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Abstract

Convergence theorems required more assumptions on parameters than �xed point theorems. In this paper
we generalize the concept of acute point and we introduce some convergence theorems that holds under the
same assumptions on parameters as �xed point theorems.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty subset of H. A mapping T from C into H is said
to be generalized hybrid [22] if there exist α, β ∈ R such that

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for any x, y ∈ C. Such a mapping is said to be (α, β)-generalized hybrid. The class of all generalized hybrid
mappings is a new class of nonlinear mappings including nonexpansive mappings, nonspreading mappings
[24] and hybrid mappings [26]. A mapping T from C into H is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

Email address: toshiharu.kawasaki@nifty.ne.jp (Toshiharu Kawasaki)

Received May 20, 2023; Accepted: June 11, 2023; Online: June 14, 2023.

https://doi.org/10.31197/atnaa. 1299905


Toshiharu Kawasaki, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 387�404. 388

for any x, y ∈ C; nonspreading if

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖Ty − x‖2

for any x, y ∈ C; hybrid if

3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖Tx− y‖2 + ‖Ty − x‖2

for any x, y ∈ C. Any nonexpansive mapping is (1, 0)-generalized hybrid; any nonspreading mapping is
(2, 1)-generalized hybrid; any hybrid mapping is

(
3
2 ,

1
2

)
-generalized hybrid.

Motivated these mappings, in [19] Kawasaki and Takahashi introduced a new very wider class of mappings,
called widely more generalized hybrid mappings, than the class of all generalized hybrid mappings. A
mapping T from C into H is widely more generalized hybrid if there exist α, β, γ, δ, ε, ζ, η ∈ R such that

α‖Tx− Ty‖2 + β‖x− Ty‖2 + γ‖Tx− y‖2 + δ‖x− y‖2

+ε‖x− Tx‖2 + ζ‖y − Ty‖2 + η‖(x− Tx)− (y − Ty)‖2 ≤ 0

for any x, y ∈ C. Such a mapping is said to be (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid. This class
includes the class of all generalized hybrid mappings and also the class of all k-pseudocontractions [3] for
k ∈ [0, 1]. A mapping T from C into H is called a k-pseudocontraction if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(x− Tx)− (y − Ty)‖2

for any x, y ∈ C. Any (α, β)-generalized hybrid mapping is (α, 1−α,−β, β−1, 0, 0, 0)-widely more generalized
hybrid; any k-pseudocontraction is (1, 0, 0,−1, 0, 0,−k)-widely more generalized hybrid. Furthermore they
proved some �xed point theorems [7�12,18�21] and some ergodic theorems [7, 8, 18�20].

There are some studies on Banach space related to these results. In [28] Takahashi, Wong and Yao
introduced the generalized nonspreading mapping and the skew-generalized nonspreading mapping in a
Banach space. Let E be a smooth Banach space and let C be a nonempty subset of E. A mapping T from
C into E is said to be generalized nonspreading if there exist α, β, γ, δ, ε, ζ ∈ R such that

αφ(Tx, Ty) + βφ(x, Ty) + γφ(Tx, y) + δφ(x, y)

≤ ε(φ(Ty, Tx)− φ(Ty, x)) + ζ(φ(y, Tx)− φ(y, x))

for any x, y ∈ C, where J is the duality mapping on E and

φ(u, v) = ‖u‖2 − 2〈u, Jv〉+ ‖v‖2.

Such a mapping is said to be (α, β, γ, δ, ε, ζ)-generalized nonspreading. A mapping T from C into E is said
to be skew-generalized nonspreading if there exist α, β, γ, δ, ε, ζ ∈ R such that

αφ(Tx, Ty) + βφ(x, Ty) + γφ(Tx, y) + δφ(x, y)

≤ ε(φ(Ty, Tx)− φ(y, Tx)) + ζ(φ(Ty, x)− φ(y, x))

for any x, y ∈ C. Such a mapping is said to be (α, β, γ, δ, ε, ζ)-skew-generalized nonspreading. These classes
include the class of generalized hybrid mappings in a Hilbert space, however, it does not include the class of
widely more generalized hybrid mappings.

Motivated these results, we introduced a new class of mappings [13�16] on Banach space corresponding to
the class of all widely more generalized hybrid mappings on Hilbert space. Let E be a smooth Banach space
and let C be a nonempty subset of E. A mapping T from C into E is called a generalized pseudocontraction
if there exist α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2 ∈ R such that

α1φ(Tx, Ty) + α2φ(Ty, Tx) + β1φ(x, Ty) + β2φ(Ty, x)

+γ1φ(Tx, y) + γ2φ(y, Tx) + δ1φ(x, y) + δ2φ(y, x)

+ε1φ(Tx, x) + ε2φ(x, Tx) + ζ1φ(y, Ty) + ζ2φ(Ty, y)

≤ 0
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for any x, y ∈ C. Such a mapping is called an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseu-
docontraction. Let E∗ be the topological dual space of a strictly convex, re�exive and smooth Banach
space E and let C∗ be a nonempty subset of E∗. A mapping T ∗ from C∗ into E∗ is called a *-generalized
pseudocontraction if there exist α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2 ∈ R such that

α1φ∗(T
∗x∗, T ∗y∗) + α2φ∗(T

∗y∗, T ∗x∗) + β1φ∗(x
∗, T ∗y∗) + β2φ∗(T

∗y∗, x∗)

+γ1φ∗(T
∗x∗, y∗) + γ2φ∗(y

∗, T ∗x∗) + δ1φ∗(x
∗, y∗) + δ2φ∗(y

∗, x∗)

+ε1φ∗(T
∗x∗, x∗) + ε2φ∗(x

∗, T ∗x∗) + ζ1φ∗(y
∗, T ∗y∗) + ζ2φ∗(T

∗y∗, y∗)

≤ 0

for any x∗, y∗ ∈ C∗, where

φ∗(x
∗, y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉+ ‖y∗‖2

for any x∗, y∗ ∈ E∗. Such a mapping is called an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-*-generalized
pseudocontraction.

On the other hand, in [27] Takahashi and Takeuchi introduced a concept of attractive point in a Hilbert
space. Let H be a real Hilbert space, let C be a nonempty subset of H and let T be a mapping from C into
H. x ∈ H is called an attractive point of T if

‖x− Ty‖ ≤ ‖x− y‖

for any y ∈ C. Let

A(T ) = {x ∈ H | ‖x− Ty‖ ≤ ‖x− y‖ for any y ∈ C}.

Furthermore they proved that the Baillon type ergodic theorem [2] for generalized hybrid mappings without
convexity of C.

In [28] Takahashi, Wong and Yao introduced some extensions of attractive point and proved some at-
tractive point theorems on Banach spaces. x ∈ E is an attractive point of T if

φ(x, Ty) ≤ φ(x, y)

for any y ∈ C; x ∈ E is a skew-attractive point of T if

φ(Ty, x) ≤ φ(y, x)

for any y ∈ C. Let

A(T ) = {x ∈ E | φ(x, Ty) ≤ φ(x, y) for any y ∈ C};
B(T ) = {x ∈ E | φ(Ty, x) ≤ φ(y, x) for any y ∈ C}.

In [1] Atsushiba, Iemoto, Kubota and Takeuchi introduced a concept of acute point as an extension of
attractive point in a Hilbert space. Let H be a real Hilbert space, let C be a nonempty subset of H and let
T be a mapping from C into H and k ∈ [0, 1]. x ∈ H is called a k-acute point of T if

‖x− Ty‖2 ≤ ‖x− y‖2 + k‖y − Ty‖2

for any y ∈ C. Let

Ak(T ) = {x ∈ H | ‖x− Ty‖2 ≤ ‖x− y‖2 + k‖y − Ty‖2 for any y ∈ C}.

Furthermore, using a concept of acute point, they proved convergence theorems without convexity of C.
We introduced some extensions of acute point [13�16]. Let E be a smooth Banach space, let C be a

nonempty subset of E, let T be a mapping from C into E and let k, ` ∈ R. x ∈ E is called a (k, `)-acute
point of T if

φ(x, Ty) ≤ φ(x, y) + kφ(y, Ty) + `φ(Ty, y)
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for any y ∈ C. x ∈ E is called a (k, `)-skew-acute point of T if

φ(Ty, x) ≤ φ(y, x) + kφ(y, Ty) + `φ(Ty, y)

for any y ∈ C. Let

Ak,`(T )

= {x ∈ E | φ(x, Ty) ≤ φ(x, y) + kφ(y, Ty) + `φ(Ty, y) for any y ∈ C};
Bk,`(T )

= {x ∈ E | φ(Ty, x) ≤ φ(y, x) + kφ(y, Ty) + `φ(Ty, y) for any y ∈ C}.

Furthermore we proved some �xed point and acute point theorems [13,15], and some convergence theorems
[14,16]. However, convergence theorems require more assumptions on parameters than �xed point theorems.

In this paper we generalize the concept of acute point and we introduce some convergence theorems that
holds under the same assumptions on parameters as �xed point theorems.

2. Preliminaries

We know that the following hold; for instance, see [4, 5, 25].

Condition 2.1. 000000

(T1) Let E be a Banach space, let E∗ be the topological dual space of E and let J be the duality mapping on
E de�ned by

J(x) = {x∗ ∈ E∗ | ‖x‖2 = 〈x, x∗〉 = ‖x∗‖2}

for any x ∈ E. Then E is strictly convex if and only if J is injective, that is, x 6= y implies J(x)∩ J(y) = ∅.
(T2) Let E be a Banach space, let E∗ be the topological dual space of E and let J be the duality mapping on
E. Then E is re�exive if and only if J is surjective, that is,

⋃
x∈E J(x) = E∗.

(T3) Let E be a Banach space and let J be the duality mapping on E. Then E is smooth if and only if J is
single-valued.

(T4) Let E be a Banach space and let J be the duality mapping on E. If J is single-valued, then J is
norm-to-weak* continuous.

(T5) Let E be a Banach space and let J be the duality mapping on E. Then E is strictly convex if and only if

1− 〈x, y∗〉 > 0

for any x, y ∈ E with x 6= y and ‖x‖ = ‖y‖ = 1 and for any y∗ ∈ J(y).
(T6) Let E be a Banach space and let E∗ be the topological dual space of E. Then E is re�exive if and only
if E∗ is re�exive.

(T7) Let E be a Banach space and let E∗ be the topological dual space of E. If E∗ is strictly convex, then E
is smooth. Conversely, E is re�exive and smooth, then E∗ is strictly convex.

(T8) Let E be a Banach space and let E∗ be the topological dual space of E. If E∗ is smooth, then E is strictly
convex. Conversely, E is re�exive and strictly convex, then E∗ is smooth.

(T9) If a Banach space E is unformly convex, then E is re�exive.

(T10) Let E be a Banach space and let J be the duality mapping on E. If E has the Fréche di�erentiable
norm, then J is norm-to-norm continuous.

(T11) Let E be a Banach space and let E∗ be the topological dual space of E. E has uniformly Frécht
di�erentiable norm if and only if E∗ is uniformly convex.
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(T12) Let E be a Banach space and let E∗ be the topological dual space of E. E is strictly convex and re�exive
and has Kadec-Klee property if and only if E∗ has Fréchet di�erentiable norm.

Let E be a smooth Banach space, let J be the duality mapping on E and let φ be the mapping from
E × E into [0,∞) de�ned by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for any x, y ∈ E. Since by (T3) J is single-valued, φ is well-de�ned. It is obvious that x = y implies
φ(x, y) = 0. Conversely, by (T5)

Condition 2.2. 000000

(T13) If E is also strictly convex, then φ(x, y) = 0 implies x = y.

Let E be a strictly convex and smooth Banach space. By (T1) an (T3) J is a bijective mapping from
E onto J(E). In particular, if E is also re�ective, then by (T2) J is a bijective mapping from E onto E∗.
Suppose that E is strictly convex, re�ective and smooth. Let φ∗ be the mapping from E∗ × E∗ into [0,∞)
de�ned by

φ∗(x
∗, y∗) = ‖x∗‖2 − 2〈J−1y∗, x∗〉+ ‖y∗‖2

for any x∗, y∗ ∈ E∗. Then

φ∗(x
∗, y∗) = φ(J−1y∗, J−1x∗) (2.1)

holds. Therefore

Condition 2.3. 000000

(T13)∗ φ∗(x
∗, y∗) = 0 if and only if x∗ = y∗.

We use the following lemmas in this paper.
The following showed in [6].

Lemma 2.4. Let E be a strictly convex and smooth Banach space and let C be a nonempty closed subset
of E. Suppose that there exists a sunny generalized nonexpansive retraction of E onto C. Then the sunny
generalized nonexpansive retraction is uniquely determined.

Lemma 2.5. Let E be a strictly convex and smooth Banach space, let C be a nonempty closed subset of E
and let (x, z) ∈ E × C. Suppose that there exists a sunny generalized nonexpansive retraction RC of E onto
C. Then the following hold.

Condition 2.6. 0000

(i) z = RCx if and only if 〈x− z, Jz − Jy〉 ≥ 0 for any y ∈ C;
(ii) φ(RCx, y) + φ(x,RCx) ≤ φ(x, y) for any y ∈ C.

The following showed in [23].

Lemma 2.7. Let E be a strictly convex, re�exive and smooth Banach space and let C be a nonempty closed
subset of E. Then the following are equivalent:

Condition 2.8. 0000

(i) There exists a sunny generalized nonexpansive retraction of E onto C;

(ii) There exists a generalized nonexpansive retraction of E onto C;

(iii) J(C) is closed and convex.
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Lemma 2.9. Let E be a strictly convex, re�exive and smooth Banach space, let C be a nonempty closed
subset of E and let (x, z) ∈ E×C. Suppose that there exists a sunny generalized nonexpansive retraction RC
of E onto C. Then the following are equivalent:

Condition 2.10. 0000

(i) z = RCx;

(ii) φ(x, z) = miny∈C φ(x, y).

The following showed in [28].

Lemma 2.11. Let E be a uniformly convex and smooth Banach space, let C be a nonempty subset of E, let
T be a mapping from C into itself with B(T ) 6= ∅ and let R be the sunny generalized nonexpansive retraction
of E onto B(T ). Then for any x ∈ C, {RTnx} is strongly convergent to an element in B(T ).

The following lemmas are shown in [14�16].

Lemma 2.12. Let E be a smooth Banach space, let C be a nonempty subset of E, let D be a nonempty
convex subset of E, let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontraction from
C into D and let λ ∈ [0, 1]. Then T is a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+(1−λ)β2,
(1−λ)γ1+λβ2, λβ1+(1−λ)γ2, (1−λ)δ1+λδ2, λδ1+(1−λ)δ2, (1−λ)ε1+λζ2, λζ1+(1−λ)ε2, (1−λ)ζ1+λε2,
λε1 + (1− λ)ζ2)-generalized pseudocontraction from C into D.

Lemma 2.13. Let E∗ be the topological dual space of a strictly convex, re�exive and smooth Banach space
E, let C∗ be a nonempty subset of E∗, let D∗ be a nonempty convex subset of E∗, let T ∗ be an (α1, α2, β1,
β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-*-generalized pseudocontraction from C∗ into D∗ and let λ ∈ [0, 1]. Then T ∗ is
a ((1 − λ)α1 + λα2), λα1 + (1 − λ)α2, (1 − λ)β1 + λγ2, λγ1 + (1 − λ)β2, (1 − λ)γ1 + λβ2, λβ1 + (1 − λ)γ2,
(1−λ)δ1+λδ2, λδ1+(1−λ)δ2, (1−λ)ε1+λζ2, λζ1+(1−λ)ε2, (1−λ)ζ1+λε2, λε1+(1−λ)ζ2)-*-generalized
pseudocontraction from C∗ into D∗.

Lemma 2.14. Let E be a strictly convex, re�exive and smooth Banach space, let E∗ be the topological dual
space of E, let C and D be nonempty subsets of E and let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-
generalized pseudocontraction from C into D. Put T ∗ = JTJ−1, where J is the duality mapping on E. Then
T ∗ is an (α2, α1, β2, β1, γ2, γ1, δ2, δ1, ε2, ε1, ζ2, ζ1)-*-generalized pseudocontraction from J(C) into J(D).

3. Generalized acute and skew-acute point

Most of this section are included in [17], however, the following are described for completeness.
Let E be a smooth Banach space, let C be a nonempty subset of E, let T be a mapping from C into E

and let k, `, s ∈ R. x ∈ E is called a (k, `, s)-generalized acute point of T if

s(φ(x, Ty)− φ(x, y)) ≤ kφ(y, Ty) + `φ(Ty, y) (3.1)

for any y ∈ C. x ∈ E is called a (k, `, s)-generalized skew-acute point of T if

s(φ(Ty, x)− φ(y, x)) ≤ kφ(y, Ty) + `φ(Ty, y) (3.2)

for any y ∈ C. Let

Ak,`,s(T )

= {x ∈ E | s(φ(x, Ty)− φ(x, y)) ≤ kφ(y, Ty) + `φ(Ty, y) for any y ∈ C};
Bk,`,s(T )

= {x ∈ E | s(φ(Ty, x)− φ(y, x)) ≤ kφ(y, Ty) + `φ(Ty, y) for any y ∈ C}.
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It is obvious that

Ak1,`1,s1(T ) ⊂ Ak2,`2,s2(T ), Bk1,`1,s2(T ) ⊂ Bk2,`2,s2(T )

for any k1, k2, `1, `2 ∈ R and for any s1, s2 ∈ (0,∞) with k1
s1
≤ k2

s2
and `1

s1
≤ `2

s2
;

Ak1,`1,s1(T ) ⊃ Ak2,`2,s2(T ), Bk1,`1,s2(T ) ⊃ Bk2,`2,s2(T )

for any k1, k2, `1, `2 ∈ R and for any s1, s2 ∈ (−∞, 0) with k1
s1
≤ k2

s2
and `1

s1
≤ `2

s2
. Furthermore

Ak,`,0(T ) = Bk,`,0(T ) = E

for any (k, `) ∈ [0,∞)× [0,∞);

Ak,`,0(T ) = Bk,`,0(T ) = ∅

for any (k, `) ∈ (−∞, 0]× (−∞, 0] \ {(0, 0)}; otherwise,

Ak,`,0(T ) = E or ∅, Bk,`,0(T ) = E or ∅;

however, it is generally unknown which case holds. In this way, Ak,`,0(T ) and Bk,`,0(T ) may be empty.
However, in later discussions, under some assumptions, such cases will be properly ruled out.

The following lemmas are important property characterizing them.

Lemma 3.1. Let E be a smooth Banach space, let C be a nonempty subset of E, let T be a mapping from
C into E and let k, `, s ∈ R. Then Ak,`,s(T ) is closed and convex.

Proof. Since

φ(u, v) = φ(u,w) + φ(w, v) + 2〈u− w, Jw − Jv〉 (3.3)

for any u, v, w ∈ E, (3.1) is equivalent to

2s〈x, Jy − JTy〉 ≤ (k − s)φ(y, Ty) + `φ(Ty, y) + 2s〈y, Jy − JTy〉.

Therefore Ak,`,s(T ) is closed and convex.

Lemma 3.2. Let E be a smooth Banach space, let C be a nonempty subset of E, let T be a mapping from
C into E and let k, `, s ∈ R. Then Bk,`,s(T ) is closed.

Proof. (3.2) is equivalent to

2s〈y − Ty, Jx〉 ≤ kφ(y, Ty) + (`− s)φ(Ty, y) + 2s〈y − Ty, Jy〉

from (3.3). Furthermore by (T4) J is norm-to-weak* continuous. Therefore Bk,`,s(T ) is closed.

Let E∗ be the topological dual space of a strictly convex, re�exive and smooth Banach space E, let C∗

be a nonempty subset of E∗, let T ∗ be a mapping from C∗ into E∗ and let k, `, s ∈ R. x∗ ∈ E∗ is called a
(k, `, s)-generalized-*-acute point of T ∗ if

s(φ∗(x
∗, T ∗y∗)− φ∗(x∗, y∗)) ≤ kφ∗(y∗, T ∗y∗) + `φ∗(T

∗y∗, y∗) (3.4)

for any y∗ ∈ C∗. x∗ ∈ E∗ is called a (k, `, s)-generalized-*-skew-acute point of T ∗ if

s(φ∗(T
∗y∗, x∗)− φ∗(y∗, x∗)) ≤ kφ∗(y∗, T ∗y∗) + `φ∗(T

∗y∗, y∗) (3.5)

for any y∗ ∈ C∗. Let

A ∗k,`,s(T
∗)

=

{
x∗ ∈ E∗

∣∣∣∣ s(φ∗(x
∗, T ∗y∗)− φ∗(x∗, y∗)) ≤ kφ∗(y∗, T ∗y∗) + `φ∗(T

∗y∗, y∗)
for any y∗ ∈ C∗

}
;

B∗k,`,s(T
∗)

=

{
x∗ ∈ E∗

∣∣∣∣ s(φ∗(T
∗y∗, x∗)− φ∗(y∗, x∗)) ≤ kφ∗(y∗, T ∗y∗) + `φ∗(T

∗y∗, y∗)
for any y∗ ∈ C∗

}
.
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Lemma 3.3. Let E∗ be the topological dual space of a strictly convex, re�ective and smooth Banach space E,
let C∗ be a nonempty subset of E∗, let T ∗ be a mapping from C∗ into E∗ and let k, `, s ∈ R. Then A ∗k,`,s(T

∗)
is closed and convex.

Proof. (3.4) is equivalent to

2s〈J−1y∗ − J−1T ∗y∗, x∗〉
≤ (k − s)φ∗(y∗, T ∗y∗) + `φ∗(T

∗y∗, y∗) + 2s〈J−1y∗ − J−1T ∗y∗, y∗〉

from (3.3) and (2.1), A ∗k,`,s(T
∗) is closed and convex.

Lemma 3.4. Let E∗ be the topological dual space of a strictly convex, re�exive and smooth Banach space E,
let C∗ be a nonempty subset of E∗, let T ∗ be a mapping from C∗ into E∗ and let k, `, s ∈ R. Then B∗k,`,s(T

∗)
is closed.

Proof. (3.5) is equivalent to

2s〈J−1x∗, y∗ − T ∗y∗〉
≤ kφ∗(y∗, T ∗y∗) + (`− s)φ∗(T ∗y∗, y∗) + 2s〈J−1y∗, y∗ − T ∗y∗〉

from (3.3) and (2.1). Furthermore by (T4) J−1 is norm-to-weak* continuous. Therefore B∗k,`,s(T
∗) is

closed.

Lemma 3.5. Let E be a strictly convex, re�ective and smooth Banach space, let C be a nonempty subset of
E, let T be a mapping from C into E, let T ∗ = JTJ−1 and let k, `, s ∈ R. Then

A ∗k,`,s(T
∗) = J(B`,k,s(T )), B∗k,`,s(T

∗) = J(A`,k,s(T )).

In particular, J(Bk,`,s(T )) is closed and convex and J(Ak,`,s(T )) is closed.

Proof. Let x∗ ∈ A ∗k,`,s(T
∗). Then

s(φ∗(x
∗, T ∗y∗)− φ∗(x∗, y∗)) ≤ kφ∗(y∗, T ∗y∗) + `φ∗(T

∗y∗, y∗)

for any y∗ ∈ J(C). From (2.1)

s(φ(J−1T ∗y∗, J−1x∗)− φ(J−1y∗, J−1x∗))
≤ kφ(J−1T ∗y∗, J−1y∗) + `φ(J−1y∗, J−1T ∗y∗)

for any y∗ ∈ J(C). Since J−1T ∗ = TJ−1, putting y = J−1y∗, we obtain

s(φ(Ty, J−1x∗)− φ(y, J−1x∗)) ≤ `φ(y, Ty) + kφ(Ty, y).

Therefore J−1x∗ ∈ B`,k,s(T ) and hence A ∗k,`,s(T
∗) = J(B`,k,s(T )).

B∗k,`,s(T
∗) = J(A`,k,s(T )) can be shown similarly.

Furthermore, by Lemma 3.3 J(Bk,`,s(T )) is closed and convex and by Lemma 3.4 J(Ak,`,s(T )) is closed.

Lemma 3.6. Let E be a strictly convex and smooth Banach space, let C be a nonempty subset of E, let T
be a mapping from C into E and let k, `, s ∈ R. Then the following hold.

Condition 3.7. 0000

(1) If (k, `) ∈ (−∞, s]× (−∞, 0] \ {(s, 0)}, then C ∩Ak,`,s(T ) is a subset of the set of all �xed points of T ;

(2) If (k, `) ∈ (−∞, 0]× (−∞, s] \ {(0, s)}, then C ∩Bk,`,s(T ) is a subset of the set of all �xed points of T .

Proof. Let x ∈ C ∩Ak,`,s(T ). Then (3.1) holds for any y ∈ C. Putting y = x, we obtain (s− k)φ(x, Tx)−
`φ(Tx, x) ≤ 0. If (k, `) ∈ (−∞, s]× (−∞, 0] \ {(s, 0)}, then by (T13) we obtain x = Tx.

Let x ∈ C ∩Bk,`,s(T ). Then (3.2) holds for any y ∈ C. Putting y = x, we obtain −kφ(x, Tx) + (s −
`)φ(Tx, x) ≤ 0. If (k, `) ∈ (−∞, 0]× (−∞, s] \ {(0, s)}, then by (T13) we obtain x = Tx.
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Lemma 3.8. Let E∗ be a strictly convex and smooth topological dual space of a Banach space, let C∗ be a
nonempty subset of E∗, let T ∗ be a mapping from C∗ into E∗ and let k, ` ∈ R. Then the following hold.

Condition 3.9. 0000

(1) If (k, `) ∈ (−∞, s]× (−∞, 0] \ {(s, 0)}, then C ∩A ∗k,`,s(T
∗) is a subset of the set of all �xed points of T ∗;

(2) If (k, `) ∈ (−∞, 0]× (−∞, s] \ {(0, 1)}, then C ∩B∗k,`,s(T
∗) is a subset of the set of all �xed points of T ∗.

Proof. Let x∗ ∈ C∗ ∩ A ∗k,`,s(T
∗). Then (3.4) holds for any y∗ ∈ C∗. Putting y∗ = x∗, by we obtain

(s − k)φ∗(x∗, T ∗x∗) − `φ∗(T ∗x∗, x∗) ≤ 0. If (k, `) ∈ (−∞, s] × (−∞, 0] \ {(s, 0)}, then by (T13)∗ we obtain
x∗ = T ∗x∗.

Let x∗ ∈ C∗ ∩ B∗k,`,s(T
∗). Then (3.5) holds for any y∗ ∈ C∗. Putting y∗ = x∗, by we obtain

−kφ∗(x∗, T ∗x∗) + (s − `)φ∗(T
∗x∗, x∗) ≤ 0. If (k, `) ∈ (−∞, 0] × (−∞, s] \ {(0, s)}, then by (T13)∗ we

obtain x∗ = T ∗x∗.

4. Mean convergence theorems

Theorem 4.1. Let E be a uniformly convex Banach space with a Fréchet di�erentiable norm, let C be a
nonempty subset of E and let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontraction
from C into itself. Suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0,

and suppose that

A−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)(T ) ⊂ B(T ) 6= ∅.

Let R be the sunny generalized nonexpansive retraction of E onto B(T ). Then for any x ∈ C,

Snx
def
=

1

n

n−1∑
k=0

T kx

is weakly convergent to an element

q ∈ A−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)(T ),

where q = limn→∞RT
nx.

Additionally, if C is closed and convex and one of the following holds:

Condition 4.2. 0000

(1) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) > 0 and λε1 + (1− λ)ζ2 ≥ 0;

(2) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) ≥ 0 and λε1 + (1− λ)ζ2 > 0,

then q is a �xed point of T .

Proof. By the assumption E is strictly convex and smooth, and by (T9) E is re�exive. By Lemma 3.2 B(T )
is closed and by Lemma 3.5 J(B(T )) is closed and convex. Therefore by Lemmas 2.7 and 2.4 there exists a
unique sunny nonexpansive retraction R of E onto B(T ).
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By Lemma 2.12 T is a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+(1−λ)β2, (1−λ)γ1+λβ2,
λβ1+(1−λ)γ2, (1−λ)δ1+λδ2, λδ1+(1−λ)δ2, (1−λ)ε1+λζ2, λζ1+(1−λ)ε2, (1−λ)ζ1+λε2, λε1+(1−λ)ζ2)-
generalized pseudocontraction. From (3.3) we obtain

((1− λ)α1 + λα2)φ(Tx, Ty) + (λα1 + (1− λ)α2)φ(Ty, Tx)

+((1− λ)β1 + λγ2)φ(x, Ty) + (λγ1 + (1− λ)β2)φ(Ty, x)
+((1− λ)γ1 + λβ2)φ(Tx, y) + (λβ1 + (1− λ)γ2)φ(y, Tx)
+((1− λ)δ1 + λδ2)φ(x, y) + (λδ1 + (1− λ)δ2)φ(y, x)
+((1− λ)ε1 + λζ2)φ(Tx, x) + (λζ1 + (1− λ)ε2)φ(x, Tx)
+((1− λ)ζ1 + λε2)φ(y, Ty) + (λε1 + (1− λ)ζ2)φ(Ty, y)

= ((1− λ)α1 + λα2)φ(Tx, Ty) + (λα1 + (1− λ)α2)φ(Ty, Tx)

−((1− λ)α1 + λα2)φ(x, Ty)

+((1− λ)(α1 + β1) + λ(α2 + γ2))(φ(x, y) + φ(y, Ty) + 2〈x− y, Jy − JTy〉)
+(λγ1 + (1− λ)β2)φ(Ty, x)
+((1− λ)γ1 + λβ2)φ(Tx, y) + (λβ1 + (1− λ)γ2)φ(y, Tx)
+((1− λ)δ1 + λδ2)φ(x, y) + (λδ1 + (1− λ)δ2)φ(y, x)
+((1− λ)ε1 + λζ2)φ(Tx, x) + (λζ1 + (1− λ)ε2)φ(x, Tx)
+((1− λ)ζ1 + λε2)φ(y, Ty) + (λε1 + (1− λ)ζ2)φ(Ty, y)

= ((1− λ)α1 + λα2)φ(Tx, Ty) + (λα1 + (1− λ)α2)φ(Ty, Tx)

−((1− λ)α1 + λα2)φ(x, Ty) + (λγ1 + (1− λ)β2)φ(Ty, x)
+((1− λ)γ1 + λβ2)φ(Tx, y) + (λβ1 + (1− λ)γ2)φ(y, Tx)
+((1− λ)(α1 + β1 + δ1) + λ(α2 + γ2 + δ2))φ(x, y)

+(λδ1 + (1− λ)δ2)φ(y, x)
+((1− λ)ε1 + λζ2)φ(Tx, x) + (λζ1 + (1− λ)ε2)φ(x, Tx)
+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ(y, Ty)

+(λε1 + (1− λ)ζ2)φ(Ty, y)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈x− y, Jy − JTy〉.

Since

(1− λ)(α1 + β1 + δ1) + λ(α2 + γ2 + δ2) ≥ −((1− λ)γ1 + λβ2);

λγ1 + (1− λ)β2 ≥ −(λα1 + (1− λ)α2);

λδ1 + (1− λ)δ2 ≥ −(λβ1 + (1− λ)γ2);
(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0,

we obtain

((1− λ)α1 + λα2)φ(Tx, Ty) + (λα1 + (1− λ)α2)φ(Ty, Tx)

−((1− λ)α1 + λα2)φ(x, Ty) + (λγ1 + (1− λ)β2)φ(Ty, x)
+((1− λ)γ1 + λβ2)φ(Tx, y) + (λβ1 + (1− λ)γ2)φ(y, Tx)
+((1− λ)(α1 + β1 + δ1) + λ(α2 + γ2 + δ2))φ(x, y)

+(λδ1 + (1− λ)δ2)φ(y, x)
+((1− λ)ε1 + λζ2)φ(Tx, x) + (λζ1 + (1− λ)ε2)φ(x, Tx)
+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ(y, Ty)
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+(λε1 + (1− λ)ζ2)φ(Ty, y)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈x− y, Jy − JTy〉
≥ ((1− λ)α1 + λα2)(φ(Tx, Ty)− φ(x, Ty))
+(λα1 + (1− λ)α2)(φ(Ty, Tx)− φ(Ty, x))
+((1− λ)γ1 + λβ2)(φ(Tx, y)− φ(x, y))
+(λβ1 + (1− λ)γ2)(φ(y, Tx)− φ(y, x))
+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ(y, Ty)

+(λε1 + (1− λ)ζ2)φ(Ty, y)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈x− y, Jy − JTy〉.

Therefore

((1− λ)α1 + λα2)(φ(Tx, Ty)− φ(x, Ty))
+(λα1 + (1− λ)α2)(φ(Ty, Tx)− φ(Ty, x))
+((1− λ)γ1 + λβ2)(φ(Tx, y)− φ(x, y))
+(λβ1 + (1− λ)γ2)(φ(y, Tx)− φ(y, x))
+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ(y, Ty)

+(λε1 + (1− λ)ζ2)φ(Ty, y)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈x− y, Jy − JTy〉
≤ 0.

Replacing x by T kx, we obtain

((1− λ)α1 + λα2)(φ(T
k+1x, Ty)− φ(T kx, Ty))

+(λα1 + (1− λ)α2)(φ(Ty, T
k+1x)− φ(Ty, T kx))

+((1− λ)γ1 + λβ2)(φ(T
k+1x, y)− φ(T kx, y))

+(λβ1 + (1− λ)γ2)(φ(y, T k+1x)− φ(y, T kx))
+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ(y, Ty)

+(λε1 + (1− λ)ζ2)φ(Ty, y)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈T kx− y, Jy − JTy〉
≤ 0.

Summing up these inequalities for k = 0, . . . , n− 1 and dividing by n, we obtain

(1− λ)α1 + λα2

n
(φ(Tnx, Ty)− φ(x, Ty))

+
λα1 + (1− λ)α2

n
(φ(Ty, Tnx)− φ(Ty, x))

+
(1− λ)γ1 + λβ2

n
(φ(Tnx, y)− φ(x, y))

+
λβ1 + (1− λ)γ2

n
(φ(y, Tnx)− φ(y, x))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ(y, Ty)

+(λε1 + (1− λ)ζ2)φ(Ty, y)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈Snx− y, Jy − JTy〉
≤ 0.
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Since B(T ) 6= ∅, we obtain

φ(Tnx, y) ≤ φ(Tn−1x, y)

for any x ∈ C, for any y ∈ B(T ) and for any n ∈ N. Therefore {Tnx} is bounded and hence {Snx} is also
bounded. Therefore there exists a subsequence {Snix} of {Snx} such that {Snix} is weakly convergent to
an element p ∈ E. Replacing n by ni, we obtain

(1− λ)α1 + λα2

ni
(φ(Tnix, Ty)− φ(x, Ty))

+
λα1 + (1− λ)α2

ni
(φ(Ty, Tnix)− φ(Ty, x))

+
(1− λ)γ1 + λβ2

ni
(φ(Tnix, y)− φ(x, y))

+
λβ1 + (1− λ)γ2

ni
(φ(y, Tnix)− φ(y, x))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ(y, Ty)

+(λε1 + (1− λ)ζ2)φ(Ty, y)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈Snix− y, Jy − JTy〉
≤ 0.

Putting i→∞, we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ(y, Ty) + (λε1 + (1− λ)ζ2)φ(Ty, y)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈p− y, Jy − JTy〉
≤ 0.

From (3.3) we obtain

((1− λ)ζ1 + λε2)φ(y, Ty) + (λε1 + (1− λ)ζ2)φ(Ty, y)
+((1− λ)(α1 + β1) + λ(α2 + γ2))(φ(p, Ty)− φ(p, y))
≤ 0.

Therefore we obtain

((1− λ)(α1 + β1) + λ(α2 + γ2))(φ(p, Ty)− φ(p, y))
≤ −((1− λ)ζ1 + λε2)φ(y, Ty)− (λε1 + (1− λ)ζ2)φ(Ty, y)

and hence

p ∈ A−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)(T ).

Next by Lemma 2.5 we obtain

〈T kx−RT kx, Jy − JRT kx〉 ≤ 0

for any y ∈ B(T ). By Lemma 2.11 for any x ∈ C, {RTnx} is strongly convergent to an element in
B(T ). Let q = limn→∞RT

nx. Since {Tnx} is bounded, by Lemma 2.5 {RTnx} is also bounded. Putting
K = maxn∈N∪{0},x∈C ‖Tnx−RTnx‖, we obtain

〈T kx−RT kx, Jy − Jq〉 ≤ 〈T kx−RT kx, JRT kx− Jq〉
≤ ‖T kx−RT kx‖ · ‖JRT kx− Jq‖
≤ K‖JRT kx− Jq‖.
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Summing up these inequalities for k = 0, . . . , n− 1 and dividing by n, we obtain〈
Snx−

1

n

n−1∑
k=0

RT kx, Jy − Jq

〉
≤ K

n

n−1∑
k=0

‖JRT kx− Jq‖.

Since {Snix} is weakly convergent to p and by (T11) J is norm-to-norm continuous, we obtain

〈p− q, Jy − Jq〉 ≤ 0.

Since A−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)(T ) ⊂ B(T ), putting y = p, from (3.3) we obtain

0 ≤ 2〈p− q, Jq − Jp〉
= −φ(p, q)− φ(q, p)

and by (T13) we obtain p = q. Therefore {Snx} is weakly convergent to q.
Additionally, if C is closed and convex and (1) or (2) holds, then {Snx} ⊂ C and hence q ∈ C. By

Lemma 3.6 q is a �xed point of T .

Theorem 4.3. Let E∗ be a uniformly convex topological dual space with a Fréchet di�erentiable norm,
let C∗ be a nonempty subset of E∗ and let T ∗ be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-*-generalized
pseudocontraction from C∗ into itself. Suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0,

and suppose that

A ∗−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)
(T ∗) ⊂ B∗0,0(T

∗) 6= ∅.

Let R∗ be the sunny generalized nonexpansive retraction of E∗ onto B∗0,0(T
∗). Then for any x∗ ∈ C∗,

S∗nx
∗ def
=

1

n

n−1∑
k=0

(T ∗)kx∗

is weakly convergent to an element

q∗ ∈ A ∗−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)
(T ∗),

where q∗ = limn→∞R
∗(T ∗)nx∗.

Additionally, if C∗ is closed and convex and one of the following holds:

Condition 4.4. 0000

(1) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) > 0 and λε1 + (1− λ)ζ2 ≥ 0;

(2) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) ≥ 0 and λε1 + (1− λ)ζ2 > 0,

then q∗ is a �xed point of T ∗.
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Proof. By (T11) and (T12) E is a strictly convex, re�exive and smooth Banach space. Therefore φ∗ is
well-de�ned. From (2.1) and (3.3) we obtain

φ∗(u
∗, v∗) = φ∗(u

∗, w∗) + φ∗(w
∗, v∗) + 2〈J−1w∗ − J−1v∗, u∗ − w∗〉. (4.1)

Therefore we obtain similarly to the proof of Theorem 4.1

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))φ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)φ∗(T ∗y∗, y∗)
+2((1− λ)(α1 + β1) + λ(α2 + γ2))〈J−1y∗ − J−1T ∗y∗, p∗ − y∗〉
≤ 0

for any x∗, y∗ ∈ C∗, where p∗ ∈ E∗ is a weak limit of a subsequence {S∗ni
x∗} of {S∗nx∗}. From (4.1) we obtain

((1− λ)ζ1 + λε2)φ∗(y
∗, T ∗y∗) + (λε1 + (1− λ)ζ2)φ∗(T ∗y∗, y∗)

+((1− λ)(α1 + β1) + λ(α2 + γ2))(φ∗(p
∗, T ∗y∗)− φ∗(p∗, y∗))

≤ 0.

Therefore we obtain

((1− λ)(α1 + β1) + λ(α2 + γ2))(φ∗(p
∗, T ∗y∗)− φ∗(p∗, y∗))

≤ −((1− λ)ζ1 + λε2)φ∗(y
∗, T ∗y∗)− (λε1 + (1− λ)ζ2)φ∗(T ∗y∗, y∗)

and hence

p∗ ∈ A ∗−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)
(T ∗).

Next by Lemma 2.5 we obtain

〈J−1y∗ − J−1R∗(T ∗)kx∗, (T ∗)kx∗ −R∗(T ∗)kx∗〉 ≤ 0

for any y∗ ∈ B∗0,0(T
∗). By Lemma 2.11 for any x∗ ∈ C∗, {R∗(T ∗)nx∗} is strongly convergent to an element in

B∗0,0(T
∗). Putting q∗ = limn→∞R

∗(T ∗)nx∗ and K = maxn∈N∪{0},x∗∈C∗ ‖(T ∗)nx∗ −R∗(T ∗)nx∗‖, we obtain

〈J−1y∗ − J−1q∗, (T ∗)kx∗ −R∗(T ∗)kx∗〉
≤ 〈J−1R∗(T ∗)kx∗ − J−1q∗, (T ∗)kx∗ −R∗(T ∗)kx∗〉
≤ ‖J−1R∗(T ∗)kx∗ − J−1q∗‖ · ‖(T ∗)kx∗ −R∗(T ∗)kx∗‖
≤ K‖J−1R∗(T ∗)kx∗ − J−1q∗‖.

Summing up these inequalities for k = 0, . . . , n− 1 and dividing by n, we obtain〈
J−1y∗ − J−1q∗, S∗nx∗ −

1

n

n−1∑
k=0

R∗(T ∗)kx∗

〉
≤ K

n

n−1∑
k=0

‖J−1R∗(T ∗)kx∗ − J−1q∗‖.

Since {S∗ni
x∗} is weakly convergent to p∗ and by (T9) J−1 is norm-to-norm continuous, we obtain

〈J−1y∗ − J−1q∗, p∗ − q∗〉 ≤ 0.

Since A ∗−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)
(T ∗) ⊂ B∗0,0(T

∗), putting y∗ = p∗, from (3.3) we
obtain

0 ≤ 2〈J−1y∗ − J−1q∗, p∗ − q∗〉
= −φ∗(p∗, q∗)− φ∗(q∗, p∗)

and by (T13)∗ we obtain p∗ = q∗. Therefore {S∗nx∗} is weakly convergent to q∗.
Additionally, if C∗ is closed and convex and (1) or (2) holds, then {S∗nx∗} ⊂ C∗ and hence q∗ ∈ C∗. By

Lemma 3.8 q∗ is a �xed point of T ∗.
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By Theorem 4.3 we obtain the following.

Theorem 4.5. Let E be a strictly convex and re�exive Banach space with Kadec-Klee property and a uni-
formly Fréchet di�erentiable norm, let C be a nonempty subset of E and let T be an (α1, α2, β1, β2, γ1, γ2,
δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontraction from C into itself. Suppose that there exists λ ∈ [0, 1] such
that

(1− λ)(α2 + β2 + γ2 + δ2) + λ(α1 + β1 + γ1 + δ1) ≥ 0;

λ(α2 + γ2) + (1− λ)(α1 + β1) ≥ 0;

λ(β2 + δ2) + (1− λ)(γ1 + δ1) ≥ 0;

(1− λ)ε2 + λζ1 ≥ 0;

λζ2 + (1− λ)ε1 ≥ 0,

suppose that

B−(λε2+(1−λ)ζ1),−((1−λ)ζ2+λε1),(1−λ)(α2+β2)+λ(α1+γ1)(T ) ⊂ A(T ) 6= ∅

and suppose that J−1 is weakly sequentially continuous. Let R∗ be the sunny generalized nonexpansive re-
traction of E∗ onto J(A(T )). Then for any x ∈ C,

Snx
def
= J−1

(
1

n

n−1∑
k=0

JT kx

)
is weakly convergent to an element

q ∈ B−(λε2+(1−λ)ζ1),−((1−λ)ζ2+λε1),(1−λ)(α2+β2)+λ(α1+γ1)(T ),

where q = limn→∞ J
−1R∗JTnx.

Additionally, if J(C) is closed and convexx and one of the following holds:

Condition 4.6. 0000

(1) (1− λ)(α2 + β2 + ζ2) + λ(α1 + γ1 + ε1) > 0 and λε2 + (1− λ)ζ1 ≥ 0;

(2) (1− λ)(α2 + β2 + ζ2) + λ(α1 + γ1 + ε1) ≥ 0 and λε2 + (1− λ)ζ1 > 0,

then q is a �xed point of T .

Proof. By (T11) and (T12) E∗ is uniformly convex with a Fréchet di�erentiable norm. Let T ∗ = JTJ−1.
Then T ∗ is a mapping from J(C) into itself. Putting x∗ = Jx and y∗ = Jy, By Lemma 2.14 T ∗ is an (α2,
α1, β2, β1, γ2, γ1, δ2, δ1, ε2, ε1, ζ2, ζ1)-*-generalized pseudocontraction from J(C) into itself. Since (T ∗)nx∗ =
JTnx, ‖(T ∗)nx∗‖ = ‖JTnx‖ = ‖Tnx‖ and hence {(T ∗)nx∗ | n ∈ N ∪ {0}} is bounded. By Lemma 3.5

A ∗−((1−λ)ζ2+λε1),−(λε2+(1−λ)ζ1,(1−λ)(α2+β2)+λ(α2+γ2)
(T ∗)

= J
(
B−(λε2+(1−λ)ζ1),−((1−λ)ζ2+λε1),(1−λ)(α2+β2)+λ(α1+γ1)(T )

)
,

B∗0,0(T
∗) = J(A(T )).

By Theorem 4.3 for any x ∈ C,

S∗nx
∗ =

1

n

n−1∑
k=0

(T ∗)kx∗

is weakly convergent to an element

q∗ ∈ J
(
B−(λε2+(1−λ)ζ1),−((1−λ)ζ2+λε1),(1−λ)(α2+β2)+λ(α1+γ1)(T )

)
,
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where q∗ = limn→∞R
∗JTnx. Since J−1 is weakly sequentially continuous and by (T9) J−1 is norm-to-norm

continuous,

Snx = J−1S∗nJx = J−1

(
1

n

n−1∑
k=0

JT kx

)
is weakly convergent to the element

q = J−1q∗ ∈ B−(λε2+(1−λ)ζ1),−((1−λ)ζ2+λε1),(1−λ)(α2+β2)+λ(α1+γ1)(T ),

where q = limn→∞ J
−1R∗JTnx.

Additionally, if J(C) is closed and convex and (1) or (2) holds, then q∗ is a �xed point of T ∗ and hence
q = J−1q∗ is a �xed point of T .

5. Remark and example

In the proof using the concept of acute or skew-acute point we needed the assumption (1−λ)(α1+β1)+
λ(α2 + γ2) > 0 or (1− λ)(α2 + β2) + λ(α1 + γ1) > 0 in addition to

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0,

or

(1− λ)(α2 + β2 + γ2 + δ2) + λ(α1 + β1 + γ1 + δ1) ≥ 0;

λ(α2 + γ2) + (1− λ)(α1 + β1) ≥ 0;

λ(β2 + δ2) + (1− λ)(γ1 + δ1) ≥ 0;

(1− λ)ε2 + λζ1 ≥ 0;

λζ2 + (1− λ)ε1 ≥ 0;

see [14].
However the assumption (1 − λ)(α1 + β1) + λ(α2 + γ2) > 0 or (1 − λ)(α2 + β2) + λ(α1 + γ1) > 0 is

not needed [17]. Therefore we wondered if the condition was unnecessary. In this paper we generalize the
concept of acute point and by using the concept of generalized acute and skew-acute point we do not need
the assumptions (1− λ)(α1 + β1) + λ(α2 + γ2) > 0 and (1− λ)(α2 + β2) + λ(α1 + γ1) > 0.

We consider an example.

Example 5.1. Let E be a uniformly convex Banach space with a Fréchet di�erentiable norm, let C be a
nonempty subset of E and let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontraction
from C into itself. Suppose that

α1, α2 ∈ R;
β1 = γ1 = −α1; δ1 = α1;

β2 = γ2 = −α2; δ2 = α2;

ε1, ε2 ∈ [0,∞); ζ1 = ε2; ζ2 = ε1,

and suppose that

A−((1−λ)ζ1+λε2),−(λε1+(1−λ)ζ2),(1−λ)(α1+β1)+λ(α2+γ2)(T ) ⊂ B(T ) 6= ∅.
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Then for any λ ∈ [0, 1] we obtain

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) = 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) = 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) = 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0.

Furthermore

(1− λ)(α1 + β1) + λ(α2 + γ2) = (1− λ)(α2 + β2) + λ(α1 + γ1) = 0.

Unfortunately, by the previous theorem [14, Theorem 4.1] we cannot show the mean convergence theorem to
acute point, and of course, the mean convergence theorem to �xed point. However, by using Theorem 4.1
we can show the mean convergence theorem to generalized acute point and the mean convergence theorem to
�xed point.
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