-spline collocation scheme by Ref. [28] and element-
free kp-Ritz method by Ref. [12]. When p = 1 in Eq.(1), it becomes the regularized
long wave (RLW) equation used to model a significant number of physical phenom-
ena with weak nonlinearity and dispersion waves containing longitudinal dispersive
waves in elastic rods, phonon packets in non-linear crystals, the transverse waves
in shallow water, a pressure wave in liquid’s gas bubbles, ion-acoustic waves and
magnetohydrodynamic wave in plasma. This equation was first introduced by [32]
then [5] worked. Many studies can be found in the literature for the approximate
solution of the RLW equation. Some of those can be given, Refs. [3, 8, 15, 23] with
the finite difference method, Refs. [9,24,41] with the Galerkin and Petrov Galarkin
methods and Refs. [7, 36, 39, 40, 44, 45] with the collocation algorithm as the finite
element method. Additionally, it were worked on methods explicit multistep by
Ref. [25] and Haar wavelet by Ref. [30] for RLW equation. In the present studied,
the modified regularized long wave equation will be discussed

Ut + Ux − µUxxt + 6U2Ux = 0 (2)

given with initial condition

U(x, 0) = g(x), xL ≤ x ≤ xR (3)

and boundary conditions

U(xL, t) = U(xR, t) = 0,

Ux(xL, t) = Ux(xR, t) = 0,

Uxx(xL, t) = Uxx(xR, t) = 0.

(4)

It can be seen that the approximate solutions of the MRLW equation have been
calculated by many methods in the literature. For example, as the finite el-
ement method, while the Galerkin and Petrov Galerkin approaches were stud-
ied by Refs. [16, 18, 37], the collocation algorithm with B-splines was studied by
Refs. [11,13,16,19,21,22,34,36], At the same time, [17] used finite difference scheme
for the MRLW, [1] solved the equation with mesh free collocation method using ra-
dial basis function and [38] acquired the solutions of the equation with the help of
Butcher’s fifth-order Runge-Kutta (BFRK) scheme.
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In this paper, the numerical algorithm of the MRLW equation has been obtained
by obtaining two numerical schemes with the help of the Lie-Trotter splitting algo-
rithm and the quintic B-spline collocation method has been applied to each scheme.
Thanks to this algorithm, the motion of a single solitary wave, the interaction of
two and three solitary waves and the Maxwell initial state have been examined
and thus numerical solutions produced with a hybrid approach have been obtained
as targeted. Furthermore, Linear stability analysis has been investigated with the
help of Von Neumann method.

2. The Splitting Algorithm

One of the developed methods to produce numerical solutions of partial differen-
tial equations is operator splitting methods. A time-dependent partial differential
equation, which usually represents complex physical phenomena such as convection,
diffusion, reaction in chemical phenomena, or diffusion, may consist of a combina-
tion of one or more operators. Although the computational power of computers
has increased rapidly in recent years, good results may not be obtained even if a lot
of time is spent in obtaining numerical solutions of a complex problem. Operator
splitting methods can be a good approach to numerical solution of such problems.
One of these methods is the first-order Lie-Trotter splitting method according to
time. This method is the simplest splitting method that reduces the solution of the
Cauchy problem given as below to the successive solution of two subproblems

dU(t)

dt
= ΛU(t), U(0) = U0, t ≥ 0, (5)

where operator Λ can be written as the sum of operators Â and B̂. In this case,
equation (5) can be written in the following form

dU(t)

dt
= ÂU(t) + B̂U(t), U(0) = U0, t ≥ 0, (6)

in which U0 ∈ X is the vector obtained from the initial condition, u(x, t) is solution

vector, the operators Λ, Â, B̂ are bounded or unbounded operators in a finite or
infinite Banach space X. To solve the equation (6) numerically, firstly splitting
technique split the equation into as follows

dU(t)

dt
= ÂU(t),

dU(t)

dt
= B̂U(t). (7)

Here, let ρ
[Â]
∆t and ρB̂∆t be the numerical solutions of the equations containing the

expressions Â and B̂ in expression (7), and let the exact solution of (6) be given as
ψ∆t. The simplest splitting methods are introduced as follows

ρ
[B̂]
∆t oρ

[Â]
∆t = e∆tB̂e∆tÂ or ρ

[Â]
∆toρ

[B̂]
∆t = e∆tÂe∆tB̂ .

and it is known as the Lie-Trotter splitting technique [42] in the literature. Using
the Taylor series, It can be stated that the following approximation for an initial
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value U0 is a first-order approximation to the solution of equation (6)

ψ∆t(U0) = (ρ
[Â]
∆toρ

[B̂]
∆t )(U0) + 0(∆t2).

Let the formal solution of (6) be given in the form

U(tn+1) = eΛ∆tU(tn) = e(Â+B̂)∆tU(tn). (8)

Unfolding Taylor series for this solution can be given in the following form

U(tn+1) = e∆t(Â+B̂)U(tn) =

∞∑
k=0

tk

k!

(
Â(u(t))

∂

∂U
+ B̂(u(t))

∂

∂U

)k
U(tn).

By calculating the sum of the operators Â and B̂ instead of Λ, a new approach to
Equation (6) can be obtained, presented in the form below

U(tn+1) = eÂ∆teB̂∆tU(tn). (9)

An error occurs if (9) is used instead of the equation (8). This is a local splitting
error given as follows

Te =
1

∆t
(e∆t(Â+B̂) − e∆tB̂e∆tÂ)U(tn)

=
1

∆t
[
∆t2

2
(ÂB̂ − B̂Â)U(tn) +O(∆t3)]

=
1

∆t
[Â, B̂)U(tn) +O(∆t2)]

To explain in more detail: Splitting technique splits the given original problem
into two parts according to the time. As a result, subproblems with a simpler
structure are obtained. Thus, the solution of the original problem is obtained
from the solution of the subproblems. In the Lie-Trotter schemes, the first sub-
problem with operator Â is solved using the original initial condition given with
the problem. Then, the solutions generated with the operator Â are utilized as the
initial condition for the solution of the second sub-problem given with the operator
B̂ and presented as the solution of the main problem in the first time step. In this
way, approximate solutions at the next time levels are obtained similarly to those in
the first time step. Algorithm of the mentioned technique with t0 = 0 and tN = T,

dU∗(t)

dt
= ÂU∗(t), U∗(tn) = U0

n , t ∈ [tn, tn+1],

dU∗∗(t)

dt
= B̂U∗∗(t), U∗∗(tn) = U∗(tn+1) , t ∈ [tn, tn+1].

where U0
n is the original initial condition given in (5), ∆t is the time step, ∆t =

tn+1 − tn, n = 0, 1, ..., N − 1. Thus, the targeted solutions are obtained with

U(tn+1) = u∗∗(tn+1). This scheme is called as (Â− B̂)-shaped splitting scheme.
It can be stated here that solving the sub-problems separately is more advantageous
in terms of computational cost rather than solving the whole problem [26,43].
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3. The Quintic B-splines

In order to make approximate calculations of the MRLW equation, the solution
region is limited to the interval xR ≤ x ≤ xN . This range is partitioned by nodes xj
into uniformly finite elements of length h such that xL = x0 ≤ x1 ≤ ... ≤ xN = xR
and h = xj+1 − xj . The set of quintic B-splines φj(x) for j = −2(1)N + 2 forming
a base on the interval [xL, xR] at nodes xj is presented as follows by [31]

φj(x) =
1

h5



p0 = (x− xj−3)
5, x ∈ [xj−3, xj−2]

p1 = p0 − 6(x− xj−2)
5, x ∈ [xj−2, xj−1]

p2 = p1 − 6(x− xj−2)
5 + 15(x− xj−1)

5, x ∈ [xj−1, xj ]

p3 = p2 − 6(x− xj−2)
5 − 20(x− xj)

5, x ∈ [xj , xj+1]

p4 = p3 − 6(x− xj−2)
5 + 15(x− xj+1)

5, x ∈ [xj+1, xj+2]

p5 = p4 − 6(x− xj−2)
5 − 6(x− xj+2)

5, x ∈ [xj+2, xmj3]

0, otherwise.

(10)
The numerical solution UN (x, t) corresponding to the exact solution U(x, t) is
searched in terms of quintic B-splines in the following form

UN (x, t) =

N+2∑
j=−2

φj(x)δj(t) (11)

Here, δj(t) are the unknown time parameters determined with both boundary and
collocation conditions. When the trial function (10) is substituted in the equation

(11), The knot values Uj , U
′

j , U
′′

j at nodes xj are acquired in terms of the parameter
δj(t) with form

Uj = δm−2 + 26δj−1 + 66δj + 26δj+1 + δj+2,

U
′

j =
5

h
(−δj−2 − 10δj−1 + 10δj+1 + δj+2),

U
′′

j =
20

h2
(δj−2 + 2δj−1 − 6δj + 2δ)j+1 + δj+2),

(12)

Here, the first and second derivatives with respect to x are denoted by the symbols
′ and ′′. The all of quintic B-spline base functions are zero outside of ϕj−2, φj−1, φj ,
φj+1, φj+2 and φj+3.

4. The Implementation of Collocation Method

In this section, firstly, the MRLW equation with the initial-boundary value prob-
lem is split. In an other saying, the main problem is divided into sub-equations
as follows to obtain two partial differential equations, one linear and the other
nonlinear, with respect to time

Ut − µUxxt + Ux = 0 (13)
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Ut − µUxxt + 6U2Ux = 0. (14)

When Uj and its first derivatives U
′

j and U
′′

j given in the (12) equation are substi-
tuted in equations (13) and (14), system of ordinary differential equations given in
the following form are obtained for j = 0(1)N in the entire solution region

δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2

−µ20
h2

(δ̇m−2 + 2δ̇m−1 − 6δ̇m + 2δ̇m+1 + δ̇m+2)

+
5

h
(−δm−2 − 10δm−1 + 10δm+1 + δm+2) = 0, (15)

δ̇m−2 + 26δ̇m−1 + 66δ̇m + 26δ̇m+1 + δ̇m+2

−µ20
h2

(δ̇m−2 + 2δ̇m−1 − 6δ̇m + 2δ̇m+1 + δ̇m+2)

+
5zj
h

(−δm−2 − 10δm−1 + 10δm+1 + δm+2) = 0 (16)

in which the first derivative according to time t is shown with symbol ′′.′′ and zj is
gotten as

zj = 6(δj−2 + 26δj−1 + 66δj + 26δj+1 + δj+2)
2

to linearize the (16) system. Then, by applying
δn+1
j + δnj

2
for spatial discretization

and
δn+1
j − δnj

∆t
for time discretization to these two systems, two numerical schemes

are obtained with form

k1δ
n+1
m−2 + k2δ

n+1
m−1 + k3δ

n+1
m + k4δ

n+1
m+1 + k5δ

n+1
m+2

= k6δ
n
m−2 + k7δ

n
m−1 + k8δ

n
m + k9δ

n
m+1 + k10δ

n
m+2, (17)

l1δ
n+1
m−2 + l2δ

n+1
m−1 + l3δ

n+1
m + l4δ

n+1
m+1 + l5δ

n+1
m+2

= l6δ
n
m−2 + l7δ

n
m−1 + l8δ

n
m + l9δ

n
m+1 + l10δ

n
m+2 (18)

in which ki, li(i = 1(1)10) and zj are zj = 6U2

k1 = 1− 20µ

h2
− 5∆t

2h
, k2 = 26− 40µ

h2
− 25∆t

h
, k3 = 66 +

120µ

h2
,

k4 = 26− 40µ

h2
+

25∆t

h
, k5 = 1− 20µ

h2
+

5∆t

h

k6 = 1− 20µ

h2
+

5∆t

2h
, k7 = 26− 40µ

h2
− 25∆t

h
, k8 = 66 +

120µ

h2
,

k9 = 26− 40µ

h2
+

25∆t

h
, k10 = 1− 20µ

h2
− 5∆t

h
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l1 = 1− 20µ

h2
− 5zj∆t

2h
, l2 = 26− 40µ

h2
− 25zj∆t

h
, l3 = 66 +

120µ

h2
,

l4 = 26− 40µ

h2
+

25zj∆t

h
, l5 = 1− 20µ

h2
+

5zj∆t

2h
.

l6 = 1− 20µ

h2
+

5zj∆t

2h
, l7 = 26− 40µ

h2
+

25zj∆t

h
, l8 = 66 +

120µ

h2
,

l9 = 26− 40µ

h2
− 25zj∆t

h
, l10 = 1− 20µ

h2
− 5zj∆t

2h
.

(17) and (18) are systems consisting of (N + 1) equations with (N + 5) unknowns.
These systems contain four additional element parameters δ−2, δ−1, δN+1, δN+2 out-
side the solution region of the problem. To obtain the only solution of systems
(17) and (18), the parameters that are not in the solution region must be elim-

inated from these systems. For this purpose, the nodal values of Uj and (Uj)
′

in the equation (12) and the boundary conditions U(xL, t) = U(xR, t) = 0 and
Ux(xL, t) = Ux(xR, t) = 0 are used. Thus, systems (17) and (18) are reduced to
the (N + 1) x (N + 1) matrix system.
For approximate solutions of the (17) and (18) systems, it is necessary to find
the initial vector δ0j . This required initial vector is found by solving the sys-
tem of algebraic equations given in the following form, using the initial condition

U(xj , 0) = UN (xj , 0) = g0(xj), and the approach UN (x, 0) =
∑N+2

j=−2 φj(x)δ
0
j (0)

Um = δ0j−2 + 26δ0j−1 + 66δ0j + 26δ0j+1 + δ0j+2, j = 0(1)N,

U0 = δ0−2 + 26δ0−1 + 66δ00 + 26δ01 + δ02,

U1 = δ0−1 + 26δ00 + 66δ01 + 26δ02 + δ03,

.

.

.

UN−1 = δ0N−3 + 26δ0N−2 + 66δ0N−1 + 26δ0N + δ0N+1,

UN = δ0N−2 + 26δ0N−1 + 66δ0N + 26δ0N+1 + δ0N+2.

(19)

with unknown element parameters δ0j . By using the boundary conditions Ux(xL, t) =
Ux(xR, t) = 0 and Uxx(xL, t) = Uxx(xR, t) = 0 for these systems, δ−2, δ−1, δN+1, δN+2

are eliminated so that the following matrix equation is obtained

λb0 = d
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for the initial vector δ0j in which

λ =



54 60 6
25.25 67.5 26.25 1
1 26 66 26 1

. . .

1 26 66 26 1
1 26.25 67.5 25.25

6 60 54


,

b0 =
(
δ00, δ

0
1, δ

0
2...δ

0
N−2, δ

0
N−1, δ

0
N

)T
and

d =
(
U0, U1, U2, ..., UN−2, UN−1, UN

)T
.

Also, due to the non-linear zj term in system (18) to make numerical solutions
better, an inner iteration three or five times given in the following form throughout

computer work has been applied (δ∗)n = δn +
1

2
(δn − δn−1).

5. Stability Analysis of Numerical Algorithm

The stability analysis of the Lie-Trotter splitting algorithm applied to the MRLW
equation with the help of von Neumann theory is examined. In the previous section,
(17) and (18) systems were obtained by dividing the MRLW equation into linear
and non-linear sub-equations given as (13) and (14), and applying the collocation
method. For stability analysis based on Von Neumann theory of systems (17) and
(18), let the growth factors of a typical Fourier mode be defined as follows, with γ
a mode number and h the element size, and

δnj = ϱn1 e
ijγh, (20)

Ψn
j = ϱn2 e

ijγh, (21)

substitute 23 for scheme 17 and 20 for scheme 18. Since the system (18) contains
the nonlinear term 6U2Ux, the Fourier mode method cannot be applied to this
system, first of all, if the amount of 6U2 in the nonlinear term is taken as a local
constant like zj , the term 6U2Ux is linearized and after that Von Neumann method
is applied to the mentioned system. It can be stated Von Neumann analysis is
one of the most used techniques to analyze the stability analysis of approximate
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schemes for linear or linearized partial differential equations. Via the Euler formula
eiΦ = cosΦ+ isinΦ, growth factors ϱ1 and ϱ2 submitted as follows are acquired

ϱ1 =
A1 − iB1

A1 + iB1
, ϱ2 =

A1 − iC1

A1 + iC1
, (22)

A1 = (2− 40µ

h2
)cos(2γh) + (52− 80µ

h2
)cos(γh) + (66 +

120µ

h2
,

B =
5∆t

h
sin(2γh) +

50∆t

h
sin(γh),

and

C =
5zm∆t

h
sin(2γh) +

50zm∆t

h
sin(γh).

For k1, k2, ..., k9, k10 and l1, l2, ..., l9, l10 founded in section 3. |ϱ1| = |ϱ2| = 1 from
Equation (22) and hence, for the whole system with Lie Trotter-Splitting algorithm
can be written as |ϱ1|.|ϱ2| = 1. Because the conditions |ϱ1| ≤ 1, and |ϱ2| ≤ 1 ac-
cording to the von Neumann theory are satisfied, it can be clearly said that the
systems (17) and (18) are unconditionally stable.

6. Numerical Experiments and Discussion

For numerical calculations of main problem are considered to the movement of
single solitary wave, two and three solitary wave interactions and the Maxwellian
initial condition. The difference between the exact and approximate solutions is
calculated by choosing some specific times to match the studies in the literature.
For this, the following error norms are used

L2 = ||U − UN ||2 =

√√√√h

N∑
j=0

(U − UN )2,

and

L∞ = ||U − UN ||∞ = max
j

|U − UN |.

To check the conservation of numerical schemes during the simulation of solitary
wave motion, the invariants I1,I2 and I3 are calculated, which correspond to the
conservation of mass, momentum and energy proved by Olver [29] and presented
as follows

I1 =

∫ xR

xL

U(x, t)dx,

I2 =

∫ xR

xL

[U2(x, t) + µU2
x(x, t)]dx,

I3 =

∫ xR

xL

[U4(x, t)− µU2
x(x, t)]dx.
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6.1. Example I: The movement of a single solitary wave. This example
considers the MRLW equation by taking into accounting boundary condition U → 0
when x→ ±∞ and initial condition

U(x, 0) =
√
csech[s(x− x0)].

The exact solution for this problem is presented in the following form

U(x, t) =
√
csech[s(x− (c+ 1)t− x0)].

Here, c and x0 are arbitrary constants and s =
√

c
µ(c+1) . The exact values of the

conservation quantities of a single solitary wave with width s and amplitude
√
c as

in [11] are given as follows

I1 =

∫ xR

xL

U(x, t)dx =
π
√
c

s
,

I2 =

∫ xR

xL

[U2(x, t) + µU2
x(x, t)]dx =

2c

s
+

2µsc

3
,

I3 =

∫ xR

xL

[U4(x, t)− µU2
x(x, t)]dx =

4c2

3s
− 2µsc

3
.

(23)

For solitary wave motion with amplitude 1, All of calculations and comparisons in
Table 1-2 are done with µ = 1, x0 = 40, c = 1,∆t = 0.025 and h = 0.2 over [0, 100]
to match those in [11, 16, 21, 22, 36, 37]. Table 1 reports the invariant and error
norm amounts of the current approach from t = 0 to 10 with one increment value.
This table shows that the calculated invariants are compatible with each other and
gratifying because the error norms L2 and L∞ are quite small. Furthermore, it
can be seen from Table 1 that the the changing of invariants I1, I2, I3 are less than
0.8x10−7, 1.1x10−7, 1.26x10−5, respectively. The comparison of the ones of the
previously recorded methods with the results of the proposed technique is given in
Table 2 at time t = 10. Looking at the table, it can be easily seen that the current
approach produces the best results for error norms and the computed invariant
values are in agreement with the analytical ones I1 = 4.4428829, I2 = 3.2998316
and I3 = 1.4142135. The motion of a single solitary wave at various time levels
with parameters ∆t = 0.025, h = 0.2, c = 1 is plotted in Fig.1 and this figure shows
that the soliton shifts to the right at a constant velocity with an almost unchanged
amplitude even as time increases, as hoped. At t = 0, the amplitude is 1 which is
situated at x = 40 and x = 60.

For Table 3-4, the parameters µ = 1, x0 = 40, c = 0.3,∆t = 0.01 and h = 0.1
over [0, 100] are selected as in n Refs. [21]. Thus, The amplitude of the solitary
wave is 0.547723. Table 3 displays the invariant and error norm amounts of the
present approach from t = 0 to 20 with two increment value. From this table,
it can be observed that very small and pleasing solutions are obtained with the
Lie-Trotter splitting technique. Invariants I1, I3 are compatible with each other
and I2 remains constant. Furthermore, it can be seen from Table 3 that the the
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Table 1. The error norms and invariants of the single solitary
wave with ∆t = 0.025, h = 0.2, for c = 1 on the region [0, 100]

t I1 I2 I3 L2 x 103 L∞ x 103

0 4.44288294 3.29983161 1.41421360 0.00000000 0.00000000
1 4.44288293 3.29983161 1.41420559 1.56533150 1.02551887
2 4.44288292 3.29983159 1.41419884 2.41711399 1.40020924
3 4.44288292 3.29983158 1.41419842 2.67081261 1.22652109
4 4.44288291 3.29983157 1.41419926 2.68157587 1.04668636
5 4.44288290 3.29983156 1.41419995 2.62782252 1.10627938
6 4.44288289 3.29983155 1.41420040 2.56931532 1.11288942
7 4.44288289 3.29983153 1.41420067 2.52306335 1.07889684
8 4.44288288 3.29983152 1.41420084 2.49240521 1.02360259
9 4.44288287 3.29983151 1.41420094 2.47654106 0.95806880
10 4.44288286 3.29983150 1.41420100 2.47366508 0.89643465

Table 2. Comparisons of the error norms and invariants of the
single solitary wave with ∆t = 0.025, h = 0.2, for c = 1 on the
region [0, 100] at t = 10

method I1 I2 I3 L2 x 103 L∞ x 103

Exact 4.4428829 3.2998316 1.4142135 0 0
Present 4.4428829 3.2998315 1.4142010 2.47366508 0.89643465
[21] 4.4428661 3.2997108 1.4143165 2.58891 1.35164
[22] 4.44288 3.29983 1.41420 9.30196 5.43718
[16] 4.4431919 3.3003022 1.4146930 2.41750 1.08099
[36] 4.445176 3.302476 1.417411 0.8644 1.2475
[11]1 4.442 9.299 1.413 19.39 9.24
[11]2 4.440 3.296 1.411 20.3 11.2
[37] 4.44288 3.29981 1.41416 3.00533 1.68749

changing of invariants I1, I3 are less than 1.4x10−7, 0.9x10−7, respectively and
0 of I2 during the execution of the program. Table 4 presents a comparison of
the results of the proposed study and other registered ones by calculating error
norms L2 and L∞ and invariant values I1,I2 and I3. All comparisons are made for
time t=20. As a result of this comparison, it can easily be seen that the present
technique produces more satisfactory results. Invariant values are consistent with
those compared. The motion of a single solitary wave at various time levels with
parameters ∆t = 0.01, h = 0.1, c = 0.3 is plotted in Fig.2. Fig.3 shows the graphs of
the error distributions of the solitary wave with amplitude of 1 and 0.3 respectively,
at t = 10 and 20.
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MRLW equation

0 10 20 30 40 50 60 70 80 90 100

x

0

1

2

3

4

5

6

7

8

9

A
b

s
o

lu
te

 e
r
r
o

r

10
-4

(a)

0 10 20 30 40 50 60 70 80 90 100

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
b

s
o

lu
te

 e
r
r
o

r

10
-4

(b)

Figure 3. Error distribution graphs for a) ∆t = 0.025, h =
0.2, c = 1 and b) ∆t = 0.01, h = 0.1, c = 0.3 over [0, 100].
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Table 3. The error norms and invariants of the single solitary
wave with ∆t = 0.01, h = 0.1, for c = 0.3 on the region [0, 100]

t I1 I2 I3 L2 x 103 L∞ x 103

0 3.58196673 1.34507649 0.15372303 0.00000000 0.00000000
2 3.58196674 1.34507649 0.15372299 0.17472238 0.09673881
4 3.58196675 1.34507649 0.15372294 0.28047087 0.14367750
6 3.58196676 1.34507649 0.15372293 0.32725879 0.14066701
8 3.58196677 1.34507649 0.15372293 0.34590142 0.13215052
10 3.58196678 1.34507649 0.15372293 0.35279733 0.13158877
12 3.58196678 1.34507649 0.15372294 0.35465095 0.13057054
14 3.58196679 1.34507649 0.15372294 0.35426140 0.12926338
16 3.58196678 1.34507649 0.15372294 0.35288262 0.12791317
18 3.58196674 1.34507649 0.15372294 0.35110940 0.12661543
20 3.58196659 1.34507649 0.15372294 0.34923321 0.12540476

Table 4. Comparisons of the error norms and invariants of the
single solitary wave with ∆t = 0.01, h = 0.1, for c = 0.3 on the
region [0, 100] at t = 20

method I1 I2 I3 L2 x 104 L∞ x 104

Present 3.58196659 1.34507649 0.15372294 0.34923321 0.12540476
[21] 3.5820204 1.3450974 0.1537250 0.8112594 0.3569076
[22] 3.58197 1.34508 0.153723 6.06885 2.96650
[16] 3.5820206 1.3450944 0.1537284 1.2273638 0.4472294
[36] 3.582265 1.345182 0.1538901 3.379583 7.672911
[1]MQ 3.5819665 1.3450764 0.153723 0.51498 0.22551
[1]TPS 3.5819663 1.3450759 0.153723 0.51498 0.26605
[13] 3.581967 1.345076 0.153723 0.5089274 0.2222848

6.2. Example II: Interaction of two solitary waves. This example considers
the problem of interaction of two solitary waves with various amplitudes and for
Eq.(2), the following initial conditions are written as the linear sum of two well-
separated solitary waves with different amplitudes

U(x, 0) =

2∑
i=1

aisech[si(x− xi)],
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in which ci and xi are arbitrary constants, ai =
√
ci, si =

√
ci

µ(ci+1) , i = 1(1)2. The

exact values of the conservation quantities are given as follows [11]

I1 =

2∑
i=1

π
√
ci

si
,

I2 =

2∑
i=1

2ci
si

+
2µsici

3
,

I3 =

2∑
i=1

4c2i
3si

− 2µsici
3

.

Numerical simulation is done on the [0, 250] region by selecting the parameters µ =
1, x1 = 25, x2 = 55, c1 = 4, c2 = 1,∆t = 0.025, h = 0.2 as in Ref. [21]. The exper-
imental results obtained by running the numerical experiments at t=0(2)20 times
are shown in Table 5. The exact values of the invariants are I1 = 11.467698,I2 =
14.629243 and I3 = 22.880466. Table 5 submits a comparison of the solutions in
the proposed method with those in the references [1,16,19,21,22,34,37,38] and this
table displays that the invariant quantities I1,I2 and I3 are quite conservative and
the values found are consistent with their exact values throughout the operation
of the computer program. Fig.4 reports the interactions of two solitary waves at
various time levels. It can be clearly seen from this figure that at t = 0, the wave
with the smaller amplitude is to the right of the wave with the larger amplitude.
Since the shorter wave moves slower than the longer one, the longer wave catches
the short wave at t = 12 and collides. Later, it fars away from the shorter one with
the advancing time. At t = 20, while the amplitude of the smaller wave becomes
1.014 at x = 84.2 the amplitude of the larger wave becomes 1.998 at x = 97.4.

6.3. Example III:Interaction of three solitary waves. This example deals
with the problem of interaction of three solitary waves with different amplitudes
and advancing in the same direction and for MRLW equation, the following initial
conditions are written as the linear sum of three well-separated solitary waves with
different amplitudes

U(x, 0) =

3∑
i=1

aisech[si(x− xi)],

in which ci and xi are arbitrary constants, ai =
√
ci, si =

√
ci

µ(ci+1) , i = 1(1)3.

The exact values of the conservation quantities obtained from Eq.(18) are given as
follows

I1 =

3∑
i=1

π
√
ci

si
,
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Table 5. Comparison of invariants of two solitary waves with
values ∆t = 0.025, h = 0.2, for x1 = 25, x2 = 55, c1 = 4, c2 = 1 on
the region [0, 250] at t = 0(2)20 with those in [13]

method [13]

t I1 I2 I3 I1 I2 I3

0 11.46769804 14.62924273 22.88046615 11.467698 14.629277 22.880432
2 11.46769804 14.62924273 22.88046615 11.467698 14.624259 22.860365
4 11.46769804 14.62924273 22.88046615 11.467698 14.619226 22.840279
6 11.46769804 14.62924273 22.88046615 11.467699 14.614169 22.820069
8 11.46769804 14.62924273 22.88046615 11.467700 14.606821 22.787857
10 11.46769804 14.62924273 22.88046615 11.467700 14.603687 22.771773
12 11.46788404 14.62924273 22.88046615 11.467699 14.603056 22.775766
14 11.46769804 14.62924273 22.88046615 11.467699 14.598059 22.756029
16 11.46769804 14.62924273 22.88046615 11.467700 14.593048 22.736127
18 11.46769804 14.62924273 22.88046615 11.467700 14.588061 22.716289
20 11.46769804 14.62924273 22.88046615 11.467701 14.583089 22.696510
20 [19]1 11.4676541 14.6292088 22.8803901
20 [19]2 11.4676452 14.6309639 22.8786025
20 [34] 11.4677 14.6299 22.8806
20 [38] 11.4676977 14.62927316 22.8804154
20 [21] 11.4691886 14.6331334 22.8764330
20 [16] 11.4662207 14.6253125 22.8650456
20 [37] 11.4677 14.6299 22.8806
20 [22] 11.4677 14.6292 22.8809
20 [1]MQ 11.467698 14.583052 22.696539
20 [1]TPS 11.467742 14.582424 22.694269
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Figure 4. The interactions of two solitary waves at various time
levels of MRLW equation
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I2 =

3∑
i=1

2ci
si

+
2µsici

3
,

I3 =

3∑
i=1

4c2i
3si

− 2µsici
3

.

During the numerical simulation, the calculation process is performed by taking
the parameters µ = 1, x1 = 15, x2 = 45, x3 = 60c1 = 4, c2 = 1, c3 = 0.25∆t =
0.025, h = 0.2 on the region [0, 250]. This process is carried out at times 0(5)45
and the exact values of the invariants here are I1 = 14.9801,I2 = 15.8218 and I3 =
22.9923. Table 6 presents a comparison of the solutions in the suggested method
with those in the references [1, 21, 22, 34] and this table displays that the invariant
quantities I1, I2 and I3 are quite conservative and the values found are consistent
with their exact values throughout the operation of the computer program. Here,
the interaction of solitary waves using various times is shown in Fig.5. This figure
indicates that the interaction started at approximately t = 10. there were overlaps
at time t = 40, and then the waves returned to their original state at t = 40.

Table 6. Comparison of invariants of three solitary waves with
values ∆t = 0.025, h = 0.2, for x1 = 15, x2 = 45, x3 = 60, c1 =
4, c2 = 1, c3 = 0.25 on the region [0, 250] at t = 0(5)45 with those
in [13]

method [13]

t I1 I2 I3 I1 I2 I3

0 14.97251076 15.82181232 22.99226955 14.980099 15.837528 23.008136
5 14.97251076 15.82181232 22.99226955 14.980105 15.837528 22.957891
10 14.97251076 15.82181232 22.99226955 14.980109 15.807025 22.877972
15 14.97251076 15.82181232 22.99226955 14.980106 15.807032 22.885947
20 14.97251076 15.82181232 22.99226955 14.980106 15.795022 22.837454
25 14.97251076 15.82181232 22.99226955 14.980107 15.782840 22.788852
30 14.97251076 15.82181232 22.99226955 14.980107 15.770634 22.740419
35 14.97251076 15.82181232 22.99226955 14.980108 15.758480 22.692279
40 14.97251076 15.82181232 22.99226955 14.980108 15.746389 22.644448
45 14.97251076 15.82181232 22.99226955 14.968030 15.734374 22.596591
20 [34] 14.930390 15.822500 22.964190
20 [21] 14.7145273 15.4927592 23.3529062
20 [22] 13.7043 15.6563 22.9303
20 [1]MQ 14.96814 15.73434 22.596625
20 [1]TPS 14.96824 15.73376 22.594494

6.4. Example IV: The Maxwellian initial condition. This last example exam-
ines the improvement of the following the Maxwell initial condition in the sequence
of solitary waves

U(x, 0) = exp(−(x− 40)2).

Here, the solution behavior for the Maxwellian condition presented above is evalu-
ated with the values of µ. Approximate values of invariants are shown in Table 7.
All figures are depicted in Fig. 6 at time 14.5. At the end of the study for values
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Figure 5. The interactions of three solitary waves at various time
levels of MRLW equation

µ = 0.1, 0.04, 0.015 and µ = 0.01., it is observed that only a single soliton move-
ment is followed for µ = 0.1 and this is pictured with a). When µ = 0.04, 0.015 are
taken, it is shown with b) and c) that two and three stable solitons are occured and
when the value µ = 0.01 is selected, the Maxwellian initial condition decomposes
into four solitary waves and it is plotted with d). In all the figures in this example,
the presence of a small oscillating tail formed behind the last wave is observed.
The peaks of the well-developed wave whose speeds are linearly dependent on their
amplitudes lie on a straight line.

7. Conclusion

In this article, Lie-trotter splitting algorithm with collocation finite element
method has been presented. Four experimental examples are given to measure
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Table 7. Values of the invariants of the MRLW equation for the
Maxwellian initial condition

t µ I1 I2 I3 µ I1 I2 I3

0 0.1 1.77245385 1.37864519 0.76089588 0.015 1.77245385 1.27211379 0.86742727
3 1.77242409 1.37853754 0.66726850 1.74470267 1.23369811 0.72548127
6 1.77237678 1.37846448 0.66768464 1.71890317 1.17440856 0.73866510
9 1.77232940 1.37839090 0.66787415 1.70124953 1.13869004 0.74633211
12 1.77228192 1.37831554 0.66798301 1.68830339 1.11560302 0.75073526
15 1.77223441 1.37823955 0.66805774 1.68128767 1.11897777 0.74641698
0 0.01 1.77245385 1.26584724 0.87369382 0.04 1.77245385 1.30344656 0.83609451
3 1.71307229 1.14513104 0.76148916 1.77091565 1.30148045 0.69106562
6 1.68854075 1.12482375 0.75995674 1.76851865 1.29612046 0.69320291
9 1.66818971 1.08010404 0.76885908 1.76632858 1.29227683 0.69439710
12 1.65804755 1.07686486 0.76703741 1.76426994 1.28925313 0.69497936
15 1.64143143 1.02666184 0.77926968 1.76221840 1.28586712 0.69570702

0 10 20 30 40 50 60 70 80 90 100

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

U
(x

,t
)

=0.1

(a)

0 10 20 30 40 50 60 70 80 90 100

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U
(x

,t
)

=0.04

(b)

0 10 20 30 40 50 60 70 80 90 100

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

U
(x

,t
)

=0.015

(c)

0 10 20 30 40 50 60 70 80 90 100

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

U
(x

,t
)

=0.01

(d)

Figure 6. The interactions of two solitary waves at various time
levels of MRLW equation

the reliability and performance of the method in this study. The error norms L2

and L∞ are calculated to show that results are superior to those of the methods in
the literature and the results produced have been compared in tables and figures.
The error norms are, as hoped, smaller than the results in the literature and thus
closer to the analytic solution. The invariants I1,I2 and I3 are satisfactorily well
preserved throughout the entire computer run. The computed solutions displays it
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can be easily said that the current algorithm will be beneficial in applying to other
nonlinear equation types such as MRLW.

Declaration of Competing Interests The author declares that there is no com-
peting interest regarding the publication of this paper.
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[21] Karakoc, S.B.G., Yağmurlu, N.M., Uçar, Y., Numerical approximation to a solution of the
modified regularized long wave equation using quintic B-splines, Boundary Value Problems,

27 (2013). https://doi.org/10.1186/1687-2770-2013-27

[22] Khalifaa, A.K., Raslana, K.R., Alzubaidib, H.M., A collocation method with cubic B-splines
for solving the MRLW equation, Journal of Computational and Applied Mathematics, 212

(2008) 406 – 418. https://doi.org/10.1016/j.cam.2006.12.029

[23] Kutluay, S., Esen,A., A finite difference solution of the regularized long wave equation, Math-
ematical Problems in Engineering, (2006). https://doi.org/10.1155/MPE/2006/85743

[24] Mei, L., Chen, Y., Numerical solutions of RLW equation using Galerkin method

with extrapolation techniques, Comput. Phys. Commun., 183 (2012), 1609–1616.
https://doi.org/10.1016/j.cpc.2012.02.029

[25] Mei, L., Chen,Y., Explicit multistep method for the numerical solution of RLW equation,

Appl. Math. Comput., 218 (2012), 9547–9554. https://doi.org/10.1016/j.amc.2012.03.050
[26] MacNamara, S., Strang, G., Operator Splitting. In: Glowinski R., Osher S., Yin W. (eds)

Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, 2016.
[27] Mohammadi, M., Mokhtari, R., Solving the generalized regularized long wave equation on

the basis of a reproducing kernel space, J. Comput. Appl. Math., 235 (2011). 4003–4014.

https://doi.org/10.1016/j.cam.2011.02.012
[28] Mohammadi, R., Exponential B-spline collocation method for numerical solution of

the generalized regularized long wave equation, Chin. Phys. B, 24 (2015), 050206.

https://doi.org/10.1088/1674-1056/24/5/050206
[29] Olver, P.J., Euler operators and conservation laws of the BBM equation, Math-

ematical Proceedings of the Cambridge Philosophical Society, 85 (1979), 143-159.

https://doi.org/10.1017/S0305004100055572
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