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Abstract 

The proportional Integral Derivative (PID) controller has three basic parameters: Proportional gain (Kp), Integral gain (Ki) and 

Derivative gain (Kd). In a conventional PID controller, integral and derivative operators are integer order. The researchers proposed 

a fractional order PID (PIλDµ) controller by using the fractional integral and derivative operators instead of the integer order integral 

and derivative operators in the traditional PID controller because it improves the control performance. The PIλDµ controller has an 

additional fractional integrator degree (λ) and fractional derivative degree (µ). In this study, the focus is on the design of a fractional-

order PID controller according to a reference model in the time domain. Bode's ideal transfer function was used as the reference 

model. It is aimed to obtain PIλDµ parameters by minimizing the error between the time domain response of Bode's ideal transfer 

function model and the output of the system to be controlled by using the optimization method. Genetic Algorithm (GA) optimization 

was used as the optimization method. The study was carried out as a simulation study on an inverted pendulum system with a single-

input multiple-output (SIMO) structure. 
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1. Introduction 

The proportional Integral Derivative (PID) controller is frequently used in many control applications. It can be designed in P, PI, or 

PID forms according to the application. In PID form, the error signal is multiplied by the proportional gain (Kp), the error is integrated 

and multiplied by the integral gain (Ki), the derivative of the error is multiplied by the derivative gain (Kd), and the control signal is 

obtained by summing these three product values. The Kp, Ki, and Kd gains are the basic characteristics of the PID controller and the 

performance of the PID controller depends on these three coefficients. The degrees of derivative and integral operators in a conventional 

PID controller are real and integer values. In the fractional degree PID approach, the degrees of the derivative and integral operators 

are not integers but are expressed as fractional numbers, and thus the traditional PID controller is expressed as PIλDµ. In this notation, 

λ and µ are degrees of integral and derivative operators, respectively. The PIλDµ controller has a total of five parameters with gain 

parameters Kp, Ki, Kd, and additional λ and µ parameters. The addition of λ and µ parameters increase the closed-loop performance and 

durability of the traditional PID controller (O’Dwyer, 2006; Shah & Agashe, 2016). 

 

The operations Iλ and Dµ are fractional integral and fractional derivative operators and fall under fractional order mathematics. The 

main issue in fractional mathematics is the use of fractional and even complex numbers, rather than the use of integers of the degree of 

derivative in the derivative operator. The foundations of fractional mathematics are based on the work of Leibniz and L'Hospital. The 

work of Leibniz and L'Hospital is followed by the work of Liouville in 1832, Holmgren in 1864, and Riemann in 1953. His work on 

the fractional control structure in the position control of heavy objects, carried out by Tustin in 1958, is the first work presented to the 

literature in the field of control in engineering. Tustin's work is followed by Manabe's work in 1961 and 1963. In these studies, Manabe 

touched upon issues related to system control involving fractional integrals. PIλDµ was proposed by Podlubny and in Podlubny studies, 

it achieved more effective results with controllers than with conventional PID controllers (Podlubny, 1999). Following Podlubny's 

studies, many studies have been conducted on PIλDµ controller design and applications. Some of these are presented in Table 1 below. 

Table 1. Tuning studies for the PIλDµ controller 

Luo & Chen, (2009) Gain crossover frequency and phase margin method 

Castillo et al., (2010a) Time domain method 

Castillo et al., (2010b) Frequency properties method 

Hamamcı & Köksal, (2010) Stability region analysis method 

Bouafoura & Braiek, (2010) Algebraic equations method 

Yeroglu & Tan, (2011) Zigler-Nichols rule and ÅströmHägglund method, and Bode 

envelopes method 

El-Khazali, (2013) Frequency response method 

Azarmi et al., (2015) Fractional set-point weighted structure method 

Muresan et al., (2016) Vector-based method 

Keyser et al., (2016) Auto-tuning method based on modulus, phase and phase slope 

of the process method 

Deniz et al., (2017) Fourier eeries method 

Keyser et al., (2018) Robust auto-tuning method based on modulus, phase, phase 

slope, Nyquist plane method 

Deniz et al., (2019) Standart forms method 

Ozyetkin et al., (2020) Weighted geometrical center method 

Shankaran et al., (2022) Stability region method 

Muresan et al., (2022) Ziegler–Nichols method 

  

In control applications, performance indicators based on the integral of the error variable are used to measure the performance of the 

designed controller. Integral square error (ISE), Integral absolute error (IAE), Integral time squared error (ITSE), Integral time absolute 

error (ITAE) are well-known performance indicators based on integral of error. During controller design, controller parameters are 

changes to minimize the preferred performance index. Optimization method for this process is a very convenient method and 

optimization method is used in many studies (Doğruer et al. 2017a; Doğruer & Tan, 2020). The error value in the performance indexes 

can be a direct control system error variable. Or, instead, the error value between the output of a system model that can give the desired 

value of the system output and the controlled system output can be taken. In the model reference control, an ideal model that provides 

the desired system output is predetermined and the error between the ideal model and the system output is reduced to zero by adjusting 

the controller parameters. In the optimization method, one of the performance indexes mentioned above is chosen as the fitness function. 

During the optimization, the fitness function is minimized by changing the controller parameters (Doğruer et al. 2017b). Thus, the most 

suitable controller parameters to provide the desired system output are obtained. 

 

In this study, a model-based controller design for the control of a single-input and multiple-output (SIMO) system is discussed. Work 

was carried out on the inverted pendulum system due to its SIMO structure. The position control of the carrier car (cart) in the inverted 

pendulum system and the angular position of the pendulum are provided by two separate fractional PID controllers. Bode's fractional 

order ideal transfer function is used both in the controller design of the cart and in the design of the pendulum controller. Thr Genetic 



UMAGD, (2023) 15(2), 804-819, Can & Sürücü 

806 

algorithm optimization algorithm was used to find the most suitable controller parameters. For the fitness function, the ITAE values of 

the difference between the reference models used for the cart and the pendulum and the outputs of these units were formed by summing 

the α and β weighting values. 

2. Material and Method 

2.1. Fractional derivative/integral operators and PIλDµ controller 

The first thoughts on the fractional derivative and integral go back to Leibniz and L'Hospital. Although there are many suggestions in 

the literature regarding the definition of the fractional operator, the definitions of Grünwald–Letnikov, Riemann–Liouville and Caputo 

are frequently used (Valério & Costa, 2011).   The fractional derivative and integral are expressed as follows. 

 

𝐷𝑡
𝛼 =

{
 
 

 
 
𝑑𝛼

𝑑𝑡𝛼
                 𝑅(𝛼) > 0

1                      𝑅(𝛼) = 0

∫(𝑑𝜏)−𝛼

𝑡

𝑎

      𝑅(𝛼) < 0

𝑎
.      (1) 

 

  

In the notation in Equation 1, the expression 
a tD

 is the fractional operator. α the fractional degree, a and t are limits of the operation. 

The definition of Grünwald-Letnikov is as follows; 

 

𝐷𝑡
𝛼 = 𝑙𝑖𝑚

ℎ→0

1

ℎ𝛼
∑(−1)𝑖 (

𝑛
𝑖
) 𝑔(𝑡 − 𝑖ℎ), 𝑛 − 1 < 𝛼 < 𝑛

[
𝑡−𝑎
ℎ
]

𝑖=0

𝑎
.  (2) 

In Equation 2, 
t a

h

 −
 
 

 is an integer, and a and t represent its limit. 
n

i

 
 
 

 are binomial coefficients and are expressed as follows; 

 

(
𝑛
𝑖
) =

𝛤(𝑛 + 1)

𝛤(𝑖 + 1)𝛤(𝑛 − 𝑖 + 1)
 (3) 

 

Gamma function in Equation 3 is defined as; 

 

𝛤(𝑛) = {
∫ 𝑡𝑛−1𝑒−𝑡𝑑𝑡
∞

0

           𝑛 ∈ 𝑅

(𝑛 − 1)!                        𝑛 ∈ 𝑁

 (4) 

 

Riemann–Liouville definition; 

 

𝐷𝑡
𝛼 = 𝐷𝑛𝑎

. 𝐽𝑛−𝛼𝑓(𝑡) =
1

𝛤(𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)
𝑛

∫
𝑓(𝜏)

(𝑡 − 𝜏)𝛼−𝑛+1
𝑑𝜏,    𝑛 − 1 < 𝛼 < 𝑛

𝑡

𝑎

 (5) 

         

In Equation 5, n is an integer, α is a real number, a and t are the limits of integration and J is the integral operator. 

 

Another widely used definition is defined by Caputo; 

 

𝐷𝑡
𝛼 =𝑎

.
1

𝛤(𝑛 − 𝛼)
∫

𝑓𝑛(𝜏)

(𝑡 − 𝜏)𝛼−𝑛+1
𝑑𝜏,    𝑛 − 1 < 𝛼 < 𝑛

𝑡

𝑎

 (6) 

 

In Equation 6, n is an integer, a and t are the limits of integration and α is a real number. 

 

The traditional integer PID controller is frequently used in industrial process applications because it provides the desired performance 

such as easy design, low overshoot, and small settling time (Astrom, 1995). It can be designed in P, PI, or PID forms depending on the 

type of application. In the form of a general closed-loop PID controller, the error signal is multiplied by the proportional gain (Kp), the 

error is integrated and multiplied by the integral gain (Ki), the derivative of the error is multiplied by the derivative gain (Kd), and the 

control signal is obtained by adding these three product values. The Kp, Ki, and Kd gains are the basic characteristics of the PID controller 



UMAGD, (2023) 15(2), 804-819, Can & Sürücü 

807 

and the performance of the PID controller depends on these three coefficients. The representations of the integer conventional PID and 

the PIλDµ controller in Laplace space, respectively, are shown in Equation 7 and Equation 8 below. 

 

𝐶𝑃𝐼𝐷(𝑆) = 𝐾𝑝 +
𝐾𝑖
𝑆
+ 𝐾𝑑𝑆 (7) 

 

𝐶𝑃𝐼𝜆𝐷µ(𝑆) = 𝐾𝑝 +
𝐾𝑖

𝑆𝜆
+ 𝐾𝑑𝑆

µ (8) 

 

The degrees of derivative and integral operators in a conventional PID controller are real and integer values. In fractional order PID 

controller design, derivative and integral operators are expressed using expressions from Equation 1-Equation 6, thus conventional PID 

controller is expressed as PIλDµ. In this notation, λ and µ denote the degrees of the integral and derivative operators, respectively. PIλDµ 

controllers are less sensitive to parameter changes of the controller and the controlled system than traditional PID controllers (Chao et 

al., 2010). This is the superiority of PIλDµ controllers. Although they perform better than PID controllers, the fractional derivative and 

fractional integral operations given in Equation 1-Equation 6 have additional and not easy mathematical operations. To avoid these 

mathematical difficulties, researchers have proposed some integer approximations (Carlson and Halijak 1964; Charef et al., 1992; 

Matsuda and Fujii, 1993; Oustaloup et al., 2000; Podlubny et al., 2002). In this study, Matsuda's 6. degree approximate model was 

used. 

 

2.2. Inverted pendulum system 

A classical Inverted pendulum system basically has two components. These; are a pendulum and a carrier car. The pendulum carrier is 

attached to a freely rotatable hinge on the upper center of the car. The state of motion of the pendulum and the carriage depends on the 

force applied to the carriage. In the inverted pendulum problem, the aim is to bring the pendulum to a certain reference point by keeping 

it in a vertical position with the force applied to the carrier car. In this respect, this problem is a single-input-multiple-output (SIMO) 

control problem. The free-body diagram for the inverted pendulum system is given in Figure 1 below. Here, the inverted pendulum 

system consists of a wheeled vehicle (cart) that can move in the x-axis direction on the ground and a rod (pendulum) that can move 

freely in the y-section at the midpoint of this vehicle. The pendulum has two parameters denoted by l and m. l is the length of the 

pendulum’s center of mass of the pendulum, and m is the mass of the pendulum. The wheeled vehicle is expressed with the mass M. 

The angle that the pendulum makes with the y-axis at the center point of the cart is represented by the variable θ, while the amount of 

displacement of the cart in the x-axis relative to a fixed reference point is expressed by the variable x. The coefficient of friction between 

the vehicle and the ground is b. 

 

Figure 1. Free body diagram of an inverted pendulum system on a cart. 

The symbols used in Figure 1 and the equations below and the values used in the simulation studies are given in Table 2 below. 

Table 2. Symbols, descriptions, values, and units used in the study 

Symbol Explanation Value Unit 

g Gravitational acceleration 9.8 m⁄s2 

L Length of pendulum 0.61 m 

l 
The distance from the center of mass of 

the pendulum to the car 
0.305 m 



UMAGD, (2023) 15(2), 804-819, Can & Sürücü 

808 

M Mass of the cart 0.455 kg 

m Mass of the pendulum 0.21 kg 

G Weight of the pendulum 2.058 N 

F Force applied to the cart  N 

Fr Frictional force - N 

b Coefficient of friction - N×s⁄m 

N Weight component on the x-axis  N 

P Weight component on the Y-axis  N 

I Moment of inertia of the pendulum  kg×m2 

�̈�  Angular acceleration of the pendulum  rad⁄s2 

�̇�  Angular velocity of the pendulum  rad/s 

θ Angular position of the pendulum  rad 

�̈�  Cart acceleration  m⁄s2 

�̇�  Speed of the cart  m/s 

x Position of the cart  m 

 

In this section, the nonlinear model of the inverted pendulum is found using Newton's laws and linearized around the defined operating 

point (Michigan, 2022). When Newton's second rule is applied to motion in the x direction; 

�̈� =  
1

𝑀
∑𝐹𝑥
𝑐

=
1

𝑀
(𝐹 − 𝑁 − 𝑏�̇�) (9) 

 

𝜃 ̈ =
1

𝐼
∑𝜏

𝑝

=
1

𝐼
(−𝑃𝑙 𝑠𝑖𝑛 𝜃 − 𝑁𝑙 𝑐𝑜𝑠 𝜃) (10) 

 

The dynamic equations of the pendulum in the x and y directions are as follows. 

𝑁 =∑𝐹𝑥
𝑝

= 𝑚�̈�𝑠 (11) 

 

𝑃 = 𝑚𝑔 +∑𝐹𝑦
𝑝

= 𝑚𝑔 +𝑚�̈�𝑠 (12) 

      

The x and y position coordinates of the pendulum can be represented by equations as follows. 

𝑥𝑝 = 𝑥 + 𝑙 𝑠𝑖𝑛 𝜃 (13) 

 

�̈�𝑝 = �̈� − 𝑙�̇�
2 𝑠𝑖𝑛 𝜃 + 𝑙�̈� 𝑐𝑜𝑠 𝜃 (14) 
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𝑦𝑝 = −𝑙 𝑐𝑜𝑠 𝜃 (15) 

           

�̈�𝑝 = 𝑙�̈� 𝑠𝑖𝑛 𝜃 + 𝑙�̇�
2 𝑐𝑜𝑠 𝜃 (16) 

 

The following equations were obtained by using the equivalents in Equation 14 and Equation 16 instead of �̈�𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 and �̈�𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 

values in Equations 11 and 12. 

𝑁 = 𝑚�̈� − 𝑚𝑙�̇�2𝑠𝑖𝑛𝜃 +𝑚𝑙�̈�𝑐𝑜𝑠𝜃 (17) 

 

𝑃 = 𝑚𝑔 +𝑚(𝑙�̈� 𝑠𝑖𝑛 𝜃 + 𝑙�̇�2 𝑐𝑜𝑠 𝜃) (18) 

 

The following equations were obtained by using the equivalents in Equation 17 and Equation 18 instead of N and P values in Equation 

9 and Equation 10. 

𝑀�̈� +𝑚�̈� − 𝑚𝑙�̇�2𝑠𝑖𝑛𝜃 + 𝑚𝑙�̈�𝑐𝑜𝑠𝜃 + 𝑏�̇� = 𝐹 (19) 

 

𝑃𝑠𝑖𝑛𝜃 + 𝑁𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑙�̈� + 𝑚�̈�𝑐𝑜𝑠𝜃 (20) 

     

−𝑃𝑙𝑠𝑖𝑛𝜃 − 𝑁𝑙𝑐𝑜𝑠𝜃 = 𝐼�̈� (21) 

     

𝐼�̈� + 𝑚𝑙2�̈� + 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = −𝑚𝑙�̈�𝑐𝑜𝑠𝜃 (22) 

 

In order to get rid of the nonlinearity caused by the sin and cos functions in the above equations, the following approximations are 

made, assuming that the pendulum changes in a small range of ϕ in the equilibrium state. 

𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠(𝜋 + 𝜙) ≈ −1 (23) 

 

𝑠𝑖𝑛𝜃 = 𝑠𝑖𝑛(𝜋 + 𝜙) ≈ −𝜙 (24) 

      

�̇�2 = 𝜙2̇ ≈ 0 (25) 

 

Thus, the following equations are obtained. (Also, u is used instead of F). 

(𝑀 +𝑚)�̈� + 𝑏�̇� − 𝑚𝑙�̈� = 𝑢 (26) 
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(𝐼 + 𝑚𝑙2)�̈� − 𝑚𝑔𝑙𝜙 = 𝑚𝑙�̈� (27) 

      

(𝑀 +𝑚)𝑋(𝑠)𝑠2 + 𝑏𝑋(𝑠)𝑠 − 𝑚𝑙𝛷(𝑠)𝑠2 = 𝑈(𝑠) (28) 

      

Taking the Laplace transform at zero initial conditions; 

(𝐼 + 𝑚𝑙2)𝛷(𝑠)𝑠2 −𝑚𝑔𝑙𝛷(𝑠) = 𝑚𝑙𝑋(𝑠)𝑠2 (29) 

 

The transfer functions of the cart and pendulum obtained using Equation 28 and Equation 29 are obtained as shown below. 

𝑇𝐹𝑐(𝑠) =
𝑋(𝑠)

𝑈(𝑠)
=

(𝐼 + 𝑚𝑙2)𝑠2 − 𝑔𝑚𝑙
𝑞

𝑠4 +
𝑏(𝐼 + 𝑚𝑙2)

𝑞
𝑠3 −

(𝑀 +𝑚)𝑚𝑔𝑙
𝑞

𝑠2 −
𝑏𝑚𝑔𝑙
𝑞

𝑠
     [

𝑚

𝑁
] (30) 

 

𝑇𝐹𝑝(𝑠) =
𝛷(𝑠)

𝑈(𝑠)
=

𝑚𝑙
𝑞
𝑠

𝑠3 +
𝑏(𝐼 + 𝑚𝑙2)

𝑞
𝑠2 −

(𝑀 +𝑚)𝑚𝑔𝑙
𝑞

𝑠 −
𝑏𝑚𝑔𝑙
𝑞

     [
𝑟𝑎𝑑

𝑁
] (31) 

 

Here q; 

𝑞 = ((𝑀 +𝑚)(𝐼 + 𝑚𝑙2) − (𝑚𝑙)2) (32) 

 

To do simulation work, an inverted pendulum model with a cart can be constructed using Equations 30 and Equations 31. The 

mathematical expressions created in the literature for the inverted pendulum system are given in the section so far. These statements 

are essential for analytics-based controller designs and analysis. These expressions were used during the modeling of the inverted 

pendulum system in Simulink and the realization of simulation studies. 

2.3. Design of PIλDµ controller based on reference model and optimization 

In the study, the optimization-based model reference-based design of the PIλDµ controller was carried out in the Simulink environment. 

The block diagram used is shown in Figure 2. 
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Figure 2. Block diagram representation of the study. 

In the block representation in Figure 2, the angular position control of the bar and the vehicle position control were performed with 

two separate PIλDµ controllers. In addition, two predetermined reference models are used for the desired output response of the vehicle 

position and for the output response of the bar position. The objective function is formed by taking the instantaneous position of the 

vehicle and the instantaneous position of the bar and the differences between these two reference model outputs. The optimization 

algorithm tries to reach the objective function to zero value by changing the Kp, Ki, Kd, λ, and µ parameters of the PIλDµ controllers by 

looking at the change of the objective function in each cycle. When the objective function reaches the closest possible value to zero, 

the vehicle position and the position of the bar converge to the reference model response. Thus, the most suitable Kp, Ki, Kd, λ, and µ 

parameters for PIλDµ controllers are reached. The genetic algorithm was used as the optimization algorithm in the study. 

 

In control systems based on the reference model, it is important to determine the response of an ideal system. Bode's ideal transfer 

function was used to create the reference models. Bode in 1945, defined the open-loop transfer function of a feedback control system 

expressed as in Equation 33. 

 

𝐿(𝑠) = (
𝜔𝑐
𝑠
)𝛾 ,     𝛾 ∈ 𝑅 (33) 

 

In Equation 33, ωc is the gain crossover frequency and hence | L (jωc) | = 1 The parameter γ is the slope of the amplitude curve and can 

be expressed as a fractional or integer on a logarithmic scale. The transfer function L(s) is a fractional derivative for γ < 0 and a 

fractional integrator for γ > 0. The closed-loop transfer function with negative unit feedback for Bode's fractional ideal transfer function 

shown in Equation 34 is given in Figure 3 (Barbosa et al., Doğruer et al.).  

 



UMAGD, (2023) 15(2), 804-819, Can & Sürücü 

812 

 

Figure 3. Bode's ideal fractional degree transfer function. 

𝑇(𝑠) =
𝐿(𝑠)

1 + 𝐿(𝑠)
=

1

(𝑠/𝜔𝑐)𝛾 + 1
 , 𝛾  ∈ 𝑅+ (34) 

 

In Equation 33, frequency and time domain characteristics can be obtained for different values of ωc and γ. The following formulas 

can be used for the unit step characteristics of T(s) (Barbosa et al, 2004). 

 

 Overshoot ratio Mp; 

 

𝑀𝑝 =
𝑦𝑚𝑎𝑥 − 𝑦(∞)

𝑦(∞)
    𝑀𝑝  ≈  0.8(𝛾 − 1)(𝛾 − 0.75) 1 < 𝛾 < 2 (35) 

 

Peak time Tp (1%); 

 

𝑇𝑝  ≈  
1.106(𝛾 − 0.255)2

(𝛾 − 0.921)𝜔𝐶
 1 < 𝛾 < 2     (36) 

 

Rising time Tr (1%); 

 

𝑇𝑟 ≈   
0.131(𝛾 + 1.157)2

(𝛾 − 0.724)𝜔𝐶
 1 < 𝛾 < 2    (37) 

 

 

Time constant Tc (2%); 

 

  𝑇𝑟 ≈
0.2(𝛾 − 1)2 + 1

𝜔𝐶
    1 < 𝛾 < 2   (38) 

  

Settling time Ts (2% and 5%); 

 

𝑇𝑠(2%) ≈
4

𝑐𝑜𝑠(𝜋 −  
𝜋
𝛾
)𝜔𝑐

 =
4

𝜁𝜔𝑐
             1.39 < 𝛾 < 2 (39) 

          

𝑇𝑠(5%)  ≈
3

𝑐𝑜𝑠(𝜋 −  
𝜋
𝛾
)𝜔𝑐

 =
3

𝜁𝜔𝑐
             1.44 < 𝛾 < 2 (40) 

 

In Equation 39 and 40, ζ = cos (π - π / γ) is the damping ratio. 

 

In the study, Bode's ideal transfer function was used as reference model for both the cart and the pendulum. It is aimed that the cart 

and the pendulum move according to the time domain response appropriate to this model. 

3. Simulation Studies 

In this section, the determination of the Kp, Ki, Kd, λ and µ parameters of the PIλDµ controllers that will control the cart and the pendulum 

and the results obtained are presented. In the study, for the purpose of comparison, a traditional, in other words, fixed coefficient PID 

controller was also studied and the results obtained were presented. GA optimization is used for PIλDµ and PID controller parameters. 

The reason why GA optimization is preferred is that it is preferred in many studies. Reference model blocks were created for the cart 

and pendulum using Bode's ideal transfer function with ωc ve γ parameter values. After the reference models were created, the GA 
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optimization process was started. In the optimization process, PIλDµ and PID controller parameters' lower and upper limit values were 

taken as given in Table 3. 

Table 3. Using lower and upper limit values in optimization  

Limit values                                     Cart                                                       Pendulum 

    Kp           Ki         Kd           λ          µ     Kp         Kd         µ    

Lower limit values     -5           -5          -5         0.01     0.01     -5    -5       0.01 

Upper limit values     5            5            5            1         1      5     5          1 

 

In the optimization, the population number is set to 30 and the stopping criterion is set to 200 iterations. Equation 41 was used as the 

fitness function. ITAE was used as a performance criterion. 

 

𝐽𝑚𝑖𝑛 = 𝛼 ∗ 𝐼𝑇𝐴𝐸𝑐𝑎𝑟𝑡 + 𝛽 ∗ 𝐼𝑇𝐴𝐸𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚  (41) 

  

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
∞

0

 (42) 

 

In equation 42, t is time, and e(t) is the difference between the output of the cart pendulum and the reference model. α is the ITAE 

weight for the cart position and β is the ITAE weight for the pendulum position. In the study, optimization studies were carried out for 

different α and β weighting factors and for gain crossover frequency ωc and γ parameters in the reference model in Equation 33. In 

order to provide real environmental conditions, [+10,-10] N control signal saturation block is placed at the input of the pendulum 

system modeled in the simulation environment. In addition, the working area of the card is determined as [+10,-10] m. When a 10 N 

input is applied to the cart, the cart travels 7.2 m. Based on this, a reference model was created for the cart by taking ωc = 0.7 and γ = 

1.01. Thus, sufficient rise time, settling time, and overshoot ratio values were obtained for cart position control. Compared to the cart, 

the pendulum's range of motion is much shorter. For the pendulum, it is aimed to cover an angle change of 90 in approximately 1 

second.  For this reason, ωc =7.07 and γ =1.01 were chosen for the pendulum. In Figure 4 and Figure 5, the reference model’s time 

responses obtained for values of ωc and γ parameters are shown. 

 

 

Figure 4. Time responses of the cart reference model for ωc =0.7 and γ =1.01 values. 
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Figure 5. Time responses of the pendulum reference model for different ωc =7.07 and γ =1.01 values. 

The simulation studies were repeated for different α and β parameters. Thus, the effects of α and β parameters in the fitness function 

given in Equation 41 on the controller design performance were investigated. As a result of repeated studies, it was seen that the fitness 

function was minimized at a good rate for the weight values of α=0.9 and β=0.1, and the cart and pendulum references could be captured 

well. Controller parameters obtained as a result of the GA optimization are given in Table 4. Obtained control results using the controller 

parameters in Table 4 for constant reference are also presented in Figure 6. 

Table 4. Obtained controller parameters using the optimization 

Obtained parameters                                    

Controllers                                      Cart                                                       Pendulum 

    Kp           Ki         Kd           λ          µ     Kp         Kd         µ    

PID 

 

-0.532 -0.0078 -2.771       -          - 0.720  0.111      - 

PIλDµ  -1.364 -0.049 -3.575 0.342 0.951 0.571 0.130 0.916 
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(a) 

 

 
(b) 

Figure 6. Cart and pendulum positions for constant reference value according to optimization results. (a) Cart position, (b) Pendulum 

position. 

 

The position control graph of the cart is given in Figure 6.a, and the position control graph of the pendulum is given in Figure 6.b. As 

a result of the optimization, as seen in Figure 6.a, it was possible to approach the reference model more with the PIλDµ controller. In 

Figure 6.b, the PIλDµ controller has a larger overshoot than the other integer-order PID controller, but the reference model can be 

approached in a shorter time. In Table 5, ITAE values of the error between the position outputs and the reference model of the PIλDµ 

and integer-order PID controllers are presented for comparison purposes. ITAE values show that the output obtained from the PIλDµ 

controller is getting closer to the reference model. 
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Table 5. ITAE performance indices of PID and PIλDµ controllers for constant references 

ITAE performance values                                

Controllers                             Cart                                                  Pendulum 

   

PID 27.9117 77.4239 

PIλDµ  23.4737 76.4408 

 

The study was repeated for different reference values. Cart and pendulum time response graphs according to different cart reference 

values are presented in Figure 7, and ITAE values are shown in Table 6 for comparison of the results obtained. 

 
(a) 

 

 
(b) 

 

                      Figure 7. Cart and pendulum positions for different references according to optimization results. (a) Cart position, (b) 

Pendulum position. 
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Table 6.  ITAE performance indices of PID and PIλDµ controllers for different references 

ITAE performance indices                                

Controllers                             Cart                                                  Pendulum 

   

PID 

 

4707.8 6032.0 

PIλDµ  3097.2 7793.7 

 

Figure 7.a shows the position change of the cart. Obviously, with the PIλDµ controller, the reference value could be captured much 

better with short rising and settling times. It is seen that the rising time and settling time are longer in the output response obtained for 

the integer-order PID controller. For this reason, the ITAE value given in Table 6 is lower in the PIλDµ controller. In the pendulum 

position change graph in Figure 7.b, it is seen that there is a little overshoot in both controllers, but the overshoot value is slightly larger 

in the PIλDµ controller. Accordingly, as seen in Table 6, the ITAE value in the pendulum was also slightly higher. 

4. Results and Discuss 

 

This study, it is aimed to find the parameters of the PIλDµ controller with the GA optimization method according to the time domain 

responses of reference models. The same study was also carried out for the PID controller for comparison purposes. The study was 

carried out as a simulation study on an inverted pendulum system with a single-input multiple-output (SIMO) structure. In the inverted 

pendulum system, two separate PIλDµ and PID controllers and two separate reference models are used for the cart and the pendulum. 

With the GA optimization, the output response of the inverted pendulum system can be approximated to the reference model by 

adjusting the Kp, Ki, Kd, λ, and µ parameters of these two controllers. Bode's ideal transfer function of fractional order is used as the 

reference model. Reference models were obtained for different values of ωc and γ parameters in Bode's ideal transfer function. 

 

In the GA optimization, a fitness function based on the α-weighted ITAE value for the cart and the β-weighted ITAE value for the 

pendulum is used. Sequential simulation studies were carried out for different α and β parameters in the fitness function and for different 

ωc and γ parameter values in the reference models. Thus, the effects of these parameters on the controller design performance were 

investigated. According to the results obtained by the simulation studies, it has been observed that the α and β parameters in the fitness 

function seriously affect the controller performance in the position control of the cart and the angle control of the pendulum in the 

inverted pendulum system. By increasing the α factor, the cart position output approaches the reference model created for the position. 

Similarly, by increasing the β weight factors, the angle output of the pendulum approaches its reference model. As a result of repeated 

studies, the best results were obtained for the weighting factors of α=0.9 and β=0.1 in the optimization function. The selection of α and 

β weight factors according to the desired performance expectations from the system is important in terms of design. As a continuation 

of the study, carrying out the proposed method on a real inverted pendulum system will be useful for the confirmation of the findings. 
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