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ABSTRACT  
Human activities are linked to atmospheric pollution and are affected by economic development. 
Ground-level ozone has become an important and harmful pollutant for many countries, 
adversely affecting public health. As there is a limited number of on-site measurements, 
alternative methods are required to accurately estimate ozone concentrations. In this study, a 
database containing annual average concentrations of CO2, N2O, CO, NOx, SOx, and O3, covering 
the years 2008-2018 for ten countries in Europe, was created. Ten different artificial intelligence 
regression methods were developed to predict the O3 concentration using these variables. The 
predictive performance of the developed artificial intelligence models was compared using the 
coefficient of determination, mean absolute error, root mean square error, and relative absolute 
error criteria. Experimental results show that the Bagging-MLP method has a better predictive 
performance than other models in ozone concentration estimation, with an R2 value of 0.9994, 
mean absolute error of 24.67, root mean square error of 33.85, and relative absolute error of 2.9%. 
This study shows that the O3 concentration can be estimated very close to the actual value by 
using the Bagging-MLP method, one of the artificial intelligence methods. 

Bagging-MLP Yöntemiyle Troposferik Ozon 
Konsantrasyonunun Tahmini 
ÖZ 
İnsan faaliyetleri atmosfer kirliliği ile bağlantılıdır ve ekonomik gelişmelerden etkilenir. Yer 
seviyesindeki ozon birçok ülke için önemli ve zararlı bir kirletici haline gelmiş olup halk sağlığını 
olumsuz etkiler. Yerinde yapılan ölçümlerin sınırlı sayıda olmasından dolayı, ozon 
konsantrasyonlarını doğru bir şekilde tahmin etmek için alternatif yöntemlere ihtiyaç vardır. Bu 
çalışmada, Avrupa'da on ülkede 2008-2018 yıllarını kapsayan CO2, N2O, CO, NOx, SOx, ve O3 
yıllık ortalama konsantrasyonlarını içeren bir veritabanı oluşturuldu. Bu değişkenleri kullanarak 
O3 konsantrasyonunu tahmin etmek için on farklı yapay zeka regresyon yöntemi geliştirildi. 
Geliştirilen yapay zeka modellerinin tahmin performansı, determinasyon katsayısı, ortalama 
mutlak hata, kök ortalama karesel hata ve göreceli mutlak hata ölçütleri kullanılarak 
karşılaştırıldı. Deneysel sonuçlar, Bagging-MLP yönteminin diğer modellere göre ozon 
konsantrasyonu tahmininde daha iyi bir performansa sahip olduğunu, R2 değeri 0.9994, ortalama 
mutlak hata 24.67, kök ortalama karesel hata 33.85 ve göreceli mutlak hata ise %2.9 olarak ortaya 
koydu. Bu çalışma, yapay zeka yöntemlerinden olan Bagging-MLP yöntemi kullanılarak O3 
konsantrasyonunun gerçek değere oldukça yakın bir şekilde tahmin edilebileceğini 
göstermektedir.  
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1. Introduction  
 
Ozone (O3), which was discovered in the mid-19th century, is a reactive oxidizing gas that occurs naturally in 
trace amounts in the Earth's atmosphere. It is a relatively unstable molecule made up of three atoms of oxygen 
(O), blue in color, and has a strong odor. Although ozone represents only a tiny fraction of the atmosphere, 
it is crucial for life on Earth and it plays a key role in atmospheric chemistry and the overall radiative balance 
of the atmosphere [1]. For example, most of the ozone in the stratospheric ozone layer (a layer 12–48 m above 
the Earth) acts as a shield to protect the Earth’s surface from the Sun’s harmful ultraviolet radiation [2]. 
Approximately 90% of atmospheric ozone is found between the top of the troposphere layer and within the 
stratospheric layer at an altitude of about 50 km. The remaining 10% of atmospheric Ozone is present in the 
lower parts of the atmosphere (the Troposphere), which is very close to the earth's surface. 
 
The troposphere, which begins at the Earth's surface, is composed of multiple layers and stretches from 8 to 
14.5 kilometers above the Earth's surface.  When present in high concentrations, tropospheric ozone is a 
photochemical oxidizing gas that harms the environment and human health. Tropospheric ozone, which 
causes photochemical smog, is a secondary pollutant that forms when the concentration of primary pollutants 
like hydrocarbons and nitrogen oxides (NOx) rises during peak hours. At a concentration of 0.15 ppm, it can 
cause burning in the eyes and at 0.25 ppm it is considered hazardous to human health [3]. In addition to the 
negative effects on human health; oxidizing substances in the atmosphere reduce visibility and it has been 
observed by many researchers that tropospheric O3 has adverse effects on rubber, plastics, and paints [4]. 
Furthermore, tropospheric O3 is also the third-largest greenhouse gas, contributing about 3%-7% of the 
greenhouse effect, and has a substantial impact on climate change [5]. 
 
In recent years human activities have caused a dramatic increase in ozone concentrations. In the atmosphere, 
ozone is formed only as a result of the reaction between atomic oxygen and molecular oxygen. However, the 
troposphere is an environment where many oxidation reactions occur. Under the influence of daylight, the 
oxidation of organic molecules in the presence of nitrogen oxides takes place, and the components in the 
troposphere tend to move towards a more oxidized state. Thus, the primary product in troposphere chemistry 
is thought to be ozone. Ground-level ozone is less concentrated compared to ozone in the upper atmosphere; 
however, it is considered more dangerous due to its hazardous nature and the risk it poses to public health 
and well-being. Ozone concentration varies between large cities and rural areas, as ozone formation is entirely 
related to other pollutants released into the atmosphere. Hence, the determination and modeling of the 
relationship between tropospheric ozone concentrations and other components in the atmosphere has been 
studied extensively [6-11]. 
 
The formation and distribution of ground-level ozone compounds depend on factors such as altitude, land 
use type, atmospheric components, and some meteorological factors such as temperature, wind, sunlight, 
humidity, and precipitation [12]. Statistical models are used to directly determine the relationships between 
the tropospheric ozone concentration and these variables. Based on the temporal and spatial variations in 
these factors the models have the potential to predict the ozone concentration when and where monitoring 
points are deficient [13]. 
 
Artificial intelligence is the general name of computer algorithms that model a problem situation according 
to the data belonging to that problem [14]. Artificial intelligence uses the information obtained from previous 
experiences, examines the new information in this direction, and constantly tries to improve its performance.  
The main purpose of artificial intelligence is to make inferences using the information that already exists 
without any additional intervention from the outside and to make these inferences ready to be used in future 
estimations or when appropriate [15]. Artificial intelligence algorithms are widely used in most applications 
due to their unique nature of problem-solving. Such algorithms deal with the construction of machines that 
move automatically by gaining experience, the formation of these algorithms with low computational costs, 
the design of new algorithms and the usability of big data have made progress in recent years. Since artificial 
intelligence has a very wide usage area, studies on artificial intelligence can be found in nearly every subject 
when reviewing the literature [16-28]. Due to artificial intelligence, computers can be programmed to perform 
specific tasks or process [29], desired classifications can be made [30-33], models can be designed, and these 
models can make predictions about the future [21, 34], based on previous experiences or dataset presented as 
examples [35]. 
It is observed in the literature that ozone concentration is successfully predicted using artificial intelligence 
methods. Although studies may have different results based on the methods or data used, overall, they 
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demonstrate the successful application of artificial intelligence methods. Juarez and Petersen [36] used 
XGBoost, Random Forest (RF), K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), 
Decision Trees (DT), AdaBoost, LSTM, and Linear Regression (LR) methods to predict the ozone level in 
Delhi, India. The study utilized a dataset containing 12 air pollutants and 5 weather variables recorded hourly 
throughout one year (2015). Each model was trained and tested ten times. The performance of the models 
was compared using the determination coefficient (R2) statistical criterion. According to the findings of the 
study, the most successful method was XGBoost with an R2 value of 0.614. Additionally, predictions were 
made based on seasons, and during the winter period, the XGBoost method exhibited an approximate 
prediction success rate of 97% 
 
Jumin et al. [37] used LR, Neural Network (NN), and Boosted Decision Tree (BDT) methods to predict the 
tropospheric ozone concentration in Malaysia, Kuala Lumpur, and Selangor. The model prediction 
performances were compared using the R2 statistical criterion. The dataset used in the study consists of 
variables such as humidity, wind speed, nitrogen oxide, nitrogen dioxide, sulphur dioxide, carbon monoxide 
and ozone. 75% of the dataset was used for training, and 25% for testing. According to the findings of the 
study, the most successful method was BDT. The R2 values for the proposed method of ozone concentration 
in these three regions were determined as 0.87, 0.88, and 0.91, respectively. 
 
Pan et al. [38] used 19 machine learning (ML) methods for predicting ozone pollution. To compare the 
prediction performances of the methods, they utilized R2, RMSE, MAPE, MAE, and J2 metrics. The study 
employed air pollution and meteorological data collected at King Abdullah University of Science and 
Technology in Saudi Arabia. The data was collected every 15 minutes from May 20 - Dec 20, 2020, and Jan 
21-Oct 21, 2021. The findings of the study reported that the SVR method outperformed other ML models. 
 
Wang et al. [39] proposed a random forest model for predicting ground-level ozone concentrations in 
California. The study utilized Troposphere Monitoring Instrument (TROPOMI) and High-Resolution Rapid 
Refresh (HRRR) data. According to the obtained results, it was reported that daily surface ozone 
concentration was predicted with an R2 value of 84%. Three cross-validation (CV) strategies were applied to 
evaluate the model performance. 
 
Yafouz et al. [40] aimed to predict ozone intensity using various ML models such as LR, Tree Regression (TR), 
Support Vector Regression (SVR), Gaussian Process Regression (GPR), Ensemble Regression (ER), and 
Artificial Neural Network (ANN). The data used in the study was hourly averaged from three different 
stations located in Putrajaya, Kelang, and KL on the Malay Peninsula. According to the findings of the study, 
the best prediction with an R2 value of 0.89 was achieved using LR, SVR, GPR, and ANN methods with the 
data obtained from the KL station. 
 
Aljanabi et al. [41] aimed to predict ozone concentration using a combination of meteorological and seasonal 
variable data for Amman City in Jordan. For this purpose, they compared MLP, SVR, DTR, and XGBoost 
methods. In the study, they reported that MLP outperformed other algorithms and the use of Savitzky-Golay 
improved the R2 by 50% and the RMSE and MAE by 80%. Feature selection was applied to predict ozone 
concentration, and they obtained an approximate R2 score of 98%. 
 
To estimate ozone concentrations using artificial intelligence approaches this study created a database that 
contains the annual average concentrations of Carbon dioxide (CO2), Carbon monoxide (CO), Nitrous oxide 
(N2O), Nitrogen oxides (NOx), Sulfur oxides (SOx), and Ozone (O3). Data from 2008 to 2018 was collected 
from ten European countries (Czechia, Germany, Greece, Spain, France, Italy, Romania, Switzerland, United 
Kingdom, and Turkey) and the accuracy of the predictions was determined. Furthermore, a performance 
comparison between the selected artificial intelligence models was conducted to determine the most 
successful method. 
 
2. Material and Methods 
 
The summary of the methodologies for data processing is illustrated in Figure 1. 
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Figure 1. Flowchart for prediction of ozone 

 
2.1. Dataset and study area   
 
In this study, data collected from 10 different European countries was used to predict Ozone concentration 
with artificial intelligence methods. These countries are Czechia, Germany, Greece, Spain, France, Italy, 
Romania, Switzerland, United Kingdom, and Turkey as illustrated on the map in Figure 2.  

 
Figure 2. Countries involved in this study 

 
This study’s dataset includes input variables such as carbon dioxide (CO2), Nitrous oxide (N2O), Carbon 
monoxide (CO), Nitrogen oxides (NOx), and Sulfur oxides (SOx) concentrations. The Ozone (O3) 
concentration is used as an output (target) variable. The dataset was collected from the Eurostat website, and 
it contains the annual average concentrations of selected countries from 2008 to 2018. Input and output 
variables are summarized in Table 1. 
 

Table 1. Statistics the of variables in the dataset 

 CO2 N2O CO NOX SOX O3 
Minimum 25959.1 9.3 64.9 71.8 5.9 154.9 
1st Quarter 75395.0 17.9 217.6 201.9 137.6 412.7 
Median 234325.2  56.2 766.1 680.8 267.9 1578.1 
Mean 237126.4 61.7 763.4 914.2 427.7 1409.6 
3rd Quarter 315613.1  110.1 1151.0 914.2 437.1 2003.7 
Maximum 725664.4 150.3 2190.4 1831.9 2296.7 3563.1 
Standard dev. 187421.8 45.7 584.2 493.5 551.8 973.2 

 
2.2. Methods 
 
In this study, nine different regression models were employed to predict ozone concentration with accurately, 
and the performance of these methods was compared. The regression models used in the study are presented 
in Table 2. 
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Table 2. Artificial intelligence regression methods used in this study  

Method  Abbreviation 
Linear Regression LR 
Multilayer Perceptron MLP 
Support Vector Regression SVR 
Fuzzy k-nearest neighbor FKNN 
K-Nearest Neighbors KNN 
Weighted K-Nearest Neighbors WKNN 
Random Forest Regression RFR 
Bagging MLP Bagging-MLP 
Bagging SVR Bagging-SVR 

 
Used regression methods are briefly described below. 
 
2.2.1. Linear Regression (LR)  
 
LR is describing the linear relationship between a dependent variable and one or more independent variables. 
LR involves utilizing weighted samples to construct a prediction model, and it employs least-squares 
regression to ascertain linear relationships. The following steps are traced in the LR method: 

Weights are calculated from the training dataset (Eq. (1)). Weights should be chosen to minimize errors 
(actual output value - predicted output value). 
 
𝑥 = 	𝑤! +	𝑤"𝑎" +⋯+𝑤#𝑎#      (1) 
 
Where x is the output value, a is the input value, and w is the weight of each input attribute (a0 is considered 
as 1 and w1 is the weight of a1).  
The Predicted value for the first training instance a(1)  is calculated as shown in Eq. (2). 
 
 
∑ 𝑤$𝑎$

(")#
$'! =	𝑤! +	𝑤"𝑎"

(") +⋯+𝑤#𝑎#
(")      (2) 

 
Lastly, Weights are updated to minimize the squared error between actual output and predicted output as 
shown in Eq. (3). 
 
 
∑ )𝑥(() −	∑ 𝑤$𝑎$

(()#
$'! +)

('" 	       (3)  
 

2.2.2. Fuzzy K-Nearest Neighbor (FKNN) 

In this method, the concept of fuzzy logic is combined with the k-nearest neighbor technique (KNN). Here, 
different degrees of membership values are assigned considering the distance of the KNNs. FKNN consists of 
two steps. In the first step, the KNN’s are determined for the training dataset and the fuzzy membership values 
are estimated for the feature vector. In the second step, the fuzzy membership value is calculated and assigned 
to the unknown test sample [42]. 

2.2.3. Multilayer Perceptron (MLP) 

MLP method is a feedforward neural network. In a multilayer neural network, the neurons are fully 
connected, that is, there are connections from the neuron cell in one layer to all the neuron cells in the other 
layer. Neurons are mapped from input data to a series of outputs with hidden layers, as shown in Figure 3. 
The most popular learning method in a multilayer neural network is backpropagation. To minimize the error 
in the output layer, the weights of the neurons between the layers behind are updated with each 
backpropagation iteration. So the weights on the connections change over time during learning. After a 
certain repetition, the change of weights decreases, from that moment the system has completed the learning 
process. 
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Figure 3. A schematic diagram of the MLP neural network 

 
An MLP with a hidden layer can be mathematically described by the following equations. Weighted sums of 
inputs are calculated using Eq. (4). 
 
𝑢$ =	∑ 𝑋(𝑎($ +	𝑎!$

*!"#
('"                                          (4)  

 

Where N is the number of input nodes, Xi is the ith input, aij shows the weight vectors and a0j is the bias of the 
hidden node. 

In Eq. (5), by transforming this sum defined in Equation 4, the outputs of the Zj hidden layer are obtained. 
For this g activation function (transfer function) is used. 
 
𝑍$ = 	𝑔)𝑢$+       (5)  
 
The output of each hidden node is based on the sigmoid function and is defined in Eq. (6). 
 
𝑔(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 	 "

("+,$%)
	       (6)  

 

The sum-product of the Zj hidden layer’s outputs and the bjk weight vectors and the b0k bias term of the output 
layer are calculated using Eq. (7). 
 
 
𝑢# =	∑ 𝑍$𝑏$# +	𝑏!#

*&!'
$'"        (7)  

 

Using Eq. (6) and Eq. (7), the final outputs are defined as shown in Eq. (8). 
 
 
𝑌# = 	𝑔(𝑢#)	       (8)  
 
2.2.4. Support Vector Regression (SVR) 

SVR is a kernel-based learning algorithm. The basic idea in SVR is to minimize the error by individualizing 
the hyperplane where the error is maximized. The kernel function is used to map the input data to a higher 
dimensional feature space through nonlinear mapping. Thus, SVR solves a linear regression problem in this 
feature space. Although there are different kernel functions, the most commonly used are polynomial, linear, 
sigmoid (MLP) and Gaussian (RBF) kernels [43]. In this study, a sequential minimal optimization algorithm 
is applied to train the SVR model. 

2.2.5. K-Nearest Neighbor (KNN) 

KNN is the most popular of the nearest neighbor approaches [44]. When calculating the output value of a test 
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sample; first, the distance of the test sample to all training samples is calculated, then the nearest k neighbors 
are determined, and finally, the output is determined by averaging the value of these k neighbors [45]. In 
addition, distances can be weighted in the KNN algorithm. Euclidian distance is usually used for distance 
measurement. In this study, both weighted and unweighted KNN methods were used. Euclidean distance was 
used for distance measurement and k value 3 was chosen. Eq. (9) is used to estimate the output value of a test 
sample (qi). 

Sim(𝑞(;𝑠$) =
-∑ /(0,2,3)()

*$+ 	

√*
       (9)  

2.2.6. Random Forest Regression (RFR) 

RFR is a tree-based regression method. It is an ensemble learning algorithm developed by Leo Breiman [46] 
and consists of a combination of many regression trees. Each tree in the forest is trained using a bootstrap 
sample extracted from the training set. The output values predicted by the models that complete the learning 
process are combined. In the regression, decisions are aggregated by taking the average of the predicted values. 

2.2.7. Bagging (Bootstrap Aggregation) 

Bagging is also an ensemble learning algorithm developed by Breiman [47]. The purpose of the bagging 
algorithm is to generate a large number of similar training sets by taking a random bootstrap sample from the 
training dataset. These subsets are used for training the base learners. To predict the test set, models that have 
learned from these subsets are used collectively. Bagging uses averaging to aggregate the outputs of the base 
learners [48]. Bagging can be formalized in Eq. (10) and the workflow of the bagging technique is illustrated 
in Figure 4. 

𝑦;678 =
"
)
∑ ∅(𝑥; 𝑇())
9'"        (10)  

In the equation, x is the input and n is the number of bootstrap samples of training set T.  

 
Figure 4. Workflow of the Bagging technique 

 
 

2.2. Comparison of Models' Performance 
 
In the modeling phase, the dataset is split into two parts apart for training and the other part for testing to 
perform model training and to test the prediction performance of the model. K-fold cross-validation is a 
technique used to divide the dataset into training and test set. In this method, the data set is divided into 
train/test according to the determined number of k. In this study, the k value of 10 was chosen. In other words, 
our dataset consisting of 110 samples will be divided into 10 folds. In each iteration, the model will test the 
training process with 99 samples (90%) and the prediction performance of the model with the remaining 11 
samples (10%). After 10 iterations are completed, the error of the model is calculated by taking the average. 
Hence, CV helps to estimate the error of the model and to select the best model. In the CV technique, the 
entire dataset is used for both training and testing, thus eliminating bias. This method is useful for small 
datasets as the training and testing process of models is time-consuming. The process of CV is illustrated in 
Figure 5. 
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Figure 5. Diagram of k-fold CV with k=10 

 
The performances of the methods used in the study in predicting the Ozone concentration were compared 
according to the evaluation criteria of R2, root mean square error (RMSE), mean absolute error (MAE), and 
relative absolute error (RAE). These metrics are expressed mathematically as in Eqs. (11-14), respectively: 
 

𝑅: = 1 − ∑ (;!<=!)(
"
!,+
∑ (;!<;>)("
!,+

       (11)  

 

RMSE = E∑ (=!<;!)("
!,+

?
       (12)  

 
MAE = ∑ |=!<;!|

"
!,+ 	

?
       (13)  

 

RAE = ∑ |=!<;!|
"
!,+ 	
∑ |;><;!|"
!,+

       (14)  

In the above equations, p is the predicted value, a is the actual value and 𝑎F is the mean of the actual values. 
The above three error measurement criteria (RMSE, MAE, RAE) should be lower. Error is zero indicates that 
it is a statistically perfect model. The R2 measures how well the predicted values match the actual values. In 
other words, this value should be high since it shows the predictive accuracy of the model. 
 
3. Experimental Results 

In this study, the prediction performances of various regression techniques were evaluated and compared to 
determine the most successful artificial intelligence regression method in estimating O3 concentration. Firstly, 
the cross-correlation of the variables in the dataset, density plots, and 2D density charts are presented in 
Figure 6.  
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Figure 6. Correlation and density plot of variables in dataset (thousand tonnes) 

In Figure 6, it is seen from the density plots of the input variables that they do not have a normal distribution. 
The CO2 variable has very high values compared to other variables (see Table 1). The fact that the value ranges 
of the input variables are different, especially the features with high values such as that of CO2, affects the 
success of the methods that are based on distance measurement. This is because variables with high values 
tend to overshadow the impact of variables with lower values. Box-plot graphs of the input variables are given 
in Figure 7. 
 

 
 Figure 7. Boxplot of (A) original dataset and (B) normalized dataset 

 
Below, the impacts of each input variable on the target variable are presented. 
 
Effect of Nitrogen oxides (NOx):  
 
NOx is a powerful greenhouse gas that is produced during fossil fuel combustion and biomass burning. In the 
troposphere, NO2 is the main source that provides the oxygen atoms necessary for O3 formation. NO2 is 
broken down into NO and oxygen atoms by sunlight. Then the oxygen atom combines with the oxygen 
molecule to form O3. Therefore, it is expected that there will be a strong correlation between NOx and O3. 
Figure 6 shows that NOx exhibits a strong influence on O3, with a correlation of 0.984. Figure 8 illustrates the 
scatter diagram of NOx versus O3 and includes the fitted linear regression model. The result of the predictive 
model for the dataset is O3 = 1.9405 * NOx + 88.652. The regression function's slope indicates that a unit 
increase in NOx is associated with a rise of 1.9405 thousand tonnes in O3. It is seen that when NOx increases, 
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O3 concentration also increases. 
 

 
Figure 8. Scatter diagram of NOx vs. O3 in thousand tones 

Effect of Carbon dioxide (CO2): 
 
CO2, a major greenhouse gas, is emitted by both human activities like deforestation and burning fossil fuels, 
and natural processes including respiration and volcanic eruptions. The second most effective factor for the 
formation of O3 is CO2 with a correlation coefficient of 0.954 (Figure 6). Figure 9 shows the scatter diagram 
and the linear regression model that fits the data of CO2 vs. O3. The result of the predictive model for the 
dataset is O3 = 0.005 * CO2 + 234.4. The slope of the function shows that the unit increase in CO2 corresponds 
to an increase in O3 of 0.0005 thousand tones. When all other variables are held constant, the performance is 
improved with the presence of CO2. 

 

 
Figure 9. Scatter diagram of CO2 vs. O3 in thousand tones 

 
Effect of Nitrous Oxide (N2O): 

N2O is a substantial contributor to global warming as a greenhouse gas. When considered per molecule over 
100 years, nitrous oxide has approximately 265 times the heat-trapping capacity of CO2 in the atmosphere. 
However, due to its lower concentration, its overall contribution to the greenhouse effect is less than one-
third that of CO2. Nitrous oxide is emitted as a by-product of burning fossil fuels, though the quantity released 
varies depending on the type of fuel used. The linear relationship between N2O and O3, shows another high 
correlation of 0.844 with ozone, as seen in Figure 10. The result of the predictive model for the dataset is O3 
= 17.972 * N2O + 300.16. 
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Figure 10. Scatter diagram of N2O vs. O3 in thousand tones 

Effect of Carbon monoxide (CO): 

CO is a colorless, odorless, tasteless, flammable gas that results from the incomplete combustion of carbon. 
CO could play roles with potential impacts on climate change. It indirectly influences radiative forcing by 
increasing the concentrations of direct greenhouse gases like methane and tropospheric ozone. Natural 
atmospheric processes lead to the oxidation of CO to carbon dioxide and ozone [49]. This variable shows 
another high correlation of 0.886 with O3. The result of the predictive model for the dataset is O3 = 1.4762 * 
CO + 282.65. The linear relationship between CO and O3 is shown in Figure 11. 
 

 
Figure 11. Scatter diagram of CO vs. O3 in thousand tones 

Effect of Sulfur Oxides (SOx): 

SOx, which stands for compounds composed of sulfur and oxygen molecules. The main form found in the 
lower atmosphere is sulfur dioxide (SO2). It is a colorless gas that can be detected at concentrations ranging 
from 1,000 to 3,000 µg/m3 due to its distinct odor and taste. The majority of sulfur dioxide is generated by 
burning fuels containing sulfur or by roasting metal sulfide ores, while natural sources like volcanoes also 
contribute to sulfur dioxide emissions, accounting for 35-65% of the total. In comparison to other variables 
in the dataset, SOx show the weakest correlation with O3 (0.41). Figure 12 shows the scatter diagram and the 
linear regression model that fits the data of SOx vs. O3. The result of the predictive model for the dataset is O3 
= 0.7231 * SOx + 1100.3. The slope of the regression function shows that the unit increase in SOx corresponds 
to an increase of 0.7231 thousand tones in O3. From the correlation value and as seen in Figure 12, SOx is not 
self-sufficient for estimation. 
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Figure 12. Scatter diagram of SOx vs. O3 in thousand tones 

Ozone concentration was estimated with different artificial intelligence regression methods and the 
prediction performances of these models were compared to each other in Table 3. Since the dataset does not 
have a normal distribution, the data were normalized with the min-max normalization technique. The 
original dataset and the normalized dataset estimations were made separately, and the results obtained are 
presented in comparison in Table 3.  

 
Table 3. Comparison of the prediction results of the models for the original and normalized dataset  

Method Original Data Normalized Data 
R2 MAE RMSE RAE (%) R2 MAE RMSE RAE (%) 

LR 0.9984 42.266 54.586 4.962 0.9984 0.0124 0.0160 4.962 
MLP 0.9990 34.618 44.356 4.064 0.9990 0.0102 0.0130 4.064 
SVR 0.9983 42.241 56.889 4.959 0.9983 0.0124 0.0167 4.946 
FKNN 0.9967 46.576 80.735 5.467 0.9967 0.0137 0.0237 5.467 
KNN 0.9957 54.663 90.653 6.417 0.9957 0.0160 0.0266 6.417 
WKNN 0.9962 48.906 85.676 5.741 0.9967 0.0137 0.0237 5.467 
RFR 0.9972 46.620 72.764 5.473 0.9973 0.0135 0.0212 5.385 
Bagging-MLP 0.9994 24.668 33.846 2.896 0.9994 0.0072 0.0099 2.896 
Bagging-SVR 0.9984 43.016 55.544 5.049 0.9983 0.0125 0.0169 5.007 

 
Table 4 presents the predicted and actual ozone values for the Bagging-MLP method, which outperforms 
other methods. The study employed the CV technique, and it provides separate data for actual and estimated 
ozone values (thousand tons) as well as errors for each iteration. When Table 4 is examined, it is seen that the 
Ozone values estimated by the Bagging with MLP method are quite close to the actual and therefore the 
estimation errors are quite low.  
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Table 4. Actual and predicted values for each CV iteration of Bagging-MLP  
 

 
3. Conclusion and Discussion 
 
In this work, the temporal variation of the most important air pollutant, O3, was examined, and the 
relationship of O3 components with other air pollutants was investigated, to model these pollutants using 
various artificial intelligence methods. The findings obtained in the study are summarized below.  
A strong correlation of 0.956 is observed between NOx and CO2, which is highest correlation among the input 
variables. Also, the highest correlation with the target variable (O3) is observed with NOx (0.984). A high and 
significant correlation is also observed with CO2 (0.954), N2O (0.844), and CO (0.886) with the target variable 
(O3). From Figure 6, it can be observed that SOx has a relatively weak correlation (0.41) with O3. However, 
this level of correlation is still adequate for individual estimation. The order of correlations of the data set with 
O3 was NOx > CO2 > CO > N2O > SOx. 
 
When reviewing the literature on the subject, it becomes apparent that the application of machine learning 
algorithms in air pollution studies largely centers around the temporal estimation of air pollutant gas 
concentrations. In a study by Gao et al. [50], the R2 value was found to be 0.80 in ozone estimation. Jia et al. 
[51], tried to predict ozone with artificial neural networks using different model structures in their work. The 
R2 values obtained in the study vary between 0.89 and 0.92. They found the correlation coefficients in values 
ranging from 0.40 to 0.60. Liu et al. [13], tried to predict long-term ozone concentrations using ML algorithms 
in their work. The R2 values of the ML model results used in the study ranged from 0.60 to 0.87. Considering 
these values, it is seen that the statistical results obtained in this study are compatible with the literature (Table 
5).   
 

 
 

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Actual Predicted Error Actual Predicted Error Actual Predicted Error Actual Predicted Error Actual Predicted Error 

561.8 598.2 36.3 412.7 411.5 -1.3 670.9 678.0 7.0 2095.4 2105.0 9.6 2862.0 2930.0 68.1 

1589.0 1614.9 25.9 2120.0 2086.5 -33.5 3563.1 3446.2 -116.9 1479.6 1439.3 -40.3 422.6 433.2 10.6 

1592.6 1603.7 11.1 1699.4 1691.3 -8.2 2046.3 2014.2 -32.1 3133.6 3156.5 22.9 405.8 415.4 9.6 

3359.9 3252.6 -107.2 2158.7 2149.8 -8.9 175.2 155.9 -19.3 2595.7 2597.5 1.9 2118.0 2126.0 8.0 

1462.6 1396.2 -66.5 295.0 323.0 28.0 380.2 380.7 0.5 323.4 336.5 13.2 2254.9 2249.0 -5.9 

2276.7 2280.2 3.5 186.5 156.6 -29.8 169.7 155.2 -14.5 1817.8 1815.6 -2.2 452.9 471.5 18.6 

1989.7 1982.3 -7.4 413.7 414.5 0.8 172.9 156.7 -16.2 1915.7 1968.1 52.4 3189.1 3209.1 19.9 

557.6 561.8 4.2 2028.5 2030.4 2.0 1515.5 1481.2 -34.3 177.8 152.6 -25.2 1482.6 1465.0 -17.6 

394.1 394.3 0.2 163.9 143.4 -20.5 388.6 410.4 21.9 3141.0 3178.0 37.0 702.0 724.8 22.8 

378.6 384.1 5.5 158.9 140.9 -18.0 334.3 357.5 23.2 503.5 525.4 21.9 2908.6 2984.2 75.5 

1739.6 1755.2 15.6 1889.2 1851.0 -38.2 1884.8 1831.1 -53.8 173.9 154.2 -19.6 156.6 143.0 -13.6 

Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10 

Actual Predicted Error Actual Predicted Error Actual Predicted Error Actual Predicted Error Actual Predicted Error 

1815.1 1811.3 -3.8 464.0 466.2 2.2 1508.9 1468.8 -40.2 1476.6 1484.0 7.4 1891.6 1880.2 -11.4 

1471.8 1441.6 -30.1 1508.4 1454.8 -53.5 1487.7 1465.7 -22.0 1872.5 1850.7 -21.8 1796.6 1795.3 -1.3 

3272.1 3261.1 -11.0 2008.4 2032.7 24.3 340.9 361.7 20.8 2240.8 2315.7 74.9 395.6 400.2 4.6 

424.4 414.2 -10.2 389.2 378.2 -11.0 1651.4 1670.3 18.9 1567.1 1534.2 -32.9 1707.0 1702.9 -4.1 

1659.6 1668.6 9.1 155.2 142.6 -12.6 2424.7 2468.4 43.7 393.0 391.9 -1.1 1892.0 1818.2 -73.9 

1918.2 1932.3 14.2 434.0 440.7 6.7 384.1 380.9 -3.2 1521.5 1531.7 10.2 1781.0 1803.8 22.9 

416.6 393.4 -23.3 1929.9 1949.8 20.0 1892.7 1798.2 -94.4 304.5 333.4 28.9 1687.5 1703.1 15.7 

2521.3 2520.4 -0.8 2126.4 2164.2 37.8 2247.5 2269.1 21.5 2570.9 2627.9 57.0 1918.6 1983.7 65.1 

1871.1 1802.4 -68.7 154.9 140.3 -14.6 412.6 418.3 5.7 1603.9 1553.9 -50.0 3062.8 3099.6 36.8 

3204.7 3241.3 36.7 434.3 419.0 -15.3 311.6 342.6 31.0 1987.8 2039.1 51.3 431.2 426.6 -4.6 

1971.8 1986.9 15.1 415.8 420.7 4.8 411.0 421.4 10.4 2949.2 2931.0 -18.2 3325.3 3272.1 -53.3 
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Table 5. Summary and comparison of studies based on predicting ozone concentration 
Reference Study Area Best Model R2 
[36] Delhi XGBoost 0.614 
[37] Malaysia, Kuala Lumpur, Selangor BDT 0.87, 0.88, 0.91 
[38] Saudi Arabia SVR 0.924 
[39] California RF 0.84 
[40] Malaya LR, SVR, GPR, ANN 0.89 
[41] Amman MLP 0.98 
[50] Hebei ANN 0.80 
[51] Lanzhou CANN 0.89 - 0.92 
[13] Beijing-Tianjin-Hebei, 

Yangtze River Delta, Sichuan Basin, Pearl 
River Delta, Jianghan Plain, Northeast Plain 

XGBoost 0.60 - 0.87 

Our study Czechia, Germany, Greece, Spain, France, 
Italy, Romania, Switzerland, United Kingdom, 
Turkey 

Bagging-MLP 0.9994 

A review of studies in the literature reveals that ozone concentrations have been predicted using different 
regions, various methods, or distinct features. Consequently, while the findings from these studies may vary, 
there is a general consensus that artificial intelligence methods have been successful in predicting ozone 
concentration. 
 
Upon examining the experimental results in this study (Table 3), it becomes evident that the Bagging-MLP 
method was the most successful in estimating O3 levels. A comparison between the O3 values predicted by the 
proposed Bagging-MLP method and the actual values (Table 4) demonstrates a close alignment between the 
two. These findings indicate that estimation systems employing the Bagging-MLP method can predict O3 
levels with minimal error. 
 
Estimation performances of the normalized dataset and the original dataset were compared, the error of the 
SVR, FKNN, RFR, and Bagging-SVR methods for the normalized dataset decreased. However, this decrease 
is less than 1%. In the Bagging-MLP prediction model, there is no difference in the success of the estimations 
for O3 concentration in the original dataset and the normalized dataset, however, the results obtained show 
that when compared to other regression methods it is the most successful method. 
 
The use of a limited sample size in this study is acknowledged as a limitation. To address this constraint, we 
employed 10 cross-validation techniques to ensure the reliability of results and mitigate issues such as 
overfitting. Cross-validation is a validation method that involves dividing the dataset into smaller subsets and 
training and testing the model on these subsets. This helps improve the model's generalization and reduces 
misleading results arising from the restricted sample size. 
There are many studies in the literature on the distribution of air pollutants in the atmosphere and their 
relations with each other. For this reason, modeling studies are important in the follow-up of the long-term 
relationships of air pollutants with each other. The results obtained in this study show that the relationship of 
ozone with other air pollutants can be successfully predicted by artificial intelligence methods. 
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