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Abstract: This research investigates the use of  computational fluid dynamics (CFD) and artificial neural networks (ANNs) 
to be optimized the design of  finned tube heat exchangers for use in condensing wall-mounted boilers (WHBcs). Fin height, 
thickness, and distance are selected as the input design parameters, and the internal volume of  the heat engine is modelled 
using the CFDHT (CFD and heat transfer) method. Different ANN structures are trained and tested on the resulting data to 
identify the optimal training process. The trained ANN is then used to predict various output parameters, including total heat 
transfer on the inner surface of  the tube, maximum temperature on the fins, total heat transfer per unit volume of  the heat 
exchanger, and pressure drop between the inlet and outlet of  the internal volume. The optimal design scenarios are evaluated 
based on design criteria, and the ANN is found to have good statistical performance, with an average accuracy of  1.00018 
and a maximum relative error of  9.16%. The ANN is able to accurately estimate the optimal design case.
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1. Introduction 
Individual heating systems provide the needed heat for 
domestic hot water generation and residential heating of a 
single house. The wall hang heating appliances are part of 
individual heating systems, and they became widespread in 
Turkey and Europe due to the natural gas infrastructure. 

With increasing concern about environmental changes, 
emissions and costs for clients, the condensing technology 
offers an efficient heating solution for various applications. 
Nowadays, the number of regulations about the energy ef-
ficiency of appliances used for heating the residence space 
is increasing to fight against climate change. Since Sep-
tember 2015, the ErP (Energy-related Products) directive 
has enforced the use of condensing technology when us-
ing natural gas in both newly built and refurbished houses 
in European countries. Due to the increase in demand for 
condensing wall hang heating appliances, new designs are 
needed with low-cost and high thermal performance. 

Heat exchangers used in combustion units play an es-
sential role in the thermal performance of condensing 

wall-hang heating appliances. The total heat transferred 
from the burnt gas medium, known as flue gas, to wa-
ter varies with the heat exchanger design. The finned 
tube-type heat exchangers made of aluminium materi-
al are recently used in condensing heat engines instead 
of stainless-steel heat exchangers. Many numerical and 
experimental studies were seen for the thermal perfor-
mance of finned tube heat exchangers with various fin 
types in literature [1-7]. These studies usually belong to 
heat transfer applications outside the combustion units. 
There are a few studies in the literature which are related 
to the investigation of condensing wall-hang heating ap-
pliances via numerical and experimental methods [8,9].

Numerical methods are suitable for investigating the ef-
fects of a few design parameters on the outputs of ther-
mal systems. Furthermore, Numerical methods should be 
used together with prediction techniques to evaluate the 
effects of a wider range of design parameters and decrease 
the analysis time. Generally, many thermal problems are 
solved by the correlations of input and output parameters. 
These relations of the independent variables are complex 
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and non-linear problems. In such cases, artificial intelli-
gence (AI) can be a useful tool for efficiently estimating 
the outputs and optimizing them. Artificial intelligence 
has many applications in the field of design and optimi-
sation as well as heat exchangers, multi-phase fluid flows 
and combustion systems [10, 11, 12 and 13]. The artificial 
neural network (ANN) is one of the AI methods. 

ANN applications for thermal analysis of heat exchang-
ers are reviewed by Mohanraj et al [14]. ANN methods 
were used for modelling the finned tube heat exchangers 
to assume the temperatures, heat transfer rate and pres-
sure variance of control volumes in the literature. These 
exchangers are widely used for refrigeration, air condi-
tioning and heat pump applications [15, 16, and 17].

The ANN method is used for the heat exchanger model-
ling and optimization of studies in the literature [18, 19, 
20 and 21]. Xie et. al. optimized the design parameters of 
the vortex generator used for fin and tube heat exchang-
ers via artificial neural networks [20]. Zhang et al. used 
the CFD simulation and artificial neural networks meth-
ods to optimize heat transfer performance and pressure 
drop in terms of the inlet air velocity and design param-
eters of the fin and tube heat exchanger [21]. There is not 
any study about the design parameters of condensing 
wall hang boilers’ heat engines that have been investigat-
ed through the heat transfer and performance outputs 
using the ANN method in the literature. 

In this study, CFD and ANN methods are used together 
to be optimized the design parameters of the condens-
ing wall hang boiler with the aluminium finned and tube 
heat exchanger. The numerical studies were performed to 
obtain data sets for the development of the ANN model. 
The ANN model has been used for predicting the output 
values of the internal volume of a condensing heat en-
gine. The optimum design cases are evaluated paramet-
rically in terms of design criteria, and the ANN estimates 
the optimum design case.

2. Numerical Study
A schematic representation of the heat engine unit of a 
condensing wall hang boiler (WHBc) is given in Figure 
1. Since CO and CO2 emissions must be limited by the 
standards, flammable gas (natural gas) and fresh air are 
mixed in certain proportions in the mixer. The gas-air 
mixture is burned on the burner. The heat energy from 
the combustion reaction is transferred from the heat 
exchanger to the water through conduction, convec-
tion, and radiation. When the water vapour in the flue 
gas loses its latent heat, it becomes the liquid phase at 
the condensation point. This water returns to the liquid 
phase is called condensing water. The condensing water 
is drained from the heat engine unit’s drainage. The flue 
gas is finally sent to the atmosphere by the flue gas pipe.

The main component of the condensing heat engine is 
the helical finned tube heat exchanger. It provides heat 

transfer between the water domains and flue gas. The 
internal volume of the heat engine given in Figure 2 is 
modelled numerically in three dimensions in order to de-
termine the total heat transfer from the heat exchanger 
to the water, in other words, the capacity of the heat ex-
changer. This volume consists of the part where the flue 
gas formed in the burner passes over the heat exchanger 
and goes to the outlet. The top cross-section view is given 
in Figure 2. The repeated fins are illustrated on the tube 
pipe as dot lines. The investigated symmetrical area is 
modelled numerically in 3D. 

Figure 1. Schematic representation of the working principle of the 
heat engine unit of a condensing wall hang heating appliance [22]

In the numerical model given in Figure 3, “flue gas” as the 
fluid domain and “finned tube heat exchanger” is mod-
elled as the solid domain, and the water domain in the 
heat exchanger is defined as the boundary condition.

The aluminium heat exchanger has a helical coil tube in 
real condition. Therefore, the literature investigated to 
determine the calculation of the heat transfer coefficient 
for the helical coil pipe inner flow. Seban and Mclaughlin 
performed an experimental study to determine the heat 
transfer coefficient in helical coil tubes [23]. According 
to this study, Equation 1 provides to calculate the heat 
transfer coefficient for turbulent flow.

                                             (1)

“d” is the tube inside diameter and “Dh” is the coil diame-
ter to the tube centre. All numerical models have the same 
d value (30 mm). Dh for the helical coil tube is modelled 
to provide small coil acceptance [23], and all numerical 
models have the same Dh value. According to the EN15502 
standard, the performance of the condensing wall hang 
boilers is tested for 80 ˚C - 60 ℃ and 50 ℃ - 30 ℃ oper-
ating conditions [24]. The film temperature of the water 
inside the tube coil is calculated as 55 ℃ (average tem-
perature of operating conditions). This film temperature 
of the water is used to determine the thermal conductivity 
(k), thermal diffusivity (α) and kinematic viscosity (ν) [25]. 
The mean velocity (Um) is calculated according to the in-
ner diameter of the heat exchanger and the water flow rate 
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Figure 2. The modelled internal volume of the heat engine

Figure 3. Numerical model and boundary conditions

Table 1. The composition of the combustion gases @ G20 (100% CH4) & Phi =0.75 

Combustion Gas O2 N2 CO2 H2O CO NO H H2 O OH

Mass Fraction % 4.705 73.139 7.426 14.274 0.023 0.300 0.001 0.011 0.008 0.114
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passed inside the tube. The water flow rate is selected as 17 
lt/min. The Weisbach friction factor (f) is determined from 
the graph of Reynolds number – friction factor according 
to the turbulent flow and small coil criteria [23]. 

Finally, the new heat transfer coefficient (h) of the water-
side is calculated as 3847.55 W/m2K for the below con-
ditions:

• Water temperature 55 ℃

• Water flow rate 17 lt/min

• Dh/d= 17; small coil acceptance [23]

As it is mentioned before, the flue gas is modelled as a flu-
id domain according to the combustion gas mixture. The 
mass fraction of the combustion gases is used from the 
previous study [25]. This prediction of mass fractions is 
made for 100 % methane gas (G20) and an air-gas equiva-
lent ratio (phi) 0.75. Table 1. gives the composition of the 
combustion gases. 

The temperature of flue gas is calculated as 1151.03 ℃ 
with a program [26], which was created in the master 
thesis based on the equations and formulations inside 
the NASA report SP-3001 [27]. The temperature of flue 
gas is calculated according to the CO2 mass fraction in-
side the combustion gases. The assumption of the ideal 
combustion is taken into consideration, and the base 
equation is given below.

 (2)

The investigated condensing heat engine has a premix 
combustion unit. This unit provides the gas/air mixture, 
which can be adjusted to the desired value. It consists 
of a radial fan, pneumatic gas valve, venture, and stain-
less-steel multi-hole burner. This gas/air mixture passes 
through multi-holes of the burner. The average velocity 
of the flue gas created after the combustion process is 
equal to the gas/air mixture. The average velocity of the 
flue gas is calculated according to the gas/air volumetric 
flow and the lateral area of the stainless-steel multi-hole 
burner. When the 24 kW input load is attained from the 
heat engine used with methane gas (G20), a 55.65 m3/h 
volumetric flow of gas-air mixture is needed in terms of 
0.75 air-gas equivalent ratio (phi). The lateral area of the 
burner of the heat engine is 0.0192 m2 for that input load. 
Consequently, the velocity of flue gas is obtained as 0.805 
m/s for the boundary condition of the numerical model.

The selected design parameters of the aluminium heat 
exchanger are fin height (hf), fin thickness (tf), and fin 
spacing (s). The values of these parameters are given in 
Table 2. All values for design parameters are selected 
according to manufacturing conditions. The inner pipe 
diameter and thickness are kept the same for all models.

According to the combination of design parameters’ val-

ues, 350 different numerical models are created. 

Table 2. The variation of design parameters 

Design Parameter (Input Parameter) Values [mm]

Fin Height (hf) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Fin Thickness (tf) 0.5, 1, 1.5, 2, 2.5

Fin Spacing (s) 1, 1.5, 2, 2.5, 3, 3.5, 4
  

The next step for the numerical analysis is the meshing 
process. Using different meshing techniques together, 
optimized meshing structures for numerical models 
have been created. The number of mesh elements of nu-
merical models varies according to the model between 
550733 and 1128369.

During the numerical solution, 167 W/m℃ thermal con-
ductivity coefficient and 0.42 emissivity coefficient val-
ues of 6000 series aluminium material at room tempera-
ture conditions were entered for the heat exchanger solid 
model [28].

According to the literature research and experiences 
gained from our previous studies, in the solution of our 
numerical model; continuous regime, radiation effects, 
natural convection caused by gravity, forced convection 
caused by fan effect and turbulent flow type conditions 
were taken into consideration.

Each numerical analysis took an hour for model prepa-
ration, meshing and defining boundary conditions and 
solving 350 different design cases within 15 days to ob-
tain data set for parametric study and ANN modelling.

Total heat transfer (QT) on the inner surface of the tube, 
the maximum temperature on the fins (Tmax), the pres-
sure drop (ΔP) between the inlet and outlet of internal 
volume and the total heat transfer (ǬT) per unit volume 
of the heat exchanger are selected and calculated as nu-
merical results. These are also used as output parameters 
for parametric study and ANN modelling. 

3. Modelling With ANN
Because of the complicated nature of the fluids, many 
thermal problems that include fluids are solved by exper-
imentally obtained correlations between the input and 
the output parameters. These relations of the independent 
variables are complex and non-linear. Artificial neural 
networks are models for predicting the performance and 
generalisations of these complex systems in a short time. 
To predict the effect of the determined design parameters 
on the output parameters of the finned tube heat exchang-
er for condensing wall hang boilers with high precision, 
several ANN configurations should be developed, and the 
optimal ANN structure should be selected.

In the current study, the backpropagation algorithm was 
used to train the ANNs. This is the most widely used 
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ANN algorithm method for engineering applications. 
The estimations of the values of outputs were performed 
with a feed-forward backpropagation network, a tangent 
sigmoid activation function for the hidden layer and a 
linear transfer activation function for the output layer. 
While the network is being trained, the weighting coef-
ficients are determined using the Levenberg-Marquardt 
algorithm. The ANN model’s performance is dependent 
on the topology of a network (hidden layer numbers, neu-
ron numbers of each hidden layer, and so on). The perfor-
mance of an ANN model depends on the characteristics 
of the network, such as the number of hidden layers and 
the number of neurons in each of these layers. There-
fore, the selection of these numbers is a trial-and-error 
process that may be changed if the performance of the 
neural network during the training is not good enough. 
The number of input and output parameters, the size of 
dataset and past experiences were important role to se-
lect neurons numbers for each hidden layer. The relative 
error of each estimated output was specified using the 
method proposed by Kreith and Wang. [29,30].

 
(3)

The predicted results of the ANN (Ap) were compared 
to the target data (At). The root-mean-square (RMS) val-

ues of the outputs were defined during the training pro-
cess of the ANN to evaluate the network performance. 
[29,30]. The neural network is trained using N data sets.

 

(4)

The network topology and size effect on prediction per-
formance. Large networks can learn complex problems 
but require more effort to solve them. Therefore, the 
selection process of the ANN structure is comprised of 
principles that minimize the prediction error. The per-
formance of the trained network is evaluated by compar-
ing its prediction with the data sets aside for testing. The 
calculated data sets from the numerical studies were di-
vided into the training and the testing sets to model the 
ANN for the internal volume of the heat engine. The data 
sets consist of 345 input-output pairs, as listed in Table 3. 
While 95% of the data set was randomly assigned as the 
training set, the remaining 5% was used for the testing 
and the validation of the network. 

Seven different network topologies were implemented 
via the MATLAB program, as detailed in Table 4. The 
standard deviation of the relative error in predictions (σ) 

Table 3. The dataset for modelling network 

No. hf  
(mm)

tf 
(mm)

s 
(mm)

QT
(W)

Tmax 
(°C)

ǬT
(W/mm3)

ΔP 
(Pa)

1 1 0.5 1 19.87 79.33 30.69 5.24

2 1 1.0 1 24.43 76.98 26.26 6.05

3 1 1.5 1 29.51 75.95 24.32 6.76

4 1 2.0 1 34.13 75.04 22.82 7.12

5 1 2.5 1 38.81 74.45 21.82 7.45

6 1 0.5 1.5 23.59 76.95 28.43 4.06

7 1 1.0 1.5 28.20 75.54 25.34 4.64

8 1 1.5 1.5 33.00 74.79 23.65 5.15

9 1 2.0 1.5 37.70 74.24 22.46 5.52

10 1 2.5 1.5 42.28 73.70 21.56 5.84

11 1 0.5 2 27.63 75.75 27.30 3.55

12 1 1.0 2 32.00 74.60 24.71 3.91

... ... ... ... ... ... ... ...

334 10 2.0 3.0 107.29 101.65 15.38 0.81

335 10 2.5 3.0 115.73 99.58 13.71 0.91

336 10 0.5 3.5 90.00 122.71 32.77 0.52

337 10 1.0 3.5 95.45 108.21 22.64 0.59

338 10 1.5 3.5 103.67 103.02 18.23 0.66

339 10 2.0 3.5 111.60 99.94 15.59 0.73

340 10 2.5 3.5 120.00 98.03 13.91 0.81

341 10 0.5 4.0 95.64 121.52 32.66 0.50

342 10 1.0 4.0 100.71 106.88 22.89 0.55

343 10 1.5 4.0 108.43 101.60 18.47 0.62

344 10 2.0 4.0 115.78 98.47 15.78 0.68

345 10 2.5 4.0 123.97 96.65 14.07 0.75
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and the average accuracy of predictions (R) are specified 
in [29, 30] and are useful for evaluating the ANN perfor-
mances. Upon examining Table 4, the best topology 3-6-
12-8-4 was selected for testing based on its small value of 
σ=0.01285 and R=1.00018, as well as a maximum relative 
error of approximately 9.16% with the majority of errors 
being less than 2% (Figure 4).

 
(5)

 
(6)

The best topology of ANN has four layers. It is schemat-
ically illustrated in Figure 5. Fin height, fin thickness 
and fin spacing are defined as input parameters for ANN 
structure. Their manufacturing values are given in Table 
2. Three hidden layers are created. The first one has six, 
the second one has twelve, and the third one has eight 
neurons. According to the numerical results, the net-
work structure has four output parameters.

4. Result and Discussion
4.1. Parametric Results
350 design points obtained by numerical analyses are used 
for parametric study. This parametric study aims to inves-
tigate the effects of design parameters on the output pa-
rameters and find the relationships between them. In the 
end, the optimal design parameters are found in this study.

The maximum temperature is the most important output 
parameter in terms of the robustness of the aluminium 
heat exchanger inside the combustion regions. When the 

heating and cooling cycle of the heat engine is, thermal 
stress affects the lifetime of the fins on the heat exchang-
er. If the maximum temperature of the melting point 
exceeds the aluminium fin tips, the permanent defor-
mation of the heat exchanger becomes unavoidable. For 
that reason, the maximum temperature on the fin tips is 
desired below 200 °C. These are the key criteria to start 
the evaluation of the results of the calculated 350 design 
cases. All design cases have the maximum temperature 
on fins below the key temperature criteria.

After the selection of robustness criteria of the heat ex-
changer, designers and researchers can evaluate other cri-
teria on heat exchangers’ performance like heat transfer, 
less material usage and pressure drop. If they need the 
maximum heat transfer from the heat exchanger to the 
water domain, they should use the fin thickness of 2.5 mm 
(according to Table 5). Besides the heat transfer criteria, 
pressure drop or material weight could be considered as 
additional criteria. Table 5 can guide them to the starting 
point to evaluate which fin thickness could be used. 

The next evaluation is that the optimum design cases 
are determined for each output parameter’s target value. 
Table 6 summarises the optimum design cases and their 
output values in terms of selected target criteria.

The heat transfer from the heat exchanger to the water 
domain maximises with a 10 mm – 2.5 mm – 4.0 mm (hf- 
tf- s) design case. Although the heat transfer maximises 
for this case, the total heat transfer (ǬT) per unit volume 
of the heat exchanger is found as 14.1 W/mm3. This value 
is approximately 34.5 % of the maximised value of ǬT. 
The consumption of material is another essential criteri-
on when the design phase of the heat exchanger is ongo-
ing. It is related directly to the cost of the heat exchanger. 

Table 4. The Comparison of performance by different ANN topologies 

Topology
Error in the training process Error in the test process

Er (%) rms R ϭ

3-3-4 125.16 0.28136 0.97793 0.21220

3-6-4 70.06 0.11330 1.01211 0.16805

3-9-4 41.94 0.06619 1.00486 0.07081

3-12-4 38.34 0.07149 1.00346 0.07410

3-12-8-4 23.47 0.02252 1.00011 0.02319

3-3-6-8-4 16.35 0.02716 1.00043 0.02724

3-6-12-8-4 9.16 0.01263 1.00018 0.01285

Note: The Er (%) is the maximum value among the errors of the two output variables.
   
 Table 5. Sort of design cases in terms of the fin thickness and their maximum and minimum values of output parameters 

Tf (mm)
Tmax (°C) QT (W) ǬT (W/mm3) ΔP (Pa)

Min. Max. Min. Max. Min. Max. Min. Max.

0.5 73.2 161.2 19.9 95.6 24.9 40.9 0.50 5.24

1.0 72.5 137.0 24.4 100.7 22.1 26.3 0.55 6.05

1.5 72.3 123.4 29.5 108.4 17.5 24.3 0.62 6.76

2.0 72.2 117.7 34.1 115.8 15.0 22.8 0.68 7.12

2.5 72.0 114.0 38.8 124.0 13.4 21.8 0.75 7.45
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Figure 4. The histogram graph of relative errors in the training of the network

Figure 5. The selected structure for ANN modelling
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Therefore, ǬT shows a good performance indicator for 
selecting the optimum total heat transfer (QT). Maxi-
mised ǬT is available with a 10 mm – 0.5 mm – 1.0 mm 
(hf - tf - s) design case, according to Table 3. But the total 
heat transfer decreased to 75.1 W in that case. It is not 
enough to use this criterion to be optimized the design of 
the heat exchanger. When the two parameters maximise 
simultaneously, the convenient heat transfer rate could 
enable the fit material consumption. The maximum tem-
perature on the fin tips is obtained at the maximised ǬT  
design case. When the ǬT increases, the temperature on 
the fin tip also increases for every design case due to the 
usage of less material. 

The pressure drop is one of the other criteria to deter-
mine or select the correct fan type or power for com-
bustion heat engines. This value is demanded to keep a 
minimum level in order to use smaller fan types and op-
erating costs. Therefore, the pressure drop (ΔP) between 
the inlet and outlet of internal volume could minimise 
with a 10 mm – 0.5 mm – 4 mm (hf - tf - s) design case. 

Finally, the optimal design case is found to reach the target 
status of each output parameter simultaneously. Table 7 
shows the optimum design case and its output values.

4.2. ANN Results
The ANN method aims to quickly estimate the output 
parameters of the condensing wall hang boilers.

After the training and validation of the network, it is 
ready to use the estimation of new outputs for different 
design cases. Five design cases aren’t used for training 
the network process, so the network never knows those 
data sets. The input values of the estimation dataset are 
shown in Table 8. 

The ANN model was able to produce all results within 
seconds, whereas if numerical studies had been employed 
to compute the outputs, it would have taken a minimum 
of 7 hours.

Table 9 presents a comparison between ANN predictions 
and numerical results for the total heat transfer (QT) on 
the inner surface of the tube. 0.58 W is found as the 
maximum absolute difference of QT. And its maximum 
relative error is less than 1.10%. The deviation range of 
its relative errors and the deviation range of its predic-
tion accuracy are respectively 0.09-1.08% and 0.99590 
– 1.01099. Figure 6 shows the scatter plot of the compar-
ison between numerical and ANN results for QT. There 
are three lines highlighted in different colours. Black line 
indicates faultless estimation. The purple and red lines 
represent a ±15% band of error. R, MRE and mean ab-
solute difference are determined respectively 1.00283, 
0.48% and 0.29 W by the optimal network topology.

Table 10 compares ANN predictions and numerical re-
sults for the maximum temperature on the fins (Tmax). 
0.31 ℃ is found as the maximum absolute difference of 

Table 6. Optimised design cases in terms of their target criteria 

Optimised Parameter Target
Inputs Outputs

hf (mm) tf (mm) s (mm) QT  (W) Tmax (°C) ǬT (W/mm3) ΔP (Pa)

QT Maximise 10 2.5 4.0 124.0 96.6 14.1 0.75

ǬT Maximise 10 0.5 1 75.1 161.2 40.9 1.04

ΔP Minimise 10 0.5 4.0 95.6 121.5 32.66 0.50
 
Table 8. The input values of estimation dataset 

Estimation Data hf [mm] tf [mm] s [mm]

Set 1 1 2.0 2.5

Set 2 4 0.5 1.5

Set 3 5 2.5 3.5

Set 4 6 1.5 4.0

Set 5 10 1.0 2.0
 
Table 7. Optimum design case (QT, ǬT max.; ΔP min.) 

hf (mm) tf (mm) s (mm) QT(W) Tmax (°C) ǬT(W/mm3) ΔP (Pa)

10 0.5 3.5 90.0 122.7 32.8 0.52
  
Table 9. The comparison of results for total heat transfer (QT) on the inner surface of the tube 

QT of Estimation Data Numerical Result ANN Result Absolute Difference Er R

Set1 45.13 W 45.09 W 0.04 W 0.10 % 1.00097

Set2 37.82 W 37.41 W 0.41 W 1.08 % 1.01096

Set3 83.84 W 83.91 W 0.07 W 0.09 % 0.99912

Set4 83.27 W 83.62 W 0.34 W 0.41 % 0.99590

Set5 81.04 W 80.47 W 0.58 W 0.71 % 1.00718
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Tmax. And its maximum relative error is less than 0.33%. 
The deviation range of its relative errors and the devia-
tion range of its prediction accuracy are respectively 0.03 
– 0.32% and 0.99797 – 1.00321. Figure 7 shows the scat-
ter plot of the comparison between numerical and ANN 
results for Tmax. R, MRE and mean absolute difference are 
determined respectively 1.00018, 0.13% and 0.12 ℃ by 
the optimal network topology.

Table 11 compares ANN predictions and numerical re-
sults for the total heat transfer (ǬT) per unit volume of the 
heat exchanger. 0.28 W/mm3 is found as the maximum 
absolute difference of ǬT. And its maximum relative er-
ror is less than 0.90%. The deviation range of its relative 
errors and the deviation range of its prediction accuracy 
are respectively 0.10 – 0.87% and 0.99534 – 1.02268. Fig-
ure 8 shows the scatter plot of the comparison between 
numerical and ANN results for ǬT. R, MRE and mean 
absolute difference are determined respectively 1.00123, 
0.44% and 0.11 W/mm3 by the optimal network topology.

Table 12 gives the comparison of estimation and numeri-
cal result for the pressure drop (ΔP) between the inlet and 
outlet of internal volume. 0.03 Pa is found as the maxi-
mum absolute difference of ΔP. And its maximum relative 

error is less than 2.60%. The deviation range of its relative 
errors and the deviation range of its prediction accuracy 
are respectively 0.02 – 2.56% and 0.97501- 1.02268. Figure 
9 shows the scatter plot of the comparison between nu-
merical and ANN results for ΔP. R, MRE and mean abso-
lute difference are determined respectively 1.00152, 1.65% 
and 0.02 Pa by the optimal network topology.

Finally, the optimal values of the design case are found 
with the parametrical method and estimated via the se-
lected network topology. Table 13 gives the comparison 
of the ANN estimation and parametric result for the op-
timum design case. The maximum relative error is less 
than 0.40% for output values of the optimum design. 

5. Conclusions
The influence of design variables on the output character-
istics of an aluminium heat exchanger used in a condens-
ing wall-mounted boiler is examined. Optimal design 
scenarios are determined based on design criteria, and 
the feasibility of using artificial neural networks (ANNs) 
to model the finned tube heat exchanger of such boilers is 
demonstrated. An ANN structure is developed to predict 
various output parameters of the heat exchanger’s inter-

Table 10. The comparison of results for the maximum temperature on the fins (Tmax)  

Tmax of Estimation Data Numerical Result (℃) ANN Result (℃) Absolute Difference Er R

Set1 73.14 73.11 0.03 0.04 % 1.00040

Set2 95.51 95.20 0.31 0.32 % 1.00321

Set3 83.14 83.16 0.02 0.03 % 0.99973

Set4 87.90 88.08 0.18 0.20 % 0.99797

Set5 115.76 115.81 0.05 0.04 % 0.99958
 

Figure 6. The scatter plot of the total heat transfer (QT) on the inner surface of the tube
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Table 11. The comparison of results for the total heat transfer (ǬT) per unit volume of heat exchanger 

ǬT of Estimation Data Numerical Result ANN Result Absolute Difference Er R

Set1 22.09 W/mm3 22.11 W/mm3 0.02 W/mm3 0.10 % 0.99901

Set2 32.35 W/mm3 32.07 W/mm3 0.28 W/mm3 0.87 % 1.00875

Set3 16.72 W/mm3 16.76 W/mm3 0.04 W/mm3 0.22 % 0.99781

Set4 20.32 W/mm3 20.42 W/mm3 0.10 W/mm3 0.47 % 0.99534

Set5 22.08 W/mm3 21.97 W/mm3 0.12 W/mm3 0.52 % 1.00525
 

Figure 7. The scatter plot of the maximum temperature on the fins (Tmax)

Figure 8. The scatter plot of the total heat transfer (ǬT) per unit volume of the heat exchanger
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nal volume, and the effects of selected design parameters 
on these output parameters are analyzed using a com-
mercial simulation program. The resulting data is then 
used to train and validate the ANN model. The perfor-
mance of the ANN model for predicting the internal vol-
ume of the heat exchanger in a condensing wall-mounted 
boiler is found to be satisfactory, with an average accu-
racy of 1.00018 and a maximum relative error of 9.16%.

This study has significant implications in the field of heat 
exchanger design and analysis. By combining numerical 
simulation and ANN techniques, it presents a method 
for predicting the performance of finned tube heat ex-
changers used in condensing wall-mounted boilers. This 
method has the potential to improve the design process, 
making it faster and more cost-effective. It may also be 
used to optimize the performance of these heat exchang-

ers, ultimately leading to improved efficiency and effec-
tiveness in the overall heat engine system.

In summary, this work demonstrates that thermal de-
signers and engineers can utilize the parametric approach 
and ANN prediction method presented in this study as a 
tool in the research and development process. In the fu-
ture, the performance of the condensing wall hang boiler 
could be predicted by using experimental study results 
and ANN methods to optimize them for real conditions.
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Table 12. The comparison of results for the pressure drop (ΔP) between the inlet and outlet of internal volume 

ΔP of Estimation Data Numerical Result ANN Result Absolute Difference Er R

Set1 4.14 Pa 4.13 Pa 0.01 Pa 0.24 % 0.99980

Set2 1.34 Pa 1.31 Pa 0.03 Pa 2.19 % 1.02243

Set3 1.13 Pa 1.14 Pa 0.01 Pa 1.25 % 0.98767

Set4 0.74 Pa 0.73 Pa 0.02 Pa 2.22 % 1.02268

Set5 0.80 Pa 0.83 Pa 0.02 Pa 2.56 % 0.97501
  
Table 13. Comparison of the parametric result evaluated numerically and using ANN model for best design case 

Optimum Design Case Parametric Result ANN Estimation Absolute Difference Er %

QT (W) 90.00 90.01 0.01 0.01

Tmax (°C) 122.70 122.67 0.03 0.02

ǬT (W/mm3) 32.80 32.82 0.02 0.07

ΔP (Pa) 0.520 0.522 0.002 0.39
  

Figure 9. The scatter plot of the pressure drops (ΔP) between the inlet and outlet of the internal volume
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