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Abstract. We remind two facts for topological spaces. The one is that in a

Hausdorff space X each convergent sequence has a unique limit. This allows

us to have a function from the set of all convergent sequences in X to X.
Another is that in the first countable spaces, some topological objects such

as open subsets, closed subsets, closures and interiors of the sets, continuous

functions and many others can be defined in terms of convergent sequences.
In this paper we compare these notions with their sequential versions in

topological spaces. We will take the product spaces into account and give
some results.

1. Introduction

Convergent sequences are important not only in pure mathematics but also in
some others such as information theory, biological science and dynamical systems.

The convergent sequences enable us to give sequential definitions of open and
closed subsets; and then to do these for some other topological concepts defined in
terms of open and closed subsets. For example continuous maps, connectedness and
compactness are among those notions. Sequential definitions of topological objects
give us a relief in some proofs and solutions of the problems. Hence many authors
have been in afford to find the sequential definitions of some topological objects.

In addition to the convergent sequences, in the literature there exist some vari-
eties of other different types of convergences. The readers are referred for example
to a large number of the works [7], Posner [24], Iwinski [17], Srinivasan [25], Antoni

[2], Antoni and Salat [3], Spigel and Krupnik [26], Öztürk [27], Savaş and Das [28],
Savaş [29], Borsik and Salat [5], [4] [13], Di Maio and Kočinac [19].

Connor and Grosse-Erdmann in [14] replacing the sequential convergence with a
function defined on a subspace of the real sequences introduced G-methods. Then
following this, Çakallı studied G- continuity in [10] (see also [15] and [11] for some
other types of continuities), G-compactness in [12] and the G-connectedness in [9]
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(see also [8]). Mucuk and Şahan in [23] considered the notions of G-open subsets
and G-neighbourhoods together with some extra properties of G-continuities.

Lin and Liu in [18] extended G-methods to arbitrary sets rather than topological
spaces and presented G-hulls, G-closures, G-kernels and G-interiors. Mucuk and
Çakallı recently improved G-connectedness in [21] and G-compactness in [22] for the
topological groups with operations which generalises topological groups [6]. The au-
thors in the paper [1] extend these ideas to the direction of neutrosophic topological
spaces. We refer [20] and [16] for some sequential definitions and discussions.

In this paper we give an exposition of sequential definitions of some topological
notions in product spaces.

We acknowledge that this paper forms some parts of thesis [30].

2. Preliminaries

Let X be a topological space. We use the boldface letters x, y, ... to denote the
sequences x = (xn), y = (yn), ... of the terms in X; and s(X) and c(X) respectively
the sets of all sequences and convergent sequences in X. A sequence x = (xn) is
said to be convergent to ` ∈ X when any open neighbourhood U of a ∈ X includes
almost all terms of x , that means, except for a finite number of terms, all terms
stay in U .

Let A be a subset of X and x ∈ X. The point x ∈ X is said to be in the
sequentially hull of A if there exists a sequence x = (xn) in A with limit x. The
sequentially hull of A is denoted by [A]s and A is said to be sequentially closed
if [A]s ⊆ A. Hence A is not sequentially closed whenever there exists a sequence
x = (xn) in A with a limit ` which is not in A.

We note that for a ∈ A, the constant sequence a = (a, a, . . . ) has limit a and
therefore we have that A ⊆ [A]s. Hence A is sequentially-closed if and only if
[A]s = A. A subset A ⊆ X is called sequentially open if X \A is sequentially closed.
A subset U ⊆ X is a sequentially neighborhood of a if there exists a sequentially
open subset A of X such that a ∈ A ⊆ U .

The sequentially closure of A, denoted by A
s
, is defined to be the intersection

of all sequentially closed subsets containing A, which is also a sequentially closed
subset, because the intersection of squentially closed subsets is also sequentially
closed. If A ⊆ K and K is a sequentially closed subset, then [A]s ⊆ [K]s ⊆ K.
Taking the intersection of all sequentially closed subsets including A, we conclude
that [A]s ⊆ A

s
.

We remind that a point a in first countable space X is an interior point of the
subset A if any sequence x = (xn) converging to a is almost in A. Therefore we
define a point a in any topological space to be sequential interior point of A and
write a ∈ A0s whenever any sequence x = (xn) with limit a is almost in A or
equivalently there is no any sequence x = (xn) in X \A with limit a.

We say that A is sequentially open if A ⊆ A0s. By the fact that the constant
sequence (xn) = (a, a, . . . ) converges to a, one can see that A0s ⊆ A and therefore
A is sequentially open when A ⊆ A0s or equivalently A0s = A.

3. Main Results

Let X ×Y be the product space and A×B a subset of X ×Y . A point (x, y) of
X ×Y is said to be in the hull of A×B if there exists a sequence (an, bn) in A×B
with limit (x, y). The set of all hull points of A × B is denoted by [A×B]s. The



ABOUT SEQUENTIALLY OPEN AND CLOSED SUBSETS IN PRODUCT SPACES 43

subset A×B is sequentially closed if [A×B]s ⊆ A×B. We can check that for the
subsets A and B in X × Y , we have [A×B]s = [A]s × [B]s

Theorem 3.1. For a topological space X; and the subsets A,B ⊆ X, we have the
following

(i) [A ∩B]s ⊆ [A]s ∩ [B]s.
(ii) [A ∪B]s = [A]s ∪ [B]s.

Proof. (i) For an x ∈ [A ∩ B]G, there exists a sequence x = (xn) of the terms in
A ∩ B with the limit x. Hence the sequence x is in both A and B; and therefore
x ∈ [A]G and x ∈ ∩[B]G, which means x ∈ [A]s ∪ [B]s.

(ii) If x ∈ [A∪B]s, then there exists a sequence x = (xn) in A∪B with limit x.
Hence we can choose either a subsequence a = (an) in A or a subsequence b = (bn)
in B with limit x. Otherwise the sequence x = (xn) is almost in X \A and X \B;
and therefore x = (xn) is almost in X \A) ∩X \B = X \ (A ∪B). This concludes
that x ∈ [A]s ∪ [B]s.

Let x ∈ [A]s ∪ [B]s. Then either there exists a sequence a = (an) in A or a
sequence b = (bn) in B with limit x. Hence we can choose a sequence x = (xn) in
A ∪B with limit x; and therefore x ∈ [A ∪B]G . �

As a result of this theorem we can say that the finite intersections and unions of
sequentially closed subsets are also sequentially closed.

Theorem 3.2. For a topological space X and subsets A,B ⊆ X, we have the
following:

(a) A×B ⊆ [A×B]s ⊆ A×B
s
;

(b) A×B is sequentially closed if and only if [A×B]s ⊆ A×B;
(c) A×B is sequentially closed if and only if [A×B]s = A×B;
(d) If A and B are closed, then it is A×B is sequentially closed.
(e) A×B is sequentially closed if and only each convergence sequence in A×B

has a limit in A×B.

Proof. (a) For any point (a, b) ∈ A×B, the constant sequence (an, bn) = ((a, b), (a, b), . . . )
convergences to (a, b). Hence (a, b) ∈ [A × B]s. Further if (x, y) ∈ [A × B]s, there

exists a sequence (an, bn) in A×B which converges to (x, y). Hence (x, y) ∈ A×B
s
.

(b) This is just the definition of a sequentially closed subset.
(c) This is a direct result of (a) and (b).

(d) If A and B are closed, then A×B is closed and therefore A×B
s

= A×B.
Hence by (a) [A×B]s = A×B, that means A×B is sequentially closed.

(e) This is obvious by the definition of a sequentially closed subset. �

Example 3.3. If X × Y has co-countable topology, then a sequence (x,y) =
(xn, yn) converges to (a, b) if and only if the terms are almost (a, b). Hence all
subsets of X × Y are sequentially closed but not necessarily closed.

Theorem 3.4. Let X × Y be product topological spaces and let {Ai ×Bi | i ∈ I}
be a class of sets of X × Y . Then we have the following

(a)
⋃

i∈I [Ai ×Bi]
s ⊆ [

⋃
i∈I Ai ×Bi]

s.
(b) [

⋂
i∈I Ai ×Bi]

s ⊆
⋂

i∈I [Ai ×Bi]
s.

Proof. (a) If (x, y) ∈
⋃

i∈I [Ai ×Bi]
s, then (x, y) ∈ [Ai0 × Bi0 ]s for an i0 ∈ I and

therefore there is a sequence (an, bn) in Ai0 ×Bi0 with limit (x, y). That means we
have a sequence (an, bn) in

⋃
i∈I Ai ×Bi and therefore (x, y) ∈ [

⋃
i∈I Ai ×Bi]

s.
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(b) For (x, y) ∈ [
⋂

i∈I Ai ×Bi]
s, there exists a sequence (an, bn) in

⋂
i∈I Ai ×Bi

with limit (x, y). This means (an, bn) is a sequence in each Ai×Bi for i ∈ I. Hence
(x, y) ∈ [Ai ×Bi]

s, and therefore (x, y) ∈
⋂

i∈I [Ai ×Bi]
s.

�

Theorem 3.5. For a topological space X and the subsets A,B ⊆ X, we have the
following

(i) (A ∩B)0s = A0s ∩B0s.
(ii) A0s ∪B0s ⊆ (A ∪B)0s.

Proof. (i) If a ∈ (A ∩ B)0s and x = (xn) is a sequence with limit a, then the
sequence x = (xn) is almost in A ∩B. Hence (xn) is almost in both A and B and
therefore a ∈ A0

G ∩B0
G.

On the other hand if a ∈ A0s ∩ A0s and (xn) is a sequence with limit a, then
(xn) is almost in both A and B which means (xn) is almost in A∩B and therefore
a ∈ (A ∩B)0

s

(ii) Let a ∈ A0s ∪ B0s and let the sequence x = (xn) have the limit a. a ∈ A0s

means that the sequence x = (xn) is almost in A and similarly a ∈ B0s means that
the sequence x = (xn) is almost in B. Hence in both case the sequence is almost
in A ∪ B, which means that te sequence x = (xn) is almost in A then x is almost
either in A or in B; and therefore a ∈ (A ∪B)0

s

�

As a result of Theorem 3.5 we can state that finite intersections and unions of
sequentially open subsets are also sequentially open.

Theorem 3.6. If X is a topological space and A is a subset A ⊆ X, then we have
the following:

(a) (A×B)0 ⊆ (A×B)0
s ⊆ (A×B);

(b) A×B is sequentially open if and only if A×B ⊆ (A×B)0
s
;

(c) A×B is sequentially open if and only if A×B = (A×B)0
s
;

(d) If A and B are respectively open in X and Y , then (A × B) is sequentially
open.

Proof. (a) (A×B)0 is an open subset and therefore if (a, b) ∈ (A×B)0, then any
sequence converging to (a, b) stays almost in (A × B)0 ⊂ A × B. Hence (a, b) ∈
(A × B)0s. Moreover if (a, b) ∈ (A × B)0s, then any sequence converging to (a, b)
becomes almost in A×B. Since the constant sequence (an, bn) = ((a, b), (a, b), . . . )
has limit (a, b) and therefore (a, b) ∈ A×B.

(b) This is just the definition of sequentially open subset.
(c) This is a direct result of (a) and (b).
(d) If A and B are open, then A×B is open in X×Y ; and therefore (A×B)0 =

A × B. Hence by (a), we have that A × B = (A × B)0s which means A × B is
sequentially open. �

Example 3.7. Let us consider X × Y with the co-countable topology. Then any
subset A×B of X × Y is sequentially open but not necessarily open.

Theorem 3.8. For a product topological space X×Y , a subset A×B is sequentially
open if and only if X × Y \ (A×B) is sequentially closed.

Proof. Assuming A×B ⊆ (A×B)0s we need to prove that [X × Y \ (A×B)]s ⊆
X × Y \ (A×B). For (x, y) ∈ [X × Y \ (A×B)]s, there exists a sequence (xn, yn)
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in X × Y \ A × B with limit (x, y). Hence we have that (x, y) ∈ X × Y \ A × B.
Otherwise if (x, y) ∈ A × B, then by the assumption A × B ⊆ (A×B)0s we have
(x, y) ∈ (A×B)0s and therefore the sequence (xn, yn) is almost in A× B. This is
a contradiction since (xn, yn) is a sequence in X × Y \A×B.

On the other hand assume [X × Y \ A × B]s ⊆ X × Y \ A × B and prove that
A × B ⊆ (A×B)0s. If (a, b) ∈ A × B and (xn, yn) is a sequence with limit (a, b),
then the sequence (xn, yn) is almost in A×B. Otherwise there exists a subsequence
(xnk

, ynk
) of (xn, yn) of the terms of X×Y \A×B which has limit (a, b) and therefore

(a, b) ∈ [X × Y \A×B]s ⊆ X × Y \ A × B which means (a, b) ∈ X × Y \ A × B.
This is a contradiction because (a, b) ∈ A×B. �

Theorem 3.9. Assume that {Ai × Bi | i ∈ I} is a class of the subsets in product
space X × Y . Then the following are satisfied.

(a) (
⋂

i∈I Ai ×Bi)
0s ⊆

⋂
i∈I(Ai ×Bi)

0s.

(b)
⋃

i∈I(Ai ×Bi)
0s ⊆ (

⋃
i∈I Ai ×Bi)

0s.

Proof. (a) Assume that (a, b) ∈ (
⋂

i∈I Ai×Bi)
0s. We prove that (a, b) ∈

⋂
i∈I(Ai×

Bi)
0s. Let (an, bn) be a sequence with limit (a, b). By assumption we have that the

sequence (an, bn) is almost in
⋂

i∈I Ai×Bi, and therefore in Ai×Bi for each i ∈ I.

Hence (a, b) ∈ (Ai ×Bi)
0s for each i ∈ I and therefore (a, b) ∈

⋂
i∈I(Ai ×Bi)

0s.

(b) Assume (a, b) ∈
⋃

i∈I(Ai ×Bi)
0s and (an, bn) is a sequence with limit (a, b).

By assumption (a, b) ∈ (Ai0 × Bi0)0s for an i0 ∈ I and therefore the sequence
(an, bn) is almost in Ai0 × Bi0 . That means the sequence (an, bn) is almost in
(
⋃

i∈I Ai ×Bi) and therefore (a, b) ∈ (
⋃

i∈I Ai ×Bi)
0s. �

4. Conclusion

We call a topological space X sequentially connected if it has no any sequentially
open and closed proper subset. If X is not connected it has an open and closed
proper subset A ⊆ X. Hence A is sequentially open and closed; and therefore
X is not sequentially connected. Equivalently sequentially connected spaces are
connected, but the converse is not always true. For example if X is uncountable
set, then with co-countable X is connected but not sequentially connected, because
all subsets of X a both re sequentially open and closed.
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