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Şenay Bulut1* and Vildan Korucu Akan1

1Department of Mathematics, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey
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Abstract

The object of our investigations is to classify 5−dimensional nilpotent Lie algebras with two different Riemannian Π−structures. It is shown
that the Lie groups corresponding to the Lie algebras gi equipped with two different Riemannian Π−structures are not para-Sasaki-like.
Moreover, we investigate whether the considered manifolds admit Ricci-like solitons and whether they are Einstein-like manifolds.
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1. Introduction

The notion of an almost paracontact structure on a smooth odd dimensional manifold was presented in [9, 10]. The geometry of Riemannian
manifolds with an almost paracontact structure corresponding to an almost paracomplex structure has been intensively studied in [1, 2, 3, 4, 6].
These manifolds are called briefly Riemannian Π−manifolds. A classification with eleven basic classes of almost paracontact Riemannian
manifolds of type (n,n) according to the covariant derivative of the (1,1)− tensor of the almost paracontact structure was given in [4]. There
are 211 classes of Riemannian Π−structures. The investigations of Riemannian Ricci solitons carried out in [7]. Ricci solitons on manifolds
such as Riemannian Π− manifolds, Kenmotsu manifolds, paracontact manifolds have been studied in [1, 2, 3, 5, 11].
Non-isomorphic non-abelian nilpotent Lie algebras in five dimensions have six classes [8]. Our aim in this study determine the explicit
classes of two different Riemannian Π−structures defined on 5−dimensional nilpotent Lie algebras. Then, we calculate Ricci curvature
tensor and scalar curvature tensor. Considering the classification obtained, we see that none of them with given structures are para-Sasaki-like.
In addition, we show that the only Lie algebra g1 is an η−Einstein manifold and admits Ricci-like soliton.
The present paper is structured as follows. In Section 2, we reminisce some basic facts and properties of Riemannian Π−manifolds. In
Section 3, we classify five dimensional nilpotent Lie algebras with two different Riemannian Π−structure. Finally, we examine some
properties of the considered manifolds.

2. Riemannian Π−manifolds

A triple (φ ,ξ ,η) on a (2n+1)−dimensional smooth manifold M satisfying

φ
2 = Id−η⊗ξ , η(ξ ) = 1, (2.1)

where φ is a tensor field of type (1,1), ξ is a Reeb vector field and η is a 1−form on M, is called an almost paracontact structure on M. In
this case, M is called an almost paracontact manifold. In addition, if (M,φ ,ξ ,η) admits a Riemannian metric g with

g(φx,φy) = g(x,y)−η(x)η(y),

for all vector fields x,y, then, (M,φ ,ξ ,η ,g) is called Riemannian Π-manifold. These manifolds are sometimes called by different names
such as apapR manifolds, almost paracontact almost paracomplex Riemannian manifolds. Moreover, by using above basic identities, the
following derived properties are valid:

g(x,ξ ) = η(x), g(x,φy) = g(φx,y),
g(ξ ,ξ ) = 1, η(∇xξ ) = 0, (2.2)
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where ∇ denotes the Levi-Civita connection of g. The associated metric g̃ of g on (M,φ ,ξ ,η ,g) determined by the equality g̃(x,y) =
g(x,φy)+η(x)η(y) is a pseudo-Riemannian metric of signature (n+1,n).
A Riemannian Π-manifold M is said to be a para-Sasaki-like manifold if the following is provided:

(∇xφ)y =−g(x,y)ξ −η(y)x+2η(x)η(y)ξ ,
=−g(φx,φy)ξ −η(y)φ 2x.

(2.3)

In [6], it is proven that the following identities hold for any para-Sasaki-like manifold (M,g,φ ,ξ ,η):

∇xξ = φx, (∇xη)y = g(x,φy),
R(x,y)ξ =−η(y)x+η(x)y, Ric(x,ξ ) =−2n η(x),
R(ξ ,y)ξ = φ 2y, Ric(x,ξ )(ξ ,ξ ) =−2n,

(2.4)

where R and Ric denote the curvature tensor and the Ricci tensor, respectively.
In [4] the almost paracantact almost paracomplex Riemannian manifolds are classified using the tensor F of type (0,3) defined by

F(x,y,z) = g((∇xφ)y,z),

where ∇ is the Levi-Civita connection of g. Moreover, the following relations are satisfied:

F(x,y,z) = F(x,z,y) =−F(x,φy,φz)+η(y)F(x,ξ ,z)+η(z)F(x,y,ξ ),
(∇xη)y = g(∇xξ ,y) =−F(x,φy,ξ ).

(2.5)

Eleven basis classes of these manifolds are denoted by F1, . . . ,F11. The class of F0 is defined by the condition F = 0, i.e., ∇φ = ∇ξ =
∇η = ∇g = 0.
The Lie 1-forms associated with F are defined by

θ(x) = gi jF(ei,e j,x), θ
∗(x) = gi jF(ei,φe j,x), ω(x) = F(ξ ,ξ ,x), (2.6)

where gi j’s are the entries of the inverse matrix of g with respect to the basis {ei,ξ} of TpM.
Let F be the set of all tensors over TpM satisfying the properties (2.5). F is the direct sum of eleven subspaces Fi, which is orthogonal and
invariant with respect to the structure group of considered manifolds. If the tensor F belongs to the subspace Fi, then the manifold is said to
be in the class Fi. It is said that M belongs to the class Fi if and only if the equality F = Fi is valid. Fi are the components of F in the
subspace Fi and are listed below [4].

F1(x,y,z) =
1

2n
[g(φx,φy)θ(φ 2z)+g(φx,φz)θ(φ 2y)

−g(x,φy)θ(φz)−g(x,φz)θ(φy)],

F2(x,y,z) =
1
4
[2F(φ 2x,φ 2y,φ 2z)+F(φ 2y,φ 2z,φ 2x)+F(φ 2z,φ 2x,φ 2y)

−F(φy,φz,φ 2x)−F(φz,φy,φ 2x)]

− 1
2n

[g(φx,φy)θ(φ 2z)+g(φx,φz)θ(φ 2y)

−g(x,φy)θ(φz)−g(x,φz)θ(φy)],

F3(x,y,z) =
1
4
[2F(φ 2x,φ 2y,φ 2z)−F(φ 2y,φ 2z,φ 2x)−F(φ 2z,φ 2x,φ 2y)

+F(φy,φz,φ 2x)+F(φz,φy,φ 2x)],

F4(x,y,z) =
θ(ξ )

2n
[g(φx,φy)η(z)+g(φx,φz)η(y)],

F5(x,y,z) =
θ∗(ξ )

2n
[g(x,φy)η(z)+g(x,φz)η(y)],

F6(x,y,z) =
1
4
[[F(φ 2x,φ 2y,ξ )+F(φ 2y,φ 2x,ξ )+F(φx,φy,ξ )+F(φy,φx,ξ )]η(z)

+ [F(φ 2x,φ 2z,ξ )+F(φ 2z,φ 2x,ξ )+F(φx,φz,ξ )+F(φz,φx,ξ )]η(y)]

− θ(ξ )

2n
[g(φx,φy)η(z)+g(φx,φz)η(y)]

− θ∗(ξ )

2n
[g(x,φy)η(z)+g(x,φz)η(y)],

F7(x,y,z) =
1
4
[[F(φ 2x,φ 2y,ξ )−F(φ 2y,φ 2x,ξ )+F(φx,φy,ξ )−F(φy,φx,ξ )]η(z)

+ [F(φ 2x,φ 2z,ξ )−F(φ 2z,φ 2x,ξ )+F(φx,φz,ξ )−F(φz,φx,ξ )]η(y)],

F8(x,y,z) =
1
4
[[F(φ 2x,φ 2y,ξ )+F(φ 2y,φ 2x,ξ )−F(φx,φy,ξ )−F(φy,φx,ξ )]η(z),

+[F(φ 2x,φ 2z,ξ )+F(φ 2z,φ 2x,ξ )−F(φx,φz,ξ )−F(φz,φx,ξ )]η(y)],
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F9(x,y,z) =
1
4
[[F(φ 2x,φ 2y,ξ )−F(φ 2y,φ 2x,ξ )−F(φx,φy,ξ )+F(φy,φx,ξ )]η(z)

+ [F(φ 2x,φ 2z,ξ )−F(φ 2z,φ 2x,ξ )−F(φx,φz,ξ )+F(φz,φx,ξ )]η(y)],

F10(x,y,z) = η(x)F(ξ ,φ 2y,φ 2z),

F11(x,y,z) = η(x)[η(y)ω(z)+η(z)ω(y)].

A Riemannian Π−manifold belongs to a direct sum of two or more basic classes if and only if the fundamental tensor is the sum of the
corresponding components Fi, Fj, . . ., namely, F = Fi +Fj + · · · .
The Nijenhuis torsion of φ is defined by

[φ ,φ ](x,y) = [φx,φy]+φ
2[x,y]−φ [φx,y]−φ [x,φy]. (2.7)

Normality condition of Riemannian Π−structure is equivalent to vanishing the four tensors given by

N(1)(x,y) = [φ ,φ ](x,y)−dη(x,y)ξ ,
N(2)(x,y) = (Lφxη)(y)− (Lφyη)(x),
N(3)(x,y) = (Lξ φ)(x),
N(4)(x,y) = (Lξ η)(x),

where L denotes the Lie derivative operator.
Let us recall from [1] that the Riemannian Π−manifold (M,φ ,ξ ,η ,g) is called Einstein-like with constants (a,b,c) if its Ricci tensor Ric
satisfies the following formula:

Ric = a g+b g̃+ c η⊗η , (2.8)

where a,b,c are constants. In particular, if b = 0 and b = c = 0, then the manifold is called an η−Einstein manifold and an Einstein manifold,
respectively. If a,b,c are functions on M, the manifold M is called almost Einstein-like, almost η−Einstein-like or an almost Einstein
manifold, respectively.
A Ricci-like soliton with potential vector field ξ and constants (λ ,µ,ν) on a Riemannian Π−manifold (M,φ ,ξ ,η ,g) is defined by

1
2
Lξ g+Ric+λg+µ g̃+νη⊗η = 0, (2.9)

where the Lie derivative L of g along ξ is expressed by

Lξ g(x,y) = g(∇xξ ,y)+g(x,∇yξ ).

An almost paracontact almost paracomplex metric structure (φ ,ξ ,η ,g) on a connected Lie group G is said to be left invariant if g is left
invariant and the conditions

φ ◦La = La ◦φ , La(ξ ) = ξ

are satisfied, where La is the left multiplication by a ∈ G in G.
An almost paracontact almost paracomplex metric structure on G induces an almost paracontact almost paracomplex metric structure on the
Lie algebra g of G having the structure (φ ,ξ ,η ,g).
In this study, we specify the classes of some almost paracontact almost paracomplex metric structure 5−dimensional nilpotent Lie algebras.
The non-isomorphic and non-abelian algebras gi are divided into six classes with the corresponding basis {e1, . . . ,e5} and non-zero brackets
in the following [8]:

g1 : [e1,e2] = e5, [e3,e4] = e5,
g2 : [e1,e2] = e3, [e1,e3] = e5, [e2,e4] = e5,
g3 : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5, [e2,e3] = e5,
g4 : [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5,
g5 : [e1,e2] = e4, [e1,e3] = e5,
g6 : [e1,e2] = e3, [e1,e3] = e4, [e2,e3] = e5.

(2.10)

3. A Riemannian Π−structures on 5−dimensional Nilpotent Lie Algebras

Let (φ ,ξ ,η ,g) be a left invariant Riemannian Π−structure on a connected Lie group Gi with corresponding Lie algebra gi. We use the same
notation for the corresponding Riemannian Π−structure. Now, we investigate the classes of the following Riemannian Π−structure with
respect to the basis {e1, . . . ,e5} on each gi.

φ (e1) = e3, φ (e2) = e4, φ (e3) = e1, φ (e4) = e2, φ (e5) = 0,
ξ = e5, η = e5,
g(ei,ei) = 1, g(ei,e j) = 0, i, j ∈ {1, . . . ,5}, i 6= j.

(3.1)



Konuralp Journal of Mathematics 209

3.1. The Lie algebra g1

Theorem 3.1. The Lie algebra g1 belongs to the class F7 according to the structure given in (3.1).

Proof. By using the non-zero brackets [e1,e2] = e5, [e3,e4] = e5 and Kozsul’s formula, the covariant derivatives of the non-zero basic
elements are given by

∇e1 e2 =
1
2

e5, ∇e1 e5 =−
1
2

e2, ∇e2 e1 =−
1
2

e5, ∇e2 e5 =
1
2

e1,

∇e3 e4 =
1
2

e5, ∇e3 e5 =−
1
2

e4, ∇e4 e3 =−
1
2

e5, ∇e4 e5 =
1
2

e3,

∇e5 e1 =−
1
2

e2, ∇e5 e2 =
1
2

e1, ∇e5 e3 =−
1
2

e4, ∇e5 e4 =
1
2

e3.

Theorem 3.2. [4] Let (M,φ ,ξ ,η ,g) be a Riemannian Π−manifold. Then, we have

a. [φ ,φ ](x,y) = 0 if and only if (M,φ ,ξ ,η ,g) belongs to Fi(i = 1,2,4,5,6,11) or to their direct sums;
b. [φ ,φ ](x,y) =−2{φ(∇φxφ)φy+φ(∇φ 2xφ)φ 2y} if and only if (M,φ ,ξ ,η ,g) belongs to F3;
c. [φ ,φ ](x,y) =−2(∇xη)(y)ξ if and only if (M,φ ,ξ ,η ,g) belongs to F7;
d. [φ ,φ ](x,y) =−2{η(x)∇yξ −η(y)∇xξ − (∇xη)(y)ξ} if and only if (M,φ ,ξ ,η ,g) belongs to F8;
e. [φ ,φ ](x,y) =−2{η(x)∇yξ −η(y)∇xξ} if and only if (M,φ ,ξ ,η ,g) belongs to F9;
f. [φ ,φ ](x,y) =−η(x)φ(∇ξ φ)y+η(y)φ(∇ξ φ)x if and only if (M,φ ,ξ ,η ,g) belongs to F10.

Setting x = y = ei, (i = 1,2, ...,5) in (2.7), we get

[φei,φei]+φ
2[ei,ei]−φ [φei,ei]−φ [ei,φei] = 0.

Moreover, we can calculate
(∇ei η)ei = ei(ηei)−η(∇ei ei) = 0,

for every i = 1,2, . . . ,5. In case of i = 1, j = 2, we obtain [φ ,φ ](e1,e2) = e5 and (∇e1 η)e2 =− 1
2 . Similarly, in case of i = 3, j = 4, we get

[φ ,φ ](e3,e4) = e5 and (∇e3 η)e4 =− 1
2 . In other cases, we calculate [φ ,φ ](ei,e j) = 0 and (∇ei η)(e j) = 0 for i 6= j. Therefore, the equality

given in Theorem 3.2(c) is satisfied for the orthonormal basis {e1, . . . ,e5 = ξ}. Hence, we conclude that g1 belongs to the class F7.

Now, we consider another structure (φ ,ξ ,η ,g) given by

φ (e3) = e5, φ (e2) = e4, φ (e5) = e3, φ (e4) = e2, φ (e1) = 0,
ξ = e1, η = e1,
g(ei,ei) = 1, g(ei,e j) = 0, i, j ∈ {1, . . . ,5}, i 6= j.

(3.2)

By using above structure we compute the following non-zero components F(ei,e j,ek) = Fi jk of the structure tensor F :

F145 = F154 = F213 = F231 = F325 =
1
2
,

F352 = F514 = F523 = F532 = F541 =
1
2
,

F123 = F132 = F334 = F343 = F545 = F554 =−
1
2
,

F433 =−F455 = 1.

Then, we construct the following form of F for any vectors x,y,z:

F (x,y,z) = F

(
∑

i
xiei, ∑

j
y je j, ∑

k
zkek

)

= ∑
i, j,k

xiy jzkF
(
ei,e j,ek

)

= −1
2

x1y2z3−
1
2

x1y3z2 +
1
2

x1y4z5 +
1
2

x1y5z4 +
1
2

x2y1z3 +
1
2

x2y3z1

+
1
2

x3y2z5−
1
2

x3y3z4−
1
2

x3y4z3 +
1
2

x3y5z2 + x4y3z3− x4y5z5

+
1
2

x5y1z4 +
1
2

x5y2z3 +
1
2

x5y3z2 +
1
2

x5y4z1−
1
2

x5y4z5−
1
2

x5y5z4.

The latter equality implies that F is represented in the form

F(x,y,z) = F1(x,y,z)+F2(x,y,z)+F3(x,y,z)+F6(x,y,z)+F9(x,y,z)+F10(x,y,z),
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where

F1(x,y,z) =
1
4
(−x1y1z4− x1y4z1 + x3y2z5− x3y3z4− x3y4z3 + x3y5z2

+2x4y2z2 + x5y2z3 + x5y3z2− x5y4z5− x5y5z4),

F2(x,y,z) =
1
4
(2x3y5z2 + x4y3z3−3x4y5z5 + x5y2z3− x5y4z5

−2x5y5z4 + x2y3z5 + x1y1z4 + x1y4z1 + x3y4z3−2x4y4z2),

F3(x,y,z) =
1
4
(2x3y2z5− x3y5z2− x3y3z4−2x3y4z3 +3x4y3z3

− x4y5z5 + x5y3z2 + x5y5z4− x2y3z5),

F6(x,y,z) =
1
4
(x2y3z1 + x5y4z1 + x3y2z1 + x4y5z1 + x2y1z3 + x5y1z4 + x3y1z2 + x4y1z5),

F9(x,y,z) =
1
4
(x2y3z1 + x5y4z1− x3y2z1− x4y5z1 + x2y1z3 + x5y1z4− x3y1z2− x4y1z5),

F10(x,y,z) =−
1
2

x1y2z3−
1
2

x1y3z2 +
1
2

x1y4z5 +
1
2

x1y5z4.

Therefore, g1 with the structure (3.2) is in the class F1⊕F2⊕F3⊕F6⊕F9⊕F10.
The Ricci tensor Ric and the scalar curvature scal according to the basis {e1, . . . ,e4,e5 = ξ} are presented by

Ric(x,y) =
5

∑
i=1

g(R(ei,x)y,ei) and scal =
5

∑
i=1

Ric(ei,ei), (3.3)

respectively. The non-zero components of Ricci tensor Ric corresponding to the Lie algebra g1 are calculated according to the basis
{e1, . . . ,e4,e5 = ξ} as follows:

Ric11 = −1
2
, Ric22 =−

1
2
,

Ric33 = −1
2
, Ric44 =−

1
2
,

Ric55 = 1,

where Rici j = Ric(ei,e j) for i, j ∈ {1,2, ...,5}. The scalar curvature scal of g1 is evaluated by scal =−1. (G1,φ ,ξ ,η ,g) is a η−Einstein
manifold with constants (a,b,c) = (− 1

2 ,0,
3
2 ).

The nonzero components of Lξ g for the structure (3.2) are the following:

(Lξ g)25 = (Lξ g)52 =−1.

(G1,φ ,ξ ,η ,g) is neither Einstein-like nor Ricci-like soliton for the structure (3.2).

3.2. The Lie algebra g2

Theorem 3.3. The Lie algebra g2 belongs to the class F1⊕F2⊕F3⊕F8⊕F10 with regard to the structure given in (3.1).

Proof. By using the relations [e1,e2] = e3, [e1,e3] = e5, [e2,e4] = e5 and Kozsul’s formula we get

∇e1 e2 =
1
2

e3, ∇e1 e3 =−
1
2

e2 +
1
2

e5, ∇e1 e5 =−
1
2

e3, ∇e2 e1 =−
1
2

e3,

∇e2 e3 =
1
2

e1, ∇e2 e4 =
1
2

e5, ∇e2 e5 =−
1
2

e4, ∇e3 e1 =−
1
2

e2−
1
2

e5,

∇e3 e2 =
1
2

e1, ∇e3 e5 =
1
2

e1, ∇e4 e2 =−
1
2

e5, ∇e4 e5 =
1
2

e2,

∇e5 e1 =−
1
2

e3, ∇e5 e2 =−
1
2

e4, ∇e5 e3 =
1
2

e1, ∇e5 e4 =
1
2

e2.

We evaluate the projections and determine the class of the structure. The nonzero structure constants Fi jk are given in the following:

F115 = F134 = F143 = F151 =
1
2
,

F225 = F252 = F314 = F341 =
1
2
,

F112 = F121 = F323 = F332 =−
1
2
,

F335 = F353 = F445 = F454 =−
1
2
,

F211 = F511 = F522 = 1,
F233 = F533 = F544 =−1.
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For any x,y,z, by using above relations, the tensor F can be calculated in the following way:

F (x,y,z) = F

(
∑

i
xiei, ∑

j
y je j, ∑

k
zkek

)

= ∑
i, j,k

xiy jzkF
(
ei,e j,ek

)

= −1
2

x1y1z2−
1
2

x1y2z1 +
1
2

x1y3z4 +
1
2

x1y4z3 +
1
2

x3y4z1 +
1
2

x3y1z4

+
1
2

x1y1z5 +
1
2

x2y2z5 + x2y1z1− x2y3z3−
1
2

x3y3z5−
1
2

x4y4z5

+
1
2

x1y5z1 +
1
2

x2y5z2−
1
2

x3y2z3−
1
2

x3y5z3−
1
2

x4y5z4−
1
2

x3y3z2

+x5y1z1 + x5y2z2− x5y3z3− x5y4z4.

Since

F1(x,y,z) =
1
4
(−x1y1z2−2x2y2z2− x3y3z2− x5y5z2− x1y2z1− x3y2z3

− x5y2z5 + x1y4z3 +2x2y4z4 + x3y4z1 + x1y3z4 + x3y1z4),

F2(x,y,z) =
1
4
(2x2y1z1 + x2y2z2−2x2y3z3−2x2y4z4 +2x3y1z4

+2x3y4z1−2x3y2z3−2x3y3z2 + x5y2z5 + x5y5z2),

F3(x,y,z) =
1
4
(−x1y1z2− x1y2z1 + x1y3z4 + x1y4z3 +2x2y1z1

−2x2y3z3− x3y1z4 + x3y2z3 + x3y3z2− x3y4z1),

F8(x,y,z) =
1
2

x1y1z5 +
1
2

x2y2z5−
1
2

x3y3z5−
1
2

x4y4z5 +
1
2

x1y5z1

+
1
2

x2y5z2−
1
2

x3y5z3−
1
2

x4y5z4,

F10(x,y,z) = x5y1z1 + x5y2z2− x5y3z3− x5y4z4,

the tensor F can be written as F = F1 +F2 +F3 +F8 +F10. The only nonzero projections are F1,F2,F3,F8,F10. Therefore, the Lie
algebra g2 is in the class F1⊕F2⊕F3⊕F8⊕F10.

For the structure (3.2), the non-zero components Fi jk can be found as

F134 = F215 = F225 = F251 = F252 = F313 = F314 =
1
2
,

F331 = F341 = F423 = F432 = F143 = F515 =
1
2
,

F125 = F152 = F234 = F243 = F445 = F454 =−
1
2
,

F155 = F522 =−F133 =−F544 = 1.

The only nonzero projections of the tensor F are calculated by

F2(x,y,z) =
1
2

x2y2z5−
1
2

x2y3z4−
1
2

x2y4z3 +
1
2

x2y5z2 +
1
2

x4y2z3

+
1
2

x4y3z2−
1
2

x4y4z5−
1
2

x4y5z4 + x5y2z2− x5y4z5,

F4(x,y,z) =
1
4
(x2y2z1 + x3y3z1 + x4y4z1 + x5y5z1 + x2y1z2 + x3y1z3 + x4y1z4 + x5y1z5),

F6(x,y,z) =
1
4
(x5y5z1 + x2y5z1 + x3y3z1 + x3y4z1 + x5y2z1 + x4y3z1 + x5y1z5 + x2y1z5

+ x3y1z3 + x3y1z4− x5y1z2 + x4y1z3− x2y2z1− x4y4z1− x2y1z2− x4y1z4),
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F9(x,y,z) =
1
4
(x2y5z1 + x3y4z1− x5y2z1− x4y3z1 + x2y1z5 + x3y1z4− x5y1z2− x4y1z3),

F10(x,y,z) =−
1
2

x1y2z5− x1y3z3 +
1
2

x1y3z4.+
1
2

x1y4z3−
1
2

x1y5z2 + x1y5z5.

Hence, in similiar way, it can be easily seen that the structure (3.2) on g2 is of type F2⊕F4⊕F6⊕F9⊕F10.
The nonzero components Rici j = Ric(ei,e j) of Ricci curvature tensor are given by

Ric11 =−1, Ric22 =−1,

Ric33 = 0, Ric44 =−
1
2
,

Ric55 = 1.

With the aid of the above relations, we can compute the scalar curvature scal as follows:

scal =
5

∑
i=1

Ricii

= Ric11 +Ric22 +Ric33 +Ric44 +Ric55

= −1−1+0− 1
2
+1

= −3
2

By direct computation it can be easily shown that the Lie algebra g2 is not Einstein - like manifold. Moreover, the nonzero components of
the Lie derivative Lξ g for the structure (3.2) are as follows:

(Lξ g)23 = (Lξ g)35 = (Lξ g)32 = (Lξ g)53 =−1.

Hence, g2 is not Ricci-like soliton for both structures.

3.3. The Lie algebra g3

Theorem 3.4. The Lie algebra g3 belongs to the class F2⊕F3⊕F8⊕F10 with respect to the structure given in (3.1).

Proof. With the aid of the relations given in g3, the basic components of the Levi-Civita connection ∇ can be found as

∇e1 e2 =
1
2

e3, ∇e1 e3 =−
1
2

e2 +
1
2

e4, ∇e1 e4 =−
1
2

e3 +
1
2

e5, ∇e1 e5 =−
1
2

e4,

∇e2 e1 =−
1
2

e3, ∇e2 e3 =
1
2

e1 +
1
2

e5, ∇e2 e5 =−
1
2

e3, ∇e3 e1 =−
1
2

e2−
1
2

e4,

∇e3 e2 =
1
2

e1−
1
2

e5, ∇e3 e4 =
1
2

e1, ∇e3 e5 =
1
2

e2, ∇e4 e1 =−
1
2

e3−
1
2

e5, ∇e4 e3 =
1
2

e1,

∇e4 e5 =
1
2

e1, ∇e5 e1 =−
1
2

e4, ∇e5 e2 =−
1
2

e3, ∇e5 e3 =
1
2

e2, ∇e5 e4 =
1
2

e1.

By direct computation we get nonzero basic components Fi jk of the tensor F as follows:

F114 = F125 = F134 = F141 = F143 = F251 =
1
2
,

F152 = F215 = F312 = F314 = F321 = F341 =
1
2
,

F112 = F121 = F123 = F132 = F323 = F332 =−
1
2
,

F334 = F343 = F345 = F354 = F435 = F453 =−
1
2
,

F211 = F411 = F512 = F521 = 1,
F233 = F433 = F534 = F543 =−1.

The nonzero projections Fi are in the following:

F2(x,y,z) =
1
4
(−x1y1z2 +2x1y1z4− x1y2z1−2x1y2z3−2x1y3z2

+2x1y4z1 + x1y4z3 +2x2y1z1−2x2y3z3 +2x3y1z2 +3x3y1z4 +2x3y2z1

−3x3y2z3−3x3y3z2−2x3y3z4 +3x3y4z1−2x3y4z3 +4x4y1z1−4x4y3z3),
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F3(x,y,z) =
1
4
(−x1y1z2− x1y2z1 +2x1y3z4 + x1y4z3 +2x2y1z1

−2x2y3z3− x3y1z4 + x3y2z3− x3y1z4 + x3y2z3 + x3y3z2− x3y4z1),

F8(x,y,z) =
1
2

x1y2z5 +
1
2

x1y5z2 +
1
2

x2y1z5 +
1
2

x2y5z1−
1
2

x3y4z5

− 1
2

x3y5z4−
1
2

x4y3z5−
1
2

x4y5z3,

F10(x,y,z) = x5y1z2 + x5y2z1− x5y3z4− x5y4z3.

Then, the tensor F can be written as

F(x,y,z) = F2(x,y,z)+F3(x,y,z)+F8(x,y,z)+F10(x,y,z).

The class of g3 according to the structure (3.1) is F2⊕F3⊕F8⊕F10.

By the structure (3.2), the nonzero basic components Fi jk are calculated by

F145 = F154 = F215 = F251 = F312 = F314 =
1
2
,

F321 = F323 = F332 = F341 = F413 = F415 =
1
2
,

F431 = F451 = F512 = F521 = F525 = F552 =
1
2
,

F123 = F132 = F345 = F354 = F534 = F543 =−
1
2
,

F255 =−F233 = 1.

By using above basic components of the tensor F , we obtain the following projections:

F1(x,y,z) =
1
4
(2x2y2z2 + x3y3z2 + x5y5z2 + x3y2z3 + x5y2z5

−2x2y4z4− x3y5z4− x5y3z4− x5y4z3− x3y4z5),

F2(x,y,z) =
1
2
(−x2y3z3 + x2y5z5− x5y3z4− x5y4z3 + x5y2z5 + x5y5z2− x2y2z2− x2y4z4)

F3(x,y,z) =
1
4
(−2x2y3z3 +2x2y5z5 + x3y2z3 + x3y3z2− x3y4z5

− x3y5z4 + x5y3z4 + x5y4z3− x5y2z5− x5y5z2)

F6(x,y,z) =
1
4
(2x2y5z1 + x3y2z1 +2x3y4z1 +2x4y3z1 + x4y5z1 +2x5y2z1 + x2y3z1 + x5y4z1

+2x2y1z5 + x3y1z2 +2x3y1z4 +2x4y1z3 + x4y1z5 +2x5y1z2 + x2y1z3 + x5y1z4),

F9(x,y,z) =
1
4
(x3y2z1 + x4y5z1− x2y3z1− x5y4z1 + x3y1z2 + x4y1z5− x2y1z3− x5y1z4),

F10(x,y,z) =−
1
2

x1y2z3−
1
2

x1y3z2 +
1
2

x1y4z5 +
1
2

x1y5z4.

Namely, g3 belongs to F1⊕F2⊕F3⊕F6⊕F9⊕F10.
The nonzero components of Ricci curvature tensor for g3 are given below.

Ric11 =−
3
2
, Ric22 =−1,

Ric33 =−
1
2
, Ric44 = 0,

Ric55 = 1.

Using above equations, we compute scal =−2. The nonzero components of Lξ g for the structure (3.2) are the following:

(Lξ g)23 = (Lξ g)32 = (Lξ g)34 = (Lξ g)43 = (Lξ g)45 = (Lξ g)54 =−1.

By direct calculation, it is easily checked that g3 is not Einstein - like and Ricci-like soliton for given two structure.
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3.4. The Lie algebra g4

Theorem 3.5. The Lie algebras g4 belongs to the class F1⊕F2⊕F3⊕F7⊕F8⊕F10 according to the structure given in (3.1).

Proof. Similarly, by using the relations [e1,e2] = e3, [e1,e3] = e4, [e1,e4] = e5 and Kozsul’s formula, the basic components of ∇ are
calculated by

∇e1 e2 =
1
2

e3, ∇e1 e3 =−
1
2

e2 +
1
2

e4, ∇e1 e4 =−
1
2

e3 +
1
2

e5, ∇e1 e5 =−
1
2

e4,

∇e2 e1 =−
1
2

e3, ∇e2 e3 =
1
2

e1, ∇e3 e1 =−
1
2

e2−
1
2

e4,

∇e3 e2 =
1
2

e1, ∇e3 e4 =
1
2

e1, ∇e4 e1 =−
1
2

e3−
1
2

e5, ∇e4 e3 =
1
2

e1,

∇e4 e5 =
1
2

e1, ∇e5 e1 =−
1
2

e4, ∇e5 e4 =
1
2

e1.

The basic components Fi jk are given by

F114 = F125 = F134 = F141 = F143 = F512 =
1
2
,

F152 = F521 = F312 = F314 = F321 = F341 =
1
2
,

F112 = F121 = F123 = F132 = F323 = F332 =−
1
2
,

F334 = F343 = F435 = F453 = F534 = F543 =−
1
2
,

F211 = F411 =−F233 =−F433 = 1.

Since the projections Fi are too long, they are not written explicitly. It can be seen that the class of g4 is in F1⊕F2⊕F3⊕F7⊕F8⊕
F10.

Using the structure given in (3.2), the nonzero structure constants Fi jk are given below.

F145 = F154 = F215 = F251 = F312 = F314 =
1
2
,

F321 = F341 = F413 = F415 =
1
2
,

F431 = F451 = F512 = F521 =
1
2
,

F123 = F132 =−
1
2
.

Using above relations, we have

F6(x,y,z) =
1
4
(2x2y5z1 + x3y2z1 +2x3y4z1 +2x4y3z1 + x4y5z1 +2x5y2z1 + x2y3z1 + x5y4z1

+2x2y1z5 + x3y1z2 +2x3y1z4 +2x4y1z3 + x4y1z5 +2x5y1z2 + x2y1z3 + x5y1z4),

F9(x,y,z) =
1
4
(x3y2z1 + x4y5z1− x2y3z1− x5y4z1 + x3y1z2 + x4y1z5− x2y1z3− x5y1z4),

F10(x,y,z) =−
1
2

x1y2z3−
1
2

x1y3z2 +
1
2

x1y4z5 +
1
2

x1y5z4.

Therefore, we acquire that g4 is in the class F6⊕F9⊕F10.
The nonzero components Rici j of Ricci curvature tensor are determined by the following equations:

Ric11 =−
3
2
, Ric22 =−

1
2
,

Ric55 =
1
2
.

(3.4)

Taking into account (3.4), we obtain scal =− 3
2 . The nonzero components of Lξ g for the structure (3.2) are the following:

(Lξ g)23 = (Lξ g)32 = (Lξ g)34 = (Lξ g)43 = (Lξ g)45 = (Lξ g)54 =−1.

It can be easily checked that g4 is neither η−Einstein-like nor Ricci-like soliton for given two structures.
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3.5. The Lie algebra g5

Theorem 3.6. The class of the Lie algebra g5 is F1⊕F2⊕F3⊕F8⊕F10 considering the structure given in (3.1).

Proof. The basic terms of ∇ are computed as follows:

∇e1 e2 =
1
2

e4, ∇e1 e3 =
1
2

e5, ∇e1 e4 =−
1
2

e2, ∇e1 e5 =−
1
2

e3, ∇e2 e1 =−
1
2

e4,

∇e2 e4 =
1
2

e1, ∇e3 e1 =−
1
2

e5, ∇e3 e5 =
1
2

e1,

∇e4 e1 =−
1
2

e2, ∇e4 e2 =
1
2

e1, ∇e5 e1 =−
1
2

e3, ∇e5 e3 =
1
2

e1.

The nonzero projections Fi are given as follows:

F1(x,y,z) =
1
4
(2x1y1z1 + x2y2z1 + x3y3z1 + x4y4z1 + x5y5z1 + x2y1z2

+ x3y1z3 + x4y1z4 + x5y1z5− x2y4z3− x3y1z3− x4y2z3)

−2x1y3z3− x2y3z4− x3y3z1− x4y3z2),

F2(x,y,z) =
1
4
(−2x1y2z2 +2x1y4z4−2x4y3z2 +2x4y4z1 +2x4y1z4−2x4y2z3

−2x1y1z1− x5y5z1− x5y1z5 +2x1y3z3),

F3(x,y,z) =
1
4
(−2x1y2z2 +2x1y4z4 + x2y1z2 + x2y2z1− x2y3z4

− x2y4z3 + x4y3z2− x4y4z1− x4y1z4 + x4y2z3),

F8(x,y,z) =
1
2

x1y1z5−
1
2

x3y3z5−
1
2

x3y5z3 +
1
2

x1y5z1,

F10(x,y,z) = x5y1z1− x5y3z3.

The basic components of F are calculated by

F115 = F151 = F212 = F221 = F414 = F441 =
1
2
,

F234 = F243 = F335 = F353 = F423 = F432 =−
1
2
,

F144 = F511 =−F122 =−F533 = 1.

If the tensor F is written explicitly for any vectors x,y,z, then we obtain that g5 is in the class F1⊕F2⊕F3⊕F8⊕F10.

Moreover, using the structure (3.2), we have

F212 = F221 = F313 = F331 =
1
2
,

F414 = F441 = F515 = F551 =
1
2
,

F144 = F155 =−F122 =−F133 = 1.

By direct computation, we get the nonzero projections F6 and F10 in the following way:

F6(x,y,z) =
1
2

x2y1z2 +
1
2

x2y2z1 +
1
2

x3y1z3 +
1
2

x3y3z1

+
1
2

x4y1z4 +
1
2

x4y4z1 +
1
2

x5y1z5 +
1
2

x5y5z1,

F10(x,y,z) =−x1y2z2− x1y3z3 + x1y4z4 + x1y5z5.

Hence, we obtain that g5 is in F6⊕F10.
The non-zero components Rici j for g5 are

Ric11 =−1, Ric22 =−
1
2
,

Ric33 =−
1
2
, Ric44 =

1
2
,

Ric55 =
1
2
.
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Using above equations, the scalar curvature is −1. The nonzero components of Lξ g for the structure (3.2) are the following:

(Lξ g)24 = (Lξ g)42 = (Lξ g)35 = (Lξ g)53 =−1.

It can be easily checked that g5 is neither Einstein-like nor Ricci-like soliton for structures (3.1) and (3.2).

3.6. The Lie algebra g6

Theorem 3.7. The Lie algebra g6 belongs to the class F1⊕F2⊕F3⊕F7⊕F8⊕F10 according to the structure given in (3.1).

Proof. Similarly, the basic components of ∇ are computed as follows:

∇e1 e2 =
1
2

e3, ∇e1 e3 =−
1
2

e2 +
1
2

e4, ∇e1 e4 =−
1
2

e3,

∇e2 e1 =−
1
2

e3, ∇e2 e3 =
1
2

e1 +
1
2

e5, ∇e2 e5 =−
1
2

e3, ∇e3 e1 =−
1
2

e2−
1
2

e4,

∇e3 e2 =
1
2

e1−
1
2

e5, ∇e3 e4 =
1
2

e1, ∇e3 e5 =
1
2

e2, ∇e4 e1 =−
1
2

e3, ∇e4 e3 =
1
2

e1,

∇e5 e2 =−
1
2

e3, ∇e5 e3 =
1
2

e2.

The nonzero components of the structure tensor F are as follows:

F114 = F134 = F141 = F143 = F215 = F251 =
1
2
,

F312 = F314 = F321 = F341 = F512 = F521 =
1
2
,

F112 = F121 = F123 = F132 = F323 = F332 =−
1
2
,

F334 = F343 = F345 = F354 = F534 = F543 =−
1
2
,

F211 = F411 =−F233 =−F433 = 1.

We omit the nonzero projections Fi since they are very long. Hence, it is not hard to verify that g6 is in the class F1⊕F2⊕F3⊕F7⊕
F8⊕F10.

For the structure (3.2) on g6, the nonzero components Fi jk are in the following:

F134 = F143 = F145 = F154 = F215 = F251 =
1
2
,

F312 = F314 = F321 = F323 = F332 =
1
2
,

F341 = F415 = F451 = F525 = F552 =
1
2
,

F123 = F125 = F132 = F152 =−
1
2
,

F345 = F354 = F534 = F543 =−
1
2
,

F255 =−F233 = 1.

Using the general form of F , it can be seen that g6 is of type F1⊕F2⊕F3⊕F6⊕F9⊕F10.
The nonzero components of Ricci curvature tensor are in the following:

Ric11 = −1, Ric22 =−1,

Ric33 = −1
2
, Ric44 =

1
2
,

Ric55 =
1
2
.

With the aid of above relations, the scalar curvature tensor is scal =− 3
2 . The nonzero components of Lξ g for the structure (3.2) are the

following:

(Lξ g)23 = (Lξ g)32 = (Lξ g)34 = (Lξ g)43 =−1.

It is not hard to check that g5 is neither Einstein-like nor Ricci-like soliton for structures (3.1) and (3.2).
Note that all components Lξ g for the structure (3.1) are zero.
As a result, we get the followings.

Corollary 3.8. The vector field ξ defined on the Lie algebras gi for the structure (3.1) for i = 1, . . . ,6 is a Killing vector field.

Corollary 3.9. The structures given in (3.1) and (3.2) on five dimensional nilpotent Lie algebras gi are not para-Sasaki-like.
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4. Conclusion

In this manuscript, we give two different Riemannian Π−structure on 5−dimensional nilpotent Lie algebras. The classes of given structures
on 5−dimensional nilpotent Lie algebras are determined. We obtain the examples from certain classes. Only the g1 Lie algebra among
5−dimensional nilpotent Lie algebras is Einstein-like and admit Ricci-like soliton according to the structure given in (3.1). 5−dimensional
nilpotent Lie algebras gi for the structure (3.2) are neither Einstein-like nor Ricci-like soliton.
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