Riemannian Π-Structure on 5-Dimensional Nilpotent Lie Algebras

Şenay Bulut ${ }^{\text {* }}$ and Vildan Korucu Akan ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Eskissehir Technical University, Eskişehir, Turkey
* Corresponding author

Abstract

The object of our investigations is to classify 5 -dimensional nilpotent Lie algebras with two different Riemannian Π-structures. It is shown that the Lie groups corresponding to the Lie algebras \mathfrak{g}_{i} equipped with two different Riemannian Π-structures are not para-Sasaki-like. Moreover, we investigate whether the considered manifolds admit Ricci-like solitons and whether they are Einstein-like manifolds.

Keywords: Five dimensional nilpotent Lie algebras; Para-Sasaki-like manifold; Ricci-like soliton; Riemannian Π-manifold. 2010 Mathematics Subject Classification: 53C05; 53C15; 53C25.

1. Introduction

The notion of an almost paracontact structure on a smooth odd dimensional manifold was presented in $[9,10]$. The geometry of Riemannian manifolds with an almost paracontact structure corresponding to an almost paracomplex structure has been intensively studied in $[1,2,3,4,6]$. These manifolds are called briefly Riemannian Π-manifolds. A classification with eleven basic classes of almost paracontact Riemannian manifolds of type (n, n) according to the covariant derivative of the $(1,1)-$ tensor of the almost paracontact structure was given in [4]. There are 2^{11} classes of Riemannian Π-structures. The investigations of Riemannian Ricci solitons carried out in [7]. Ricci solitons on manifolds such as Riemannian Π - manifolds, Kenmotsu manifolds, paracontact manifolds have been studied in [1, 2, 3, 5, 11].
Non-isomorphic non-abelian nilpotent Lie algebras in five dimensions have six classes [8]. Our aim in this study determine the explicit classes of two different Riemannian Π-structures defined on 5 -dimensional nilpotent Lie algebras. Then, we calculate Ricci curvature tensor and scalar curvature tensor. Considering the classification obtained, we see that none of them with given structures are para-Sasaki-like. In addition, we show that the only Lie algebra \mathfrak{g}_{1} is an η-Einstein manifold and admits Ricci-like soliton.
The present paper is structured as follows. In Section 2, we reminisce some basic facts and properties of Riemannian Π-manifolds. In Section 3, we classify five dimensional nilpotent Lie algebras with two different Riemannian Π-structure. Finally, we examine some properties of the considered manifolds.

2. Riemannian Π-manifolds

A triple (ϕ, ξ, η) on a $(2 n+1)$-dimensional smooth manifold M satisfying
$\phi^{2}=I d-\eta \otimes \xi, \quad \eta(\xi)=1$,
where ϕ is a tensor field of type $(1,1), \xi$ is a Reeb vector field and η is a 1 -form on M, is called an almost paracontact structure on M. In this case, M is called an almost paracontact manifold. In addition, if (M, ϕ, ξ, η) admits a Riemannian metric g with

$$
g(\phi x, \phi y)=g(x, y)-\eta(x) \eta(y)
$$

for all vector fields x, y, then, (M, ϕ, ξ, η, g) is called Riemannian Π-manifold. These manifolds are sometimes called by different names such as apapR manifolds, almost paracontact almost paracomplex Riemannian manifolds. Moreover, by using above basic identities, the following derived properties are valid:

$$
\begin{array}{ll}
g(x, \xi)=\eta(x), & g(x, \phi y)=g(\phi x, y), \\
g(\xi, \xi)=1, & \eta\left(\nabla_{x} \xi\right)=0, \tag{2.2}
\end{array}
$$

where ∇ denotes the Levi-Civita connection of g. The associated metric \widetilde{g} of g on (M, ϕ, ξ, η, g) determined by the equality $\widetilde{g}(x, y)=$ $g(x, \phi y)+\eta(x) \eta(y)$ is a pseudo-Riemannian metric of signature $(n+1, n)$.
A Riemannian Π-manifold M is said to be a para-Sasaki-like manifold if the following is provided:

$$
\begin{align*}
\left(\nabla_{x} \phi\right) y & =-g(x, y) \xi-\eta(y) x+2 \eta(x) \eta(y) \xi \\
& =-g(\phi x, \phi y) \xi-\eta(y) \phi^{2} x \tag{2.3}
\end{align*}
$$

In [6], it is proven that the following identities hold for any para-Sasaki-like manifold (M, g, ϕ, ξ, η) :

$$
\begin{array}{ll}
\nabla_{x} \xi=\phi x, & \left(\nabla_{x} \eta\right) y=g(x, \phi y), \\
R(x, y) \xi=-\eta(y) x+\eta(x) y, & \operatorname{Ric}(x, \xi)=-2 n \eta(x), \tag{2.4}\\
R(\xi, y) \xi=\phi^{2} y, & \operatorname{Ric}(x, \xi)(\xi, \xi)=-2 n,
\end{array}
$$

where R and Ric denote the curvature tensor and the Ricci tensor, respectively.
In [4] the almost paracantact almost paracomplex Riemannian manifolds are classified using the tensor F of type $(0,3)$ defined by

$$
F(x, y, z)=g\left(\left(\nabla_{x} \phi\right) y, z\right),
$$

where ∇ is the Levi-Civita connection of g. Moreover, the following relations are satisfied:

$$
\begin{align*}
& F(x, y, z)=F(x, z, y)=-F(x, \phi y, \phi z)+\eta(y) F(x, \xi, z)+\eta(z) F(x, y, \xi), \tag{2.5}\\
& \left(\nabla_{x} \eta\right) y=g\left(\nabla_{x} \xi, y\right)=-F(x, \phi y, \xi) .
\end{align*}
$$

Eleven basis classes of these manifolds are denoted by $\mathscr{F}_{1}, \ldots, \mathscr{F}_{11}$. The class of \mathscr{F}_{0} is defined by the condition $F=0$, i.e., $\nabla \phi=\nabla \xi=$ $\nabla \eta=\nabla g=0$.
The Lie 1 -forms associated with F are defined by

$$
\begin{equation*}
\theta(x)=g^{i j} F\left(e_{i}, e_{j}, x\right), \quad \theta^{*}(x)=g^{i j} F\left(e_{i}, \phi e_{j}, x\right), \quad \omega(x)=F(\xi, \xi, x), \tag{2.6}
\end{equation*}
$$

where $g^{i j}$'s are the entries of the inverse matrix of g with respect to the basis $\left\{e_{i}, \xi\right\}$ of $T_{p} M$.
Let \mathbb{F} be the set of all tensors over $T_{p} M$ satisfying the properties (2.5). \mathbb{F} is the direct sum of eleven subspaces \mathbb{F}_{i}, which is orthogonal and invariant with respect to the structure group of considered manifolds. If the tensor F belongs to the subspace \mathbb{F}_{i}, then the manifold is said to be in the class \mathscr{F}_{i}. It is said that M belongs to the class \mathscr{F}_{i} if and only if the equality $F=F_{i}$ is valid. F_{i} are the components of F in the subspace \mathbb{F}_{i} and are listed below [4].

$$
\begin{aligned}
& F_{1}(x, y, z)=\frac{1}{2 n}\left[g(\phi x, \phi y) \theta\left(\phi^{2} z\right)+g(\phi x, \phi z) \theta\left(\phi^{2} y\right)\right. \\
& -g(x, \phi y) \theta(\phi z)-g(x, \phi z) \theta(\phi y)], \\
& F_{2}(x, y, z)=\frac{1}{4}\left[2 F\left(\phi^{2} x, \phi^{2} y, \phi^{2} z\right)+F\left(\phi^{2} y, \phi^{2} z, \phi^{2} x\right)+F\left(\phi^{2} z, \phi^{2} x, \phi^{2} y\right)\right. \\
& \left.-F\left(\phi y, \phi z, \phi^{2} x\right)-F\left(\phi z, \phi y, \phi^{2} x\right)\right] \\
& -\frac{1}{2 n}\left[g(\phi x, \phi y) \theta\left(\phi^{2} z\right)+g(\phi x, \phi z) \theta\left(\phi^{2} y\right)\right. \\
& -g(x, \phi y) \theta(\phi z)-g(x, \phi z) \theta(\phi y)] \text {, } \\
& \begin{aligned}
F_{3}(x, y, z) & =\frac{1}{4}\left[2 F\left(\phi^{2} x, \phi^{2} y, \phi^{2} z\right)-F\left(\phi^{2} y, \phi^{2} z, \phi^{2} x\right)-F\left(\phi^{2} z, \phi^{2} x, \phi^{2} y\right)\right. \\
& \left.+F\left(\phi y, \phi z, \phi^{2} x\right)+F\left(\phi z, \phi y, \phi^{2} x\right)\right],
\end{aligned} \\
& \left.+F\left(\phi y, \phi z, \phi^{2} x\right)+F\left(\phi z, \phi y, \phi^{2} x\right)\right], \\
& F_{4}(x, y, z)=\frac{\theta(\xi)}{2 n}[g(\phi x, \phi y) \eta(z)+g(\phi x, \phi z) \eta(y)], \\
& F_{5}(x, y, z)=\frac{\theta^{*}(\xi)}{2 n}[g(x, \phi y) \eta(z)+g(x, \phi z) \eta(y)], \\
& F_{6}(x, y, z)=\frac{1}{4}\left[\left[F\left(\phi^{2} x, \phi^{2} y, \xi\right)+F\left(\phi^{2} y, \phi^{2} x, \xi\right)+F(\phi x, \phi y, \xi)+F(\phi y, \phi x, \xi)\right] \eta(z)\right. \\
& \left.+\left[F\left(\phi^{2} x, \phi^{2} z, \xi\right)+F\left(\phi^{2} z, \phi^{2} x, \xi\right)+F(\phi x, \phi z, \xi)+F(\phi z, \phi x, \xi)\right] \eta(y)\right] \\
& \begin{array}{l}
-\frac{\theta(\xi)}{2 n}[g(\phi x, \phi y) \eta(z)+g(\phi x, \phi z) \eta(y)] \\
-\frac{\theta^{*}(\xi)}{2 n}[g(x, \phi y) \eta(z)+g(x, \phi z) \eta(y)],
\end{array} \\
& F_{7}(x, y, z)=\frac{1}{4}\left[\left[F\left(\phi^{2} x, \phi^{2} y, \xi\right)-F\left(\phi^{2} y, \phi^{2} x, \xi\right)+F(\phi x, \phi y, \xi)-F(\phi y, \phi x, \xi)\right] \eta(z)\right. \\
& \left.+\left[F\left(\phi^{2} x, \phi^{2} z, \xi\right)-F\left(\phi^{2} z, \phi^{2} x, \xi\right)+F(\phi x, \phi z, \xi)-F(\phi z, \phi x, \xi)\right] \eta(y)\right], \\
& F_{8}(x, y, z)=\frac{1}{4}\left[\left[F\left(\phi^{2} x, \phi^{2} y, \boldsymbol{\xi}\right)+F\left(\phi^{2} y, \phi^{2} x, \boldsymbol{\xi}\right)-F(\phi x, \phi y, \boldsymbol{\xi})-F(\phi y, \phi x, \xi)\right] \eta(z),\right. \\
& \left.+\left[F\left(\phi^{2} x, \phi^{2} z, \xi\right)+F\left(\phi^{2} z, \phi^{2} x, \xi\right)-F(\phi x, \phi z, \xi)-F(\phi z, \phi x, \xi)\right] \eta(y)\right],
\end{aligned}
$$

$$
\begin{aligned}
F_{9}(x, y, z) & =\frac{1}{4}\left[\left[F\left(\phi^{2} x, \phi^{2} y, \xi\right)-F\left(\phi^{2} y, \phi^{2} x, \xi\right)-F(\phi x, \phi y, \xi)+F(\phi y, \phi x, \xi)\right] \eta(z)\right. \\
+ & {\left.\left[F\left(\phi^{2} x, \phi^{2} z, \xi\right)-F\left(\phi^{2} z, \phi^{2} x, \xi\right)-F(\phi x, \phi z, \xi)+F(\phi z, \phi x, \xi)\right] \eta(y)\right], } \\
F_{10}(x, y, z) & =\eta(x) F\left(\xi, \phi^{2} y, \phi^{2} z\right), \\
F_{11}(x, y, z) & =\eta(x)[\eta(y) \omega(z)+\eta(z) \omega(y)] .
\end{aligned}
$$

A Riemannian Π-manifold belongs to a direct sum of two or more basic classes if and only if the fundamental tensor is the sum of the corresponding components F_{i}, F_{j}, \ldots, namely, $F=F_{i}+F_{j}+\cdots$.
The Nijenhuis torsion of ϕ is defined by

$$
\begin{equation*}
[\phi, \phi](x, y)=[\phi x, \phi y]+\phi^{2}[x, y]-\phi[\phi x, y]-\phi[x, \phi y] . \tag{2.7}
\end{equation*}
$$

Normality condition of Riemannian Π-structure is equivalent to vanishing the four tensors given by

$$
\begin{aligned}
& N^{(1)}(x, y)=[\phi, \phi](x, y)-d \eta(x, y) \xi, \\
& N^{(2)}(x, y)=\left(\mathfrak{L}_{\phi x} \eta\right)(y)-\left(\mathfrak{L}_{\phi y} \eta\right)(x), \\
& N^{(3)}(x, y)=\left(\mathfrak{L}_{\xi} \phi\right)(x), \\
& N^{(4)}(x, y)=\left(\mathfrak{L}_{\xi} \eta\right)(x),
\end{aligned}
$$

where \mathfrak{L} denotes the Lie derivative operator.
Let us recall from [1] that the Riemannian Π-manifold (M, ϕ, ξ, η, g) is called Einstein-like with constants (a, b, c) if its Ricci tensor Ric satisfies the following formula:

Ric $=a g+b \widetilde{g}+c \eta \otimes \eta$,
where a, b, c are constants. In particular, if $b=0$ and $b=c=0$, then the manifold is called an η-Einstein manifold and an Einstein manifold, respectively. If a, b, c are functions on M, the manifold M is called almost Einstein-like, almost η-Einstein-like or an almost Einstein manifold, respectively.
A Ricci-like soliton with potential vector field ξ and constants (λ, μ, v) on a Riemannian Π-manifold (M, ϕ, ξ, η, g) is defined by
$\frac{1}{2} \mathscr{L}_{\xi} g+R i c+\lambda g+\mu \tilde{g}+v \eta \otimes \eta=0$,
where the Lie derivative \mathscr{L} of g along ξ is expressed by

$$
\mathscr{L}_{\xi} g(x, y)=g\left(\nabla_{x} \xi, y\right)+g\left(x, \nabla_{y} \xi\right) .
$$

An almost paracontact almost paracomplex metric structure (ϕ, ξ, η, g) on a connected Lie group G is said to be left invariant if g is left invariant and the conditions

$$
\phi \circ L_{a}=L_{a} \circ \phi, L_{a}(\xi)=\xi
$$

are satisfied, where L_{a} is the left multiplication by $a \in G$ in G.
An almost paracontact almost paracomplex metric structure on G induces an almost paracontact almost paracomplex metric structure on the Lie algebra \mathfrak{g} of G having the structure (ϕ, ξ, η, g).
In this study, we specify the classes of some almost paracontact almost paracomplex metric structure 5-dimensional nilpotent Lie algebras. The non-isomorphic and non-abelian algebras \mathfrak{g}_{i} are divided into six classes with the corresponding basis $\left\{e_{1}, \ldots, e_{5}\right\}$ and non-zero brackets in the following [8]:

$$
\begin{align*}
& {\left[e_{1}, e_{2}\right]=e_{5},\left[e_{3}, e_{4}\right]=e_{5},} \\
& {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{5},\left[e_{2}, e_{4}\right]=e_{5},} \\
& {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{4},\left[e_{1}, e_{4}\right]=e_{5},\left[e_{2}, e_{3}\right]=e_{5},} \tag{2.10}\\
& {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{4},\left[e_{1}, e_{4}\right]=e_{5},} \\
& {\left[e_{1}, e_{2}\right]=e_{4},\left[e_{1}, e_{3}\right]=e_{5},} \\
& {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{4},\left[e_{2}, e_{3}\right]=e_{5} .}
\end{align*}
$$

3. A Riemannian Π-structures on 5 -dimensional Nilpotent Lie Algebras

Let (ϕ, ξ, η, g) be a left invariant Riemannian Π-structure on a connected Lie group G_{i} with corresponding Lie algebra \mathfrak{g}_{i}. We use the same notation for the corresponding Riemannian Π-structure. Now, we investigate the classes of the following Riemannian Π-structure with respect to the basis $\left\{e_{1}, \ldots, e_{5}\right\}$ on each \mathfrak{g}_{i}.

$$
\begin{align*}
& \phi\left(e_{1}\right)=e_{3}, \phi\left(e_{2}\right)=e_{4}, \phi\left(e_{3}\right)=e_{1}, \phi\left(e_{4}\right)=e_{2}, \phi\left(e_{5}\right)=0, \\
& \xi=e_{5}, \eta=e^{5}, \tag{3.1}\\
& g\left(e_{i}, e_{i}\right)=1, g\left(e_{i}, e_{j}\right)=0, i, j \in\{1, \ldots, 5\}, i \neq j .
\end{align*}
$$

3.1. The Lie algebra \mathfrak{g}_{1}

Theorem 3.1. The Lie algebra \mathfrak{g}_{1} belongs to the class \mathscr{F}_{7} according to the structure given in (3.1).
Proof. By using the non-zero brackets $\left[e_{1}, e_{2}\right]=e_{5},\left[e_{3}, e_{4}\right]=e_{5}$ and Kozsul's formula, the covariant derivatives of the non-zero basic elements are given by

$$
\begin{aligned}
& \nabla_{e_{1}} e_{2}=\frac{1}{2} e_{5}, \nabla_{e_{1}} e_{5}=-\frac{1}{2} e_{2}, \nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{5}, \nabla_{e_{2}} e_{5}=\frac{1}{2} e_{1} \\
& \nabla_{e_{3}} e_{4}=\frac{1}{2} e_{5}, \nabla_{e_{3}} e_{5}=-\frac{1}{2} e_{4}, \nabla_{e_{4}} e_{3}=-\frac{1}{2} e_{5}, \nabla_{e_{4}} e_{5}=\frac{1}{2} e_{3} \\
& \nabla_{e_{5}} e_{1}=-\frac{1}{2} e_{2}, \nabla_{e_{5}} e_{2}=\frac{1}{2} e_{1}, \nabla_{e_{5}} e_{3}=-\frac{1}{2} e_{4}, \nabla_{e_{5}} e_{4}=\frac{1}{2} e_{3}
\end{aligned}
$$

Theorem 3.2. [4] Let (M, ϕ, ξ, η, g) be a Riemannian Π-manifold. Then, we have
a. $[\phi, \phi](x, y)=0$ if and only if (M, ϕ, ξ, η, g) belongs to $\mathscr{F}_{i}(i=1,2,4,5,6,11)$ or to their direct sums;
b. $[\phi, \phi](x, y)=-2\left\{\phi\left(\nabla_{\phi x} \phi\right) \phi y+\phi\left(\nabla_{\phi^{2} x} \phi\right) \phi^{2} y\right\}$ if and only if (M, ϕ, ξ, η, g) belongs to \mathscr{F}_{3};
c. $[\phi, \phi](x, y)=-2\left(\nabla_{x} \eta\right)(y) \xi$ if and only if (M, ϕ, ξ, η, g) belongs to \mathscr{F}_{7};
d. $[\phi, \phi](x, y)=-2\left\{\eta(x) \nabla_{y} \xi-\eta(y) \nabla_{x} \xi-\left(\nabla_{x} \eta\right)(y) \xi\right\}$ if and only if (M, ϕ, ξ, η, g) belongs to \mathscr{F}_{8};
e. $[\phi, \phi](x, y)=-2\left\{\eta(x) \nabla_{y} \xi-\eta(y) \nabla_{x} \xi\right\}$ if and only if (M, ϕ, ξ, η, g) belongs to \mathscr{F}_{9};
f. $[\phi, \phi](x, y)=-\eta(x) \phi\left(\nabla_{\xi} \phi\right) y+\eta(y) \phi\left(\nabla_{\xi} \phi\right) x$ if and only if (M, ϕ, ξ, η, g) belongs to \mathscr{F}_{10}.

Setting $x=y=e_{i},(i=1,2, \ldots, 5)$ in (2.7), we get

$$
\left[\phi e_{i}, \phi e_{i}\right]+\phi^{2}\left[e_{i}, e_{i}\right]-\phi\left[\phi e_{i}, e_{i}\right]-\phi\left[e_{i}, \phi e_{i}\right]=0
$$

Moreover, we can calculate

$$
\left(\nabla_{e_{i}} \eta\right) e_{i}=e_{i}\left(\eta e_{i}\right)-\eta\left(\nabla_{e_{i}} e_{i}\right)=0
$$

for every $i=1,2, \ldots, 5$. In case of $i=1, j=2$, we obtain $[\phi, \phi]\left(e_{1}, e_{2}\right)=e_{5}$ and $\left(\nabla_{e_{1}} \eta\right) e_{2}=-\frac{1}{2}$. Similarly, in case of $i=3$, $j=4$, we get $[\phi, \phi]\left(e_{3}, e_{4}\right)=e_{5}$ and $\left(\nabla_{e_{3}} \eta\right) e_{4}=-\frac{1}{2}$. In other cases, we calculate $[\phi, \phi]\left(e_{i}, e_{j}\right)=0$ and $\left(\nabla_{e_{i}} \eta\right)\left(e_{j}\right)=0$ for $i \neq j$. Therefore, the equality given in Theorem 3.2(c) is satisfied for the orthonormal basis $\left\{e_{1}, \ldots, e_{5}=\xi\right\}$. Hence, we conclude that \mathfrak{g}_{1} belongs to the class \mathscr{F}_{7}.

Now, we consider another structure (ϕ, ξ, η, g) given by

$$
\begin{align*}
& \phi\left(e_{3}\right)=e_{5}, \phi\left(e_{2}\right)=e_{4}, \phi\left(e_{5}\right)=e_{3}, \phi\left(e_{4}\right)=e_{2}, \phi\left(e_{1}\right)=0 \\
& \xi=e_{1}, \eta=e^{1} \tag{3.2}\\
& g\left(e_{i}, e_{i}\right)=1, \quad g\left(e_{i}, e_{j}\right)=0, \quad i, j \in\{1, \ldots, 5\}, \quad i \neq j
\end{align*}
$$

By using above structure we compute the following non-zero components $F\left(e_{i}, e_{j}, e_{k}\right)=F_{i j k}$ of the structure tensor F :

$$
\begin{aligned}
& F_{145}=F_{154}=F_{213}=F_{231}=F_{325}=\frac{1}{2} \\
& F_{352}=F_{514}=F_{523}=F_{532}=F_{541}=\frac{1}{2} \\
& F_{123}=F_{132}=F_{334}=F_{343}=F_{545}=F_{554}=-\frac{1}{2} \\
& F_{433}=-F_{455}=1
\end{aligned}
$$

Then, we construct the following form of F for any vectors x, y, z :

$$
\begin{aligned}
F(x, y, z)= & F\left(\sum_{i} x_{i} e_{i}, \sum_{j} y_{j} e_{j}, \sum_{k} z_{k} e_{k}\right) \\
= & \sum_{i, j, k} x_{i} y_{j} z_{k} F\left(e_{i}, e_{j}, e_{k}\right) \\
= & -\frac{1}{2} x_{1} y_{2} z_{3}-\frac{1}{2} x_{1} y_{3} z_{2}+\frac{1}{2} x_{1} y_{4} z_{5}+\frac{1}{2} x_{1} y_{5} z_{4}+\frac{1}{2} x_{2} y_{1} z_{3}+\frac{1}{2} x_{2} y_{3} z_{1} \\
& +\frac{1}{2} x_{3} y_{2} z_{5}-\frac{1}{2} x_{3} y_{3} z_{4}-\frac{1}{2} x_{3} y_{4} z_{3}+\frac{1}{2} x_{3} y_{5} z_{2}+x_{4} y_{3} z_{3}-x_{4} y_{5} z_{5} \\
& +\frac{1}{2} x_{5} y_{1} z_{4}+\frac{1}{2} x_{5} y_{2} z_{3}+\frac{1}{2} x_{5} y_{3} z_{2}+\frac{1}{2} x_{5} y_{4} z_{1}-\frac{1}{2} x_{5} y_{4} z_{5}-\frac{1}{2} x_{5} y_{5} z_{4}
\end{aligned}
$$

The latter equality implies that F is represented in the form

$$
F(x, y, z)=F_{1}(x, y, z)+F_{2}(x, y, z)+F_{3}(x, y, z)+F_{6}(x, y, z)+F_{9}(x, y, z)+F_{10}(x, y, z)
$$

$$
\begin{aligned}
& \text { where } \\
& \begin{aligned}
F_{1}(x, y, z) & =\frac{1}{4}\left(-x_{1} y_{1} z_{4}-x_{1} y_{4} z_{1}+x_{3} y_{2} z_{5}-x_{3} y_{3} z_{4}-x_{3} y_{4} z_{3}+x_{3} y_{5} z_{2}\right. \\
+ & \left.2 x_{4} y_{2} z_{2}+x_{5} y_{2} z_{3}+x_{5} y_{3} z_{2}-x_{5} y_{4} z_{5}-x_{5} y_{5} z_{4}\right), \\
F_{2}(x, y, z) & =\frac{1}{4}\left(2 x_{3} y_{5} z_{2}+x_{4} y_{3} z_{3}-3 x_{4} y_{5} z_{5}+x_{5} y_{2} z_{3}-x_{5} y_{4} z_{5}\right. \\
- & \left.2 x_{5} y_{5} z_{4}+x_{2} y_{3} z_{5}+x_{1} y_{1} z_{4}+x_{1} y_{4} z_{1}+x_{3} y_{4} z_{3}-2 x_{4} y_{4} z_{2}\right), \\
F_{3}(x, y, z) & =\frac{1}{4}\left(2 x_{3} y_{2} z_{5}-x_{3} y_{5} z_{2}-x_{3} y_{3} z_{4}-2 x_{3} y_{4} z_{3}+3 x_{4} y_{3} z_{3}\right. \\
- & \left.x_{4} y_{5} z_{5}+x_{5} y_{3} z_{2}+x_{5} y_{5} z_{4}-x_{2} y_{3} z_{5}\right), \\
F_{6}(x, y, z) & =\frac{1}{4}\left(x_{2} y_{3} z_{1}+x_{5} y_{4} z_{1}+x_{3} y_{2} z_{1}+x_{4} y_{5} z_{1}+x_{2} y_{1} z_{3}+x_{5} y_{1} z_{4}+x_{3} y_{1} z_{2}+x_{4} y_{1} z_{5}\right), \\
F_{9}(x, y, z) & =\frac{1}{4}\left(x_{2} y_{3} z_{1}+x_{5} y_{4} z_{1}-x_{3} y_{2} z_{1}-x_{4} y_{5} z_{1}+x_{2} y_{1} z_{3}+x_{5} y_{1} z_{4}-x_{3} y_{1} z_{2}-x_{4} y_{1} z_{5}\right), \\
F_{10}(x, y, z) & =-\frac{1}{2} x_{1} y_{2} z_{3}-\frac{1}{2} x_{1} y_{3} z_{2}+\frac{1}{2} x_{1} y_{4} z_{5}+\frac{1}{2} x_{1} y_{5} z_{4} .
\end{aligned}
\end{aligned}
$$

Therefore, \mathfrak{g}_{1} with the structure (3.2) is in the class $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{6} \oplus \mathscr{F}_{9} \oplus \mathscr{F}_{10}$.
The Ricci tensor Ric and the scalar curvature scal according to the basis $\left\{e_{1}, \ldots, e_{4}, e_{5}=\xi\right\}$ are presented by
$\operatorname{Ric}(x, y)=\sum_{i=1}^{5} g\left(R\left(e_{i}, x\right) y, e_{i}\right)$ and scal $=\sum_{i=1}^{5} \operatorname{Ric}\left(e_{i}, e_{i}\right)$,
respectively. The non-zero components of Ricci tensor Ric corresponding to the Lie algebra \mathfrak{g}_{1} are calculated according to the basis $\left\{e_{1}, \ldots, e_{4}, e_{5}=\xi\right\}$ as follows:

$$
\begin{aligned}
\text { Ric }_{11} & =-\frac{1}{2}, R i c_{22}=-\frac{1}{2}, \\
R i c_{33} & =-\frac{1}{2}, R i c_{44}=-\frac{1}{2}, \\
\text { Ric }_{55} & =1,
\end{aligned}
$$

where $\operatorname{Ric}_{i j}=\operatorname{Ric}\left(e_{i}, e_{j}\right)$ for $i, j \in\{1,2, \ldots, 5\}$. The scalar curvature scal of \mathfrak{g}_{1} is evaluated by scal $=-1 .\left(G_{1}, \phi, \xi, \eta, g\right)$ is a η-Einstein manifold with constants $(a, b, c)=\left(-\frac{1}{2}, 0, \frac{3}{2}\right)$.
The nonzero components of $\mathscr{L}_{\xi} g$ for the structure (3.2) are the following:
$\left(\mathscr{L}_{\xi} g\right)_{25}=\left(\mathscr{L}_{\xi} g\right)_{52}=-1$.
$\left(G_{1}, \phi, \boldsymbol{\xi}, \eta, g\right)$ is neither Einstein-like nor Ricci-like soliton for the structure (3.2).

3.2. The Lie algebra \mathfrak{g}_{2}

Theorem 3.3. The Lie algebra \mathfrak{g}_{2} belongs to the class $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{8} \oplus \mathscr{F}_{10}$ with regard to the structure given in (3.1).
Proof. By using the relations $\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{5},\left[e_{2}, e_{4}\right]=e_{5}$ and Kozsul's formula we get
$\nabla_{e_{1}} e_{2}=\frac{1}{2} e_{3}, \nabla_{e_{1}} e_{3}=-\frac{1}{2} e_{2}+\frac{1}{2} e_{5}, \nabla_{e_{1}} e_{5}=-\frac{1}{2} e_{3}, \nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3}$,
$\nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1}, \nabla_{e_{2}} e_{4}=\frac{1}{2} e_{5}, \nabla_{e_{2}} e_{5}=-\frac{1}{2} e_{4}, \nabla_{e_{3}} e_{1}=-\frac{1}{2} e_{2}-\frac{1}{2} e_{5}$,
$\nabla_{e_{3}} e_{2}=\frac{1}{2} e_{1}, \nabla_{e_{3}} e_{5}=\frac{1}{2} e_{1}, \nabla_{e_{4}} e_{2}=-\frac{1}{2} e_{5}, \nabla_{e_{4}} e_{5}=\frac{1}{2} e_{2}$,
$\nabla_{e_{5}} e_{1}=-\frac{1}{2} e_{3}, \nabla_{e_{5}} e_{2}=-\frac{1}{2} e_{4}, \nabla_{e_{5}} e_{3}=\frac{1}{2} e_{1}, \nabla_{e_{5}} e_{4}=\frac{1}{2} e_{2}$.
We evaluate the projections and determine the class of the structure. The nonzero structure constants $F_{i j k}$ are given in the following:

$$
\begin{aligned}
& F_{115}=F_{134}=F_{143}=F_{151}=\frac{1}{2}, \\
& F_{225}=F_{252}=F_{314}=F_{341}=\frac{1}{2}, \\
& F_{112}=F_{121}=F_{323}=F_{332}=-\frac{1}{2}, \\
& F_{335}=F_{353}=F_{445}=F_{454}=-\frac{1}{2}, \\
& F_{211}=F_{511}=F_{522}=1, \\
& F_{233}=F_{533}=F_{544}=-1 .
\end{aligned}
$$

For any x, y, z, by using above relations, the tensor F can be calculated in the following way:

$$
\begin{aligned}
F(x, y, z)= & F\left(\sum_{i} x_{i} e_{i}, \sum_{j} y_{j} e_{j}, \sum_{k} z_{k} e_{k}\right) \\
= & \sum_{i, j, k} x_{i} y_{j} z_{k} F\left(e_{i}, e_{j}, e_{k}\right) \\
= & -\frac{1}{2} x_{1} y_{1} z_{2}-\frac{1}{2} x_{1} y_{2} z_{1}+\frac{1}{2} x_{1} y_{3} z_{4}+\frac{1}{2} x_{1} y_{4} z_{3}+\frac{1}{2} x_{3} y_{4} z_{1}+\frac{1}{2} x_{3} y_{1} z_{4} \\
& +\frac{1}{2} x_{1} y_{1} z_{5}+\frac{1}{2} x_{2} y_{2} z_{5}+x_{2} y_{1} z_{1}-x_{2} y_{3} z_{3}-\frac{1}{2} x_{3} y_{3} z_{5}-\frac{1}{2} x_{4} y_{4} z_{5} \\
& +\frac{1}{2} x_{1} y_{5} z_{1}+\frac{1}{2} x_{2} y_{5} z_{2}-\frac{1}{2} x_{3} y_{2} z_{3}-\frac{1}{2} x_{3} y_{5} z_{3}-\frac{1}{2} x_{4} y_{5} z_{4}-\frac{1}{2} x_{3} y_{3} z_{2} \\
& +x_{5} y_{1} z_{1}+x_{5} y_{2} z_{2}-x_{5} y_{3} z_{3}-x_{5} y_{4} z_{4} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \begin{aligned}
& F_{1}(x, y, z)= \\
& 4 \\
&\left.-x_{5} y_{2} z_{5}+x_{1} y_{1} y_{4} z_{3}+2 x_{2}+2 x_{2} y_{4} z_{4}+x_{3} y_{4} z_{1}+x_{1} y_{3} z_{4}+x_{3} y_{1} z_{4}\right),
\end{aligned} \\
& \begin{aligned}
F_{2}(x, y, z) & =\frac{1}{4}\left(2 x_{2} y_{1} z_{1}+x_{2} y_{2} z_{2}-2 x_{2} y_{3} z_{3}-2 x_{2} y_{4} z_{4}+2 x_{3} y_{1} z_{4}\right. \\
& \left.+2 x_{3} y_{4} z_{1}-2 x_{3} y_{2} z_{3}-2 x_{3} y_{3} z_{2}+x_{5} y_{2} z_{5}+x_{5} y_{5} z_{2}\right),
\end{aligned} \\
& \begin{aligned}
F_{3}(x, y, z) & =\frac{1}{4}\left(-x_{1} y_{1} z_{2}-x_{1} y_{2} z_{1}+x_{1} y_{3} z_{4}+x_{1} y_{4} z_{3}+2 x_{2} y_{1} z_{1}\right. \\
& \left.-2 x_{2} y_{3} z_{3}-x_{3} y_{1} z_{4}+x_{3} y_{2} z_{3}+x_{3} y_{3} z_{2}-x_{3} y_{4} z_{1}\right), \\
F_{8}(x, y, z) & =\frac{1}{2} x_{1} y_{1} z_{5}+\frac{1}{2} x_{2} y_{2} z_{5}-\frac{1}{2} x_{3} y_{3} z_{5}-\frac{1}{2} x_{4} y_{4} z_{5}+\frac{1}{2} x_{1} y_{5} z_{1} \\
+ & \frac{1}{2} x_{2} y_{5} z_{2}-\frac{1}{2} x_{3} y_{5} z_{3}-\frac{1}{2} x_{4} y_{5} z_{4},
\end{aligned} \\
& F_{10}(x, y, z)=x_{5} y_{1} z_{1}+x_{5} y_{2} z_{2}-x_{5} y_{3} z_{3}-x_{5} y_{4} z_{4},
\end{aligned}
$$

the tensor F can be written as $F=F_{1}+F_{2}+F_{3}+F_{8}+F_{10}$. The only nonzero projections are $\mathscr{F}_{1}, \mathscr{F}_{2}, \mathscr{F}_{3}, \mathscr{F}_{8}, \mathscr{F}_{10}$. Therefore, the Lie algebra \mathfrak{g}_{2} is in the class $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{8} \oplus \mathscr{F}_{10}$.

For the structure (3.2), the non-zero components $F_{i j k}$ can be found as

$$
\begin{aligned}
& F_{134}=F_{215}=F_{225}=F_{251}=F_{252}=F_{313}=F_{314}=\frac{1}{2}, \\
& F_{331}=F_{341}=F_{423}=F_{432}=F_{143}=F_{515}=\frac{1}{2}, \\
& F_{125}=F_{152}=F_{234}=F_{243}=F_{445}=F_{454}=-\frac{1}{2}, \\
& F_{155}=F_{522}=-F_{133}=-F_{544}=1 .
\end{aligned}
$$

The only nonzero projections of the tensor F are calculated by

$$
\begin{aligned}
F_{2}(x, y, z) & =\frac{1}{2} x_{2} y_{2} z_{5}-\frac{1}{2} x_{2} y_{3} z_{4}-\frac{1}{2} x_{2} y_{4} z_{3}+\frac{1}{2} x_{2} y_{5} z_{2}+\frac{1}{2} x_{4} y_{2} z_{3} \\
& +\frac{1}{2} x_{4} y_{3} z_{2}-\frac{1}{2} x_{4} y_{4} z_{5}-\frac{1}{2} x_{4} y_{5} z_{4}+x_{5} y_{2} z_{2}-x_{5} y_{4} z_{5} \\
F_{4}(x, y, z) & =\frac{1}{4}\left(x_{2} y_{2} z_{1}+x_{3} y_{3} z_{1}+x_{4} y_{4} z_{1}+x_{5} y_{5} z_{1}+x_{2} y_{1} z_{2}+x_{3} y_{1} z_{3}+x_{4} y_{1} z_{4}+x_{5} y_{1} z_{5}\right), \\
F_{6}(x, y, z) & =\frac{1}{4}\left(x_{5} y_{5} z_{1}+x_{2} y_{5} z_{1}+x_{3} y_{3} z_{1}+x_{3} y_{4} z_{1}+x_{5} y_{2} z_{1}+x_{4} y_{3} z_{1}+x_{5} y_{1} z_{5}+x_{2} y_{1} z_{5}\right. \\
& \left.+x_{3} y_{1} z_{3}+x_{3} y_{1} z_{4}-x_{5} y_{1} z_{2}+x_{4} y_{1} z_{3}-x_{2} y_{2} z_{1}-x_{4} y_{4} z_{1}-x_{2} y_{1} z_{2}-x_{4} y_{1} z_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{9}(x, y, z)=\frac{1}{4}\left(x_{2} y_{5} z_{1}+x_{3} y_{4} z_{1}-x_{5} y_{2} z_{1}-x_{4} y_{3} z_{1}+x_{2} y_{1} z_{5}+x_{3} y_{1} z_{4}-x_{5} y_{1} z_{2}-x_{4} y_{1} z_{3}\right) \\
& F_{10}(x, y, z)=-\frac{1}{2} x_{1} y_{2} z_{5}-x_{1} y_{3} z_{3}+\frac{1}{2} x_{1} y_{3} z_{4} \cdot+\frac{1}{2} x_{1} y_{4} z_{3}-\frac{1}{2} x_{1} y_{5} z_{2}+x_{1} y_{5} z_{5}
\end{aligned}
$$

Hence, in similiar way, it can be easily seen that the structure (3.2) on \mathfrak{g}_{2} is of type $\mathscr{F}_{2} \oplus \mathscr{F}_{4} \oplus \mathscr{F}_{6} \oplus \mathscr{F}_{9} \oplus \mathscr{F}_{10}$.
The nonzero components $\operatorname{Ric} c_{i j}=\operatorname{Ric}\left(e_{i}, e_{j}\right)$ of Ricci curvature tensor are given by

$$
\begin{aligned}
& \operatorname{Ric}_{11}=-1, \quad \operatorname{Ric}_{22}=-1 \\
& \operatorname{Ric}_{33}=0, \quad \text { Ric }_{44}=-\frac{1}{2} \\
& \operatorname{Ric}_{55}=1
\end{aligned}
$$

With the aid of the above relations, we can compute the scalar curvature scal as follows:

$$
\begin{aligned}
\text { scal } & =\sum_{i=1}^{5} \text { Ric }_{i i} \\
& =\text { Ric }_{11}+\text { Ric }_{22}+\text { Ric }_{33}+\text { Ric }_{44}+\text { Ric }_{55} \\
& =-1-1+0-\frac{1}{2}+1 \\
& =-\frac{3}{2}
\end{aligned}
$$

By direct computation it can be easily shown that the Lie algebra \mathfrak{g}_{2} is not Einstein - like manifold. Moreover, the nonzero components of the Lie derivative $\mathscr{L}_{\xi} g$ for the structure (3.2) are as follows:
$\left(\mathscr{L}_{\xi} g\right)_{23}=\left(\mathscr{L}_{\xi} g\right)_{35}=\left(\mathscr{L}_{\xi} g\right)_{32}=\left(\mathscr{L}_{\xi} g\right)_{53}=-1$.
Hence, \mathfrak{g}_{2} is not Ricci-like soliton for both structures.

3.3. The Lie algebra \mathfrak{g}_{3}

Theorem 3.4. The Lie algebra \mathfrak{g}_{3} belongs to the class $\mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{8} \oplus \mathscr{F}_{10}$ with respect to the structure given in (3.1).
Proof. With the aid of the relations given in \mathfrak{g}_{3}, the basic components of the Levi-Civita connection ∇ can be found as

$$
\begin{aligned}
& \nabla_{e_{1}} e_{2}=\frac{1}{2} e_{3}, \nabla_{e_{1}} e_{3}=-\frac{1}{2} e_{2}+\frac{1}{2} e_{4}, \nabla_{e_{1}} e_{4}=-\frac{1}{2} e_{3}+\frac{1}{2} e_{5}, \nabla_{e_{1}} e_{5}=-\frac{1}{2} e_{4}, \\
& \nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3}, \nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1}+\frac{1}{2} e_{5}, \nabla_{e_{2}} e_{5}=-\frac{1}{2} e_{3}, \nabla_{e_{3}} e_{1}=-\frac{1}{2} e_{2}-\frac{1}{2} e_{4}, \\
& \nabla_{e_{3}} e_{2}=\frac{1}{2} e_{1}-\frac{1}{2} e_{5}, \nabla_{e_{3}} e_{4}=\frac{1}{2} e_{1}, \nabla_{e_{3}} e_{5}=\frac{1}{2} e_{2}, \nabla_{e_{4}} e_{1}=-\frac{1}{2} e_{3}-\frac{1}{2} e_{5}, \nabla_{e_{4}} e_{3}=\frac{1}{2} e_{1}, \\
& \nabla_{e_{4}} e_{5}=\frac{1}{2} e_{1}, \nabla_{e_{5}} e_{1}=-\frac{1}{2} e_{4}, \nabla_{e_{5}} e_{2}=-\frac{1}{2} e_{3}, \nabla_{e_{5}} e_{3}=\frac{1}{2} e_{2}, \nabla_{e_{5}} e_{4}=\frac{1}{2} e_{1} .
\end{aligned}
$$

By direct computation we get nonzero basic components $F_{i j k}$ of the tensor F as follows:

$$
\begin{aligned}
& F_{114}=F_{125}=F_{134}=F_{141}=F_{143}=F_{251}=\frac{1}{2}, \\
& F_{152}=F_{215}=F_{312}=F_{314}=F_{321}=F_{341}=\frac{1}{2}, \\
& F_{112}=F_{121}=F_{123}=F_{132}=F_{323}=F_{332}=-\frac{1}{2}, \\
& F_{334}=F_{343}=F_{345}=F_{354}=F_{435}=F_{453}=-\frac{1}{2}, \\
& F_{211}=F_{411}=F_{512}=F_{521}=1, \\
& F_{233}=F_{433}=F_{534}=F_{543}=-1
\end{aligned}
$$

The nonzero projections F_{i} are in the following:

$$
\begin{aligned}
F_{2}(x, y, z) & =\frac{1}{4}\left(-x_{1} y_{1} z_{2}+2 x_{1} y_{1} z_{4}-x_{1} y_{2} z_{1}-2 x_{1} y_{2} z_{3}-2 x_{1} y_{3} z_{2}\right. \\
& +2 x_{1} y_{4} z_{1}+x_{1} y_{4} z_{3}+2 x_{2} y_{1} z_{1}-2 x_{2} y_{3} z_{3}+2 x_{3} y_{1} z_{2}+3 x_{3} y_{1} z_{4}+2 x_{3} y_{2} z_{1} \\
& \left.-3 x_{3} y_{2} z_{3}-3 x_{3} y_{3} z_{2}-2 x_{3} y_{3} z_{4}+3 x_{3} y_{4} z_{1}-2 x_{3} y_{4} z_{3}+4 x_{4} y_{1} z_{1}-4 x_{4} y_{3} z_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
& F_{3}(x, y, z)=\frac{1}{4}\left(-x_{1} y_{1} z_{2}-x_{1} y_{2} z_{1}+2 x_{1} y_{3} z_{4}+x_{1} y_{4} z_{3}+2 x_{2} y_{1} z_{1}\right. \\
&\left.-2 x_{2} y_{3} z_{3}-x_{3} y_{1} z_{4}+x_{3} y_{2} z_{3}-x_{3} y_{1} z_{4}+x_{3} y_{2} z_{3}+x_{3} y_{3} z_{2}-x_{3} y_{4} z_{1}\right) \\
& \begin{aligned}
F_{8}(x, y, z) & =\frac{1}{2} x_{1} y_{2} z_{5}+\frac{1}{2} x_{1} y_{5} z_{2}+\frac{1}{2} x_{2} y_{1} z_{5}+\frac{1}{2} x_{2} y_{5} z_{1}-\frac{1}{2} x_{3} y_{4} z_{5} \\
& -\frac{1}{2} x_{3} y_{5} z_{4}-\frac{1}{2} x_{4} y_{3} z_{5}-\frac{1}{2} x_{4} y_{5} z_{3}
\end{aligned} \\
& F_{10}(x, y, z)=x_{5} y_{1} z_{2}+x_{5} y_{2} z_{1}-x_{5} y_{3} z_{4}-x_{5} y_{4} z_{3}
\end{aligned}
\end{aligned}
$$

Then, the tensor F can be written as

$$
F(x, y, z)=F_{2}(x, y, z)+F_{3}(x, y, z)+F_{8}(x, y, z)+F_{10}(x, y, z)
$$

The class of \mathfrak{g}_{3} according to the structure (3.1) is $\mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{8} \oplus \mathscr{F}_{10}$.

By the structure (3.2), the nonzero basic components $F_{i j k}$ are calculated by

$$
\begin{aligned}
& F_{145}=F_{154}=F_{215}=F_{251}=F_{312}=F_{314}=\frac{1}{2} \\
& F_{321}=F_{323}=F_{332}=F_{341}=F_{413}=F_{415}=\frac{1}{2} \\
& F_{431}=F_{451}=F_{512}=F_{521}=F_{525}=F_{552}=\frac{1}{2} \\
& F_{123}=F_{132}=F_{345}=F_{354}=F_{534}=F_{543}=-\frac{1}{2} \\
& F_{255}=-F_{233}=1
\end{aligned}
$$

By using above basic components of the tensor F, we obtain the following projections:

$$
\begin{aligned}
& \begin{aligned}
F_{1}(x, y, z) & =\frac{1}{4}\left(2 x_{2} y_{2} z_{2}+x_{3} y_{3} z_{2}+x_{5} y_{5} z_{2}+x_{3} y_{2} z_{3}+x_{5} y_{2} z_{5}\right.
\end{aligned} \\
& \left.-2 x_{2} y_{4} z_{4}-x_{3} y_{5} z_{4}-x_{5} y_{3} z_{4}-x_{5} y_{4} z_{3}-x_{3} y_{4} z_{5}\right)
\end{aligned} \begin{aligned}
& F_{2}(x, y, z)=\frac{1}{2}\left(-x_{2} y_{3} z_{3}+x_{2} y_{5} z_{5}-x_{5} y_{3} z_{4}-x_{5} y_{4} z_{3}+x_{5} y_{2} z_{5}+x_{5} y_{5} z_{2}-x_{2} y_{2} z_{2}-x_{2} y_{4} z_{4}\right) \\
& \begin{aligned}
F_{3}(x, y, z) & =\frac{1}{4}\left(-2 x_{2} y_{3} z_{3}+2 x_{2} y_{5} z_{5}+x_{3} y_{2} z_{3}+x_{3} y_{3} z_{2}-x_{3} y_{4} z_{5}\right.
\end{aligned} \\
&-\left.x_{3} y_{5} z_{4}+x_{5} y_{3} z_{4}+x_{5} y_{4} z_{3}-x_{5} y_{2} z_{5}-x_{5} y_{5} z_{2}\right)
\end{aligned} \begin{aligned}
F_{6}(x, y, z) & =\frac{1}{4}\left(2 x_{2} y_{5} z_{1}+x_{3} y_{2} z_{1}+2 x_{3} y_{4} z_{1}+2 x_{4} y_{3} z_{1}+x_{4} y_{5} z_{1}+2 x_{5} y_{2} z_{1}+x_{2} y_{3} z_{1}+x_{5} y_{4} z_{1}\right. \\
+ & \left.2 x_{2} y_{1} z_{5}+x_{3} y_{1} z_{2}+2 x_{3} y_{1} z_{4}+2 x_{4} y_{1} z_{3}+x_{4} y_{1} z_{5}+2 x_{5} y_{1} z_{2}+x_{2} y_{1} z_{3}+x_{5} y_{1} z_{4}\right)
\end{aligned} \quad \begin{aligned}
F_{9}(x, y, z) & =\frac{1}{4}\left(x_{3} y_{2} z_{1}+x_{4} y_{5} z_{1}-x_{2} y_{3} z_{1}-x_{5} y_{4} z_{1}+x_{3} y_{1} z_{2}+x_{4} y_{1} z_{5}-x_{2} y_{1} z_{3}-x_{5} y_{1} z_{4}\right) \\
F_{10}(x, y, z) & =-\frac{1}{2} x_{1} y_{2} z_{3}-\frac{1}{2} x_{1} y_{3} z_{2}+\frac{1}{2} x_{1} y_{4} z_{5}+\frac{1}{2} x_{1} y_{5} z_{4} .
\end{aligned}
$$

Namely, \mathfrak{g}_{3} belongs to $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{6} \oplus \mathscr{F}_{9} \oplus \mathscr{F}_{10}$.
The nonzero components of Ricci curvature tensor for \mathfrak{g}_{3} are given below.

$$
\begin{aligned}
& \operatorname{Ric}_{11}=-\frac{3}{2}, \operatorname{Ric}_{22}=-1 \\
& \operatorname{Ric}_{33}=-\frac{1}{2}, \quad \operatorname{Ric}_{44}=0 \\
& R i c_{55}=1
\end{aligned}
$$

Using above equations, we compute scal $=-2$. The nonzero components of $\mathscr{L}_{\xi} g$ for the structure (3.2) are the following:
$\left(\mathscr{L}_{\xi} g\right)_{23}=\left(\mathscr{L}_{\xi} g\right)_{32}=\left(\mathscr{L}_{\xi} g\right)_{34}=\left(\mathscr{L}_{\xi} g\right)_{43}=\left(\mathscr{L}_{\xi} g\right)_{45}=\left(\mathscr{L}_{\xi} g\right)_{54}=-1$.
By direct calculation, it is easily checked that \mathfrak{g}_{3} is not Einstein-like and Ricci-like soliton for given two structure.

3.4. The Lie algebra \mathfrak{g}_{4}

Theorem 3.5. The Lie algebras \mathfrak{g}_{4} belongs to the class $\mathscr{F}_{1} \oplus_{2} \mathscr{F}_{2} \mathscr{F}_{3} \mathscr{F}_{7} \oplus_{\mathscr{F}_{8}} \oplus \mathscr{F}_{10}$ according to the structure given in (3.1).

Proof. Similarly, by using the relations $\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{4},\left[e_{1}, e_{4}\right]=e_{5}$ and Kozsul's formula, the basic components of ∇ are calculated by

$$
\begin{aligned}
& \nabla_{e_{1}} e_{2}=\frac{1}{2} e_{3}, \nabla_{e_{1}} e_{3}=-\frac{1}{2} e_{2}+\frac{1}{2} e_{4}, \nabla_{e_{1}} e_{4}=-\frac{1}{2} e_{3}+\frac{1}{2} e_{5}, \nabla_{e_{1}} e_{5}=-\frac{1}{2} e_{4} \\
& \nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3}, \nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1}, \nabla_{e_{3}} e_{1}=-\frac{1}{2} e_{2}-\frac{1}{2} e_{4} \\
& \nabla_{e_{3}} e_{2}=\frac{1}{2} e_{1}, \nabla_{e_{3}} e_{4}=\frac{1}{2} e_{1}, \nabla_{e_{4}} e_{1}=-\frac{1}{2} e_{3}-\frac{1}{2} e_{5}, \nabla_{e_{4}} e_{3}=\frac{1}{2} e_{1} \\
& \nabla_{e_{4}} e_{5}=\frac{1}{2} e_{1}, \nabla_{e_{5}} e_{1}=-\frac{1}{2} e_{4}, \nabla_{e_{5}} e_{4}=\frac{1}{2} e_{1}
\end{aligned}
$$

The basic components $F_{i j k}$ are given by

$$
\begin{aligned}
& F_{114}=F_{125}=F_{134}=F_{141}=F_{143}=F_{512}=\frac{1}{2} \\
& F_{152}=F_{521}=F_{312}=F_{314}=F_{321}=F_{341}=\frac{1}{2} \\
& F_{112}=F_{121}=F_{123}=F_{132}=F_{323}=F_{332}=-\frac{1}{2} \\
& F_{334}=F_{343}=F_{435}=F_{453}=F_{534}=F_{543}=-\frac{1}{2} \\
& F_{211}=F_{411}=-F_{233}=-F_{433}=1
\end{aligned}
$$

Since the projections F_{i} are too long, they are not written explicitly. It can be seen that the class of \mathfrak{g}_{4} is in $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{7} \oplus \mathscr{F}_{8} \oplus$ \mathscr{F}_{10}.

Using the structure given in (3.2), the nonzero structure constants $F_{i j k}$ are given below.

$$
\begin{aligned}
& F_{145}=F_{154}=F_{215}=F_{251}=F_{312}=F_{314}=\frac{1}{2} \\
& F_{321}=F_{341}=F_{413}=F_{415}=\frac{1}{2} \\
& F_{431}=F_{451}=F_{512}=F_{521}=\frac{1}{2} \\
& F_{123}=F_{132}=-\frac{1}{2}
\end{aligned}
$$

Using above relations, we have

$$
\left.\begin{array}{rl}
F_{6}(x, y, z) & =\frac{1}{4}\left(2 x_{2} y_{5} z_{1}+x_{3} y_{2} z_{1}+2 x_{3} y_{4} z_{1}+2 x_{4} y_{3} z_{1}+x_{4} y_{5} z_{1}+2 x_{5} y_{2} z_{1}+x_{2} y_{3} z_{1}+x_{5} y_{4} z_{1}\right. \\
& \left.+2 x_{2} y_{1} z_{5}+x_{3} y_{1} z_{2}+2 x_{3} y_{1} z_{4}+2 x_{4} y_{1} z_{3}+x_{4} y_{1} z_{5}+2 x_{5} y_{1} z_{2}+x_{2} y_{1} z_{3}+x_{5} y_{1} z_{4}\right)
\end{array} \begin{array}{rl}
F_{9}(x, y, z) & =\frac{1}{4}\left(x_{3} y_{2} z_{1}+x_{4} y_{5} z_{1}-x_{2} y_{3} z_{1}-x_{5} y_{4} z_{1}+x_{3} y_{1} z_{2}+x_{4} y_{1} z_{5}-x_{2} y_{1} z_{3}-x_{5} y_{1} z_{4}\right)
\end{array}\right\} \begin{aligned}
F_{10}(x, y, z) & =-\frac{1}{2} x_{1} y_{2} z_{3}-\frac{1}{2} x_{1} y_{3} z_{2}+\frac{1}{2} x_{1} y_{4} z_{5}+\frac{1}{2} x_{1} y_{5} z_{4}
\end{aligned}
$$

Therefore, we acquire that \mathfrak{g}_{4} is in the class $\mathscr{F}_{6} \oplus \mathscr{F}_{9} \oplus \mathscr{F}_{10}$.
The nonzero components $R i c_{i j}$ of Ricci curvature tensor are determined by the following equations:

$$
\begin{align*}
& \operatorname{Ric}_{11}=-\frac{3}{2}, \operatorname{Ric}_{22}=-\frac{1}{2} \tag{3.4}\\
& \operatorname{Ric}_{55}=\frac{1}{2}
\end{align*}
$$

Taking into account (3.4), we obtain scal $=-\frac{3}{2}$. The nonzero components of $\mathscr{L}_{\xi} g$ for the structure (3.2) are the following:
$\left(\mathscr{L}_{\xi} g\right)_{23}=\left(\mathscr{L}_{\xi} g\right)_{32}=\left(\mathscr{L}_{\xi} g\right)_{34}=\left(\mathscr{L}_{\xi} g\right)_{43}=\left(\mathscr{L}_{\xi} g\right)_{45}=\left(\mathscr{L}_{\xi} g\right)_{54}=-1$.
It can be easily checked that \mathfrak{g}_{4} is neither η-Einstein-like nor Ricci-like soliton for given two structures.

3.5. The Lie algebra \mathfrak{g}_{5}

Theorem 3.6. The class of the Lie algebra \mathfrak{g}_{5} is $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{8} \oplus \mathscr{F}_{10}$ considering the structure given in (3.1).
Proof. The basic terms of ∇ are computed as follows:

$$
\begin{aligned}
& \nabla_{e_{1}} e_{2}=\frac{1}{2} e_{4}, \nabla_{e_{1}} e_{3}=\frac{1}{2} e_{5}, \nabla_{e_{1}} e_{4}=-\frac{1}{2} e_{2}, \nabla_{e_{1}} e_{5}=-\frac{1}{2} e_{3}, \nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{4}, \\
& \nabla_{e_{2}} e_{4}=\frac{1}{2} e_{1}, \nabla_{e_{3}} e_{1}=-\frac{1}{2} e_{5}, \nabla_{e_{3}} e_{5}=\frac{1}{2} e_{1} \\
& \nabla_{e_{4}} e_{1}=-\frac{1}{2} e_{2}, \nabla_{e_{4}} e_{2}=\frac{1}{2} e_{1}, \nabla_{e_{5}} e_{1}=-\frac{1}{2} e_{3}, \nabla_{e_{5}} e_{3}=\frac{1}{2} e_{1} .
\end{aligned}
$$

The nonzero projections F_{i} are given as follows:

$$
\begin{aligned}
& \begin{aligned}
& F_{1}(x, y, z)=\frac{1}{4}\left(2 x_{1} y_{1} z_{1}+x_{2} y_{2} z_{1}+x_{3} y_{3} z_{1}+x_{4} y_{4} z_{1}+x_{5} y_{5} z_{1}+x_{2} y_{1} z_{2}\right. \\
&\left.+x_{3} y_{1} z_{3}+x_{4} y_{1} z_{4}+x_{5} y_{1} z_{5}-x_{2} y_{4} z_{3}-x_{3} y_{1} z_{3}-x_{4} y_{2} z_{3}\right) \\
&\left.-2 x_{1} y_{3} z_{3}-x_{2} y_{3} z_{4}-x_{3} y_{3} z_{1}-x_{4} y_{3} z_{2}\right) \\
& \begin{aligned}
F_{2}(x, y, z) & =\frac{1}{4}\left(-2 x_{1} y_{2} z_{2}+2 x_{1} y_{4} z_{4}-2 x_{4} y_{3} z_{2}+2 x_{4} y_{4} z_{1}+2 x_{4} y_{1} z_{4}-2 x_{4} y_{2} z_{3}\right. \\
& \left.-2 x_{1} y_{1} z_{1}-x_{5} y_{5} z_{1}-x_{5} y_{1} z_{5}+2 x_{1} y_{3} z_{3}\right)
\end{aligned} \\
& \begin{aligned}
F_{3}(x, y, z) & =\frac{1}{4}\left(-2 x_{1} y_{2} z_{2}+2 x_{1} y_{4} z_{4}+x_{2} y_{1} z_{2}+x_{2} y_{2} z_{1}-x_{2} y_{3} z_{4}\right. \\
& \left.-x_{2} y_{4} z_{3}+x_{4} y_{3} z_{2}-x_{4} y_{4} z_{1}-x_{4} y_{1} z_{4}+x_{4} y_{2} z_{3}\right) \\
F_{8}(x, y, z) & =\frac{1}{2} x_{1} y_{1} z_{5}-\frac{1}{2} x_{3} y_{3} z_{5}-\frac{1}{2} x_{3} y_{5} z_{3}+\frac{1}{2} x_{1} y_{5} z_{1}
\end{aligned} \\
& F_{10}(x, y, z)=x_{5} y_{1} z_{1}-x_{5} y_{3} z_{3}
\end{aligned}
\end{aligned}
$$

The basic components of F are calculated by

$$
\begin{aligned}
& F_{115}=F_{151}=F_{212}=F_{221}=F_{414}=F_{441}=\frac{1}{2} \\
& F_{234}=F_{243}=F_{335}=F_{353}=F_{423}=F_{432}=-\frac{1}{2} \\
& F_{144}=F_{511}=-F_{122}=-F_{533}=1
\end{aligned}
$$

If the tensor F is written explicitly for any vectors x, y, z, then we obtain that \mathfrak{g}_{5} is in the class $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{8} \oplus \mathscr{F}_{10}$.
Moreover, using the structure (3.2), we have

$$
\begin{aligned}
& F_{212}=F_{221}=F_{313}=F_{331}=\frac{1}{2} \\
& F_{414}=F_{441}=F_{515}=F_{551}=\frac{1}{2} \\
& F_{144}=F_{155}=-F_{122}=-F_{133}=1 .
\end{aligned}
$$

By direct computation, we get the nonzero projections F_{6} and F_{10} in the following way:

$$
\begin{aligned}
F_{6}(x, y, z) & =\frac{1}{2} x_{2} y_{1} z_{2}+\frac{1}{2} x_{2} y_{2} z_{1}+\frac{1}{2} x_{3} y_{1} z_{3}+\frac{1}{2} x_{3} y_{3} z_{1} \\
& +\frac{1}{2} x_{4} y_{1} z_{4}+\frac{1}{2} x_{4} y_{4} z_{1}+\frac{1}{2} x_{5} y_{1} z_{5}+\frac{1}{2} x_{5} y_{5} z_{1}
\end{aligned}
$$

$F_{10}(x, y, z)=-x_{1} y_{2} z_{2}-x_{1} y_{3} z_{3}+x_{1} y_{4} z_{4}+x_{1} y_{5} z_{5}$.
Hence, we obtain that \mathfrak{g}_{5} is in $\mathscr{F}_{6} \oplus \mathscr{F}_{10}$.
The non-zero components $R i c_{i j}$ for \mathfrak{g}_{5} are

$$
\begin{aligned}
& \operatorname{Ric}_{11}=-1, \quad \operatorname{Ric}_{22}=-\frac{1}{2} \\
& \operatorname{Ric}_{33}=-\frac{1}{2}, \quad \text { Ric }_{44}=\frac{1}{2} \\
& R i c_{55}=\frac{1}{2}
\end{aligned}
$$

Using above equations, the scalar curvature is -1 . The nonzero components of $\mathscr{L}_{\xi} g$ for the structure (3.2) are the following:
$\left(\mathscr{L}_{\xi} g\right)_{24}=\left(\mathscr{L}_{\xi} g\right)_{42}=\left(\mathscr{L}_{\xi} g\right)_{35}=\left(\mathscr{L}_{\xi} g\right)_{53}=-1$.
It can be easily checked that \mathfrak{g}_{5} is neither Einstein-like nor Ricci-like soliton for structures (3.1) and (3.2).

3.6. The Lie algebra \mathfrak{g}_{6}

Theorem 3.7. The Lie algebra \mathfrak{g}_{6} belongs to the class $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{7} \oplus \mathscr{F}_{8} \oplus \mathscr{F}_{10}$ according to the structure given in (3.1).
Proof. Similarly, the basic components of ∇ are computed as follows:

$$
\begin{aligned}
& \nabla_{e_{1}} e_{2}=\frac{1}{2} e_{3}, \nabla_{e_{1}} e_{3}=-\frac{1}{2} e_{2}+\frac{1}{2} e_{4}, \nabla_{e_{1}} e_{4}=-\frac{1}{2} e_{3}, \\
& \nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3}, \nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1}+\frac{1}{2} e_{5}, \nabla_{e_{2}} e_{5}=-\frac{1}{2} e_{3}, \nabla_{e_{3}} e_{1}=-\frac{1}{2} e_{2}-\frac{1}{2} e_{4}, \\
& \nabla_{e_{3}} e_{2}=\frac{1}{2} e_{1}-\frac{1}{2} e_{5}, \nabla_{e_{3}} e_{4}=\frac{1}{2} e_{1}, \nabla_{e_{3}} e_{5}=\frac{1}{2} e_{2}, \nabla_{e_{4}} e_{1}=-\frac{1}{2} e_{3}, \nabla_{e_{4}} e_{3}=\frac{1}{2} e_{1}, \\
& \nabla_{e_{5}} e_{2}=-\frac{1}{2} e_{3}, \nabla_{e_{5}} e_{3}=\frac{1}{2} e_{2} .
\end{aligned}
$$

The nonzero components of the structure tensor F are as follows:

$$
\begin{aligned}
& F_{114}=F_{134}=F_{141}=F_{143}=F_{215}=F_{251}=\frac{1}{2}, \\
& F_{312}=F_{314}=F_{321}=F_{341}=F_{512}=F_{521}=\frac{1}{2}, \\
& F_{112}=F_{121}=F_{123}=F_{132}=F_{323}=F_{332}=-\frac{1}{2}, \\
& F_{334}=F_{343}=F_{345}=F_{354}=F_{534}=F_{543}=-\frac{1}{2}, \\
& F_{211}=F_{411}=-F_{233}=-F_{433}=1 .
\end{aligned}
$$

We omit the nonzero projections F_{i} since they are very long. Hence, it is not hard to verify that \mathfrak{g}_{6} is in the class $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{7} \oplus$ $\mathscr{F}_{8} \oplus \mathscr{F}_{10}$.

For the structure (3.2) on \mathfrak{g}_{6}, the nonzero components $F_{i j k}$ are in the following:

$$
\begin{aligned}
& F_{134}=F_{143}=F_{145}=F_{154}=F_{215}=F_{251}=\frac{1}{2}, \\
& F_{312}=F_{314}=F_{321}=F_{323}=F_{332}=\frac{1}{2}, \\
& F_{341}=F_{415}=F_{451}=F_{525}=F_{552}=\frac{1}{2}, \\
& F_{123}=F_{125}=F_{132}=F_{152}=-\frac{1}{2}, \\
& F_{345}=F_{354}=F_{534}=F_{543}=-\frac{1}{2}, \\
& F_{255}=-F_{233}=1 .
\end{aligned}
$$

Using the general form of F, it can be seen that \mathfrak{g}_{6} is of type $\mathscr{F}_{1} \oplus \mathscr{F}_{2} \oplus \mathscr{F}_{3} \oplus \mathscr{F}_{6} \oplus \mathscr{F}_{9} \oplus \mathscr{F}_{10}$.
The nonzero components of Ricci curvature tensor are in the following:

$$
\begin{aligned}
& \operatorname{Ric}_{11}=-1, \text { Ric }_{22}=-1, \\
& \operatorname{Ric}_{33}=-\frac{1}{2}, R i c_{44}=\frac{1}{2}, \\
& R i c_{55}=\frac{1}{2} .
\end{aligned}
$$

With the aid of above relations, the scalar curvature tensor is $s c a l=-\frac{3}{2}$. The nonzero components of $\mathscr{L}_{\xi} g$ for the structure (3.2) are the following:
$\left(\mathscr{L}_{\xi} g\right)_{23}=\left(\mathscr{L}_{\xi} g\right)_{32}=\left(\mathscr{L}_{\xi} g\right)_{34}=\left(\mathscr{L}_{\xi} g\right)_{43}=-1$.
It is not hard to check that \mathfrak{g}_{5} is neither Einstein-like nor Ricci-like soliton for structures (3.1) and (3.2).
Note that all components $\mathscr{L}_{\xi} g$ for the structure (3.1) are zero.
As a result, we get the followings.
Corollary 3.8. The vector field ξ defined on the Lie algebras \mathfrak{g}_{i} for the structure (3.1) for $i=1, \ldots, 6$ is a Killing vector field.
Corollary 3.9. The structures given in (3.1) and (3.2) on five dimensional nilpotent Lie algebras \mathfrak{g}_{i} are not para-Sasaki-like.

4. Conclusion

In this manuscript, we give two different Riemannian Π-structure on 5 -dimensional nilpotent Lie algebras. The classes of given structures on 5 -dimensional nilpotent Lie algebras are determined. We obtain the examples from certain classes. Only the \mathfrak{g}_{1} Lie algebra among 5-dimensional nilpotent Lie algebras is Einstein-like and admit Ricci-like soliton according to the structure given in (3.1). 5-dimensional nilpotent Lie algebras \mathfrak{g}_{i} for the structure (3.2) are neither Einstein-like nor Ricci-like soliton.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.
Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.
Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of data and materials: Not applicable.

References

[1] H. Manev, M. Manev, Para-Ricci-like solitons on Riemannian manifolds with almost paracontact structure and almost paracomplex structure. Mathematics, 9(14) (2021), 1704.
[2] H. Manev, Para-Ricci-like solitons with vertical potential on para-Sasaki-like Riemannian Π-manifolds, Symmetry, 13 (2021), 2267.
[3] H. Manev, M. Manev, Para-Ricci-like solitons with arbitrary potential on para-Sasaki-like Riemannian Π - manifolds, Mathematics, $10(4)(2022)$, 651.
[4] M. Manev, M. Staikova, On almost paracontact Riemannian manifolds of type (n, n), J. Geom., 72 (2001), 108-114.
[5] H.G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3(2) (2012), 18-24.
[6] S. Ivanov, H. Manev and M. Manev, Para-Sasaki-like Riemannian manifolds and new Einstein metrics, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115 (2021), 112.
[7] H. D. Cao, Recent progress on Ricci solitons, Adv. Lect. Math. (ALM), 11 (2009), 1-38.
[8] J. Dixmier, Sur les reprentations unitaires des groupes de Lie nilpotentes III, Canad. J. Math., 10 (1958), $321-348$.
[9] S. Kaneyuki, F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), $173-187$.
[10] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom., 36 (2009), 37-60.
[11] A. Ali, F. Mofarreh, D. S. Patra, Geometry of almost Ricci solitons on paracontact metric manifolds, Quaestiones Mathematicae, 45(8) (2022), 1167-1180.

