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Abstract
In this study, we introduced the concepts of rough convergence, rough Cauchy double sequence, and
the set of rough limit points of a double sequence, as well as the rough convergence criteria associated
with this set in n-normed spaces. Later, we proved that this set is both closed and convex. Finally, we
presented the relationships between rough convergence and rough Cauchy double sequence in n-normed
spaces.
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1. Introduction
The concept of 2-normed spaces was initially introduced by Gähler [1, 2] in 1960. Since then, this concept has

been studied by many authors. Gürdal and Pehlivan [3] studied statistical convergence, statistical Cauchy sequence
and investigated some properties of statistical convergence in 2-normed spaces. Şahiner et al. [4] and Gürdal [5]
studied I-convergence in 2-normed spaces. Gürdal and Açık [6] investigated I-Cauchy and I∗-Cauchy sequences
in 2-normed spaces. Also Çakallı and Ersan [7] studied new types of continuity in 2-normed spaces. Misiak [8]
extended 2-normed spaces to n−normalized spaces. Since then, many researchers have studied this concept and
obtained various results [9, 10]. Later, some studies on 2-normed spaces were transferred to n−normed spaces.
For example, Reddy [11] investigated statistical convergence, the statistical Cauchy sequence and some properties
of statistical convergence in n−normed spaces. Hazarika and Savaş [12] introduced the concept of λ-statistical
convergence in n−normed spaces. They established some inclusion relations between the sets of statistically
convergent and λ−statistically convergent sequences in [12]. Gürdal and Şahiner [13] studied ideal convergence in
n−normed spaces and presented the main results.

In finite-dimensional normed spaces, Phu [14] was the first to present the concept of rough convergence.
Let (xi)i∈N be a sequence in some normed linear space (X, ‖.‖) and r be a nonnegative real number, then (xi)i∈N is
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said to be r−convergent to x∗, denoted by xi
r−→ x∗, provided that

∀ε > 0, ∃iε ∈ N : i ≥ iε ⇒ ‖xi − x∗‖ < r + ε.

Also, the sequence (xk) is said to be a rough Cauchy sequence satisfying

∀ε > 0,∃Kε ∈ N : k,m ≥ Kε ⇒ ‖xk − xm‖ < ρ+ ε

for ρ > 0. ρ is roughness degree of (xk). Shortly (xk) is called a rough Cauchy sequence. ρ is also a Cauchy degree
of (xk). In [14], he showed that the set LIMrx is bounded, closed, and convex, and he introduced the notion of
rough Cauchy sequence. He also investigated the relationships between rough convergence and other types of
convergence, as well as the dependence of LIMrx on the roughness degree r. In another paper [15] related to this
subject, he defined the rough continuity of linear operators and showed that every linear operator f : X → Y
is r−continuous at every point x ∈ X under the assumption dimY < ∞ and r > 0, where X and Y are normed
spaces. In [16], he extended the results given in [14] to infinite-dimensional normed spaces. Aytar [17] studied
rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained two
statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar
[18] studied that the r−limit set of the sequence is equal to the intersection of these sets and that r−core of the
sequence is equal to the union of these sets. In later times, Arslan and Dündar [19, 20] introduced the notions
of rough convergence, rough Cauchy sequence, and the set of rough limit points of a sequence and obtained the
rough convergence criteria associated with this set in 2-normed space first, then presented their work "On rough
convergence in 2-normed spaces and some properties." They [21, 22] also examined rough statistical convergence
and rough statistical cluster points in 2-normed spaces. Sunar and Arslan [23] introduced the concept of rough
convergence in n−normed spaces by combining the concepts of rough convergence and n−normed spaces.

Pringsheim [24, 25] developed the idea of convergence for double sequences. He gave some examples of the
convergence of double sequences with and without the usual convergence of rows and columns and defined the
P−limit. N and R are used throughout the paper to denote the sets of all positive integers and all real numbers,
respectively.

A double sequence (xtk)t,k∈N in some linear space (X, ‖.‖) is said to converge to a point L ∈ X in Pringsheim’s
sense, denoted by (xtk)→ L, if for any ε > 0, there exists a Kε ∈ N such that

‖xtk − L‖ < ε for all t, k ≥ Kε.

Further, a double sequence (xtk)t,k∈N is said to be a Cauchy double sequence if for any ε > 0, there exists a Kε ∈ N
such that

‖xtk − xmv‖ < ε for all t, k,m, v ≥ Kε.

Contrary to the property of convergence in ordinary sequences, it is an important problem that convergent double
sequences do not have to be bounded. Hardy [26] introduced the concept of regular convergence, which also
needed the convergence of the rows and columns of a pair in addition to the Pringsheim convergence. Hence, this
problem was eliminated. Later, many researchers used double sequences in their works in the area of summability
theory. This work can be found in [27–32]. Malik and Maity [33] defined and exaimed rough convergence of double
sequences, the set of r−limit points of double sequences and rough Cauchy double sequences. These concepts,
given by Malik and Maity [33], are as follows:

Let (xtk) be a double sequence in a normed space (X, ‖.‖) and r be a non-negative real number. (xtk) is

r−convergent to L in X, denoted by xtk
‖.‖−→r L if

∀ε > 0,∃Kε ∈ N : t, k ≥ Kε ⇒ ‖xtk − L‖ < r + ε.

A double sequence (xtk) is called a rough Cauchy sequence with roughness degree ρ if for any ε > 0, there exists
a Kε ∈ N such that

‖xtk − xmv‖ < ρ+ ε, for all t, k,m, v ≥ Kε.

Dündar and Çakan [34, 35] introduced the notions of rough I-convergence and the set of rough I-limit points of
a sequence and studied the notions of rough convergence and the set of rough limit points of a double sequence.
Also, Kişi and Dündar [36] presented the notion of rough I2−lacunary statistical limit set of a double sequence.
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By combining the concepts of rough convergence, double sequences and n−normed spaces, we introduce the
concept of rough convergence of double sequences in n−normed spaces. We obtain two convergence criteria
associated with the set of rough limit points of a double sequence in n−normed spaces. Later, we prove that
this set is both closed and convex. Finally, we investigate the relationships between a double sequence’s cluster
points and its rough limit points. The results and proof techniques presented in this paper are analogous to those
presented in Phu’s [14] paper. The concept of convergent double sequences given in our paper is used in the sense
of Pringsheim. So a convergent double sequence may not be bounded. Namely, the actual origin of most of these
results and proof techniques are the papers. The following theorems and results are extensions of the theorems and
results in [14]. Currently, we recall the idea of n−normed spaces, some fundamental definitions, and notations.(See
[8, 10, 11, 30, 33, 37]).

Definition 1.1. [37] Let n ∈ N and X be a real vector space of dimension d ≥ n (d may be infinite). A real-valued
function (X, ‖•, •, . . . , •‖) on Xn satisfying the following properties for all y, z, x1, x2, · · · , xn−1, xn ∈ X

(i) ‖x1, x2, · · · , xn‖ = 0 if and only if x1, x2 · · · , xn are linearly dependent,

(ii) ‖x1, x2, · · · , xn‖ is invariant under any permutation of x1, x2, · · · , xn,

(iii) ‖x1, x2, · · · , xn−1, αxn‖ = |α|‖x1, x2, · · · , xn−1, xn‖ for all α ∈ R,

(iv) ‖x1, x2, · · · , xn−1, y + z‖ ≤ ‖x1, x2, · · · , xn−1, y‖+ ‖x1, x2, · · · , xn−1, z‖

is called an n−norm on X, and the pair (X, ‖•, •, . . . , •‖) is called an n−normed space.

An example of an n−normed space is X = Rn equipped with the followig Euclidean n−norm:

Example 1.1.

‖x1, x2 · · · , xn−1, xn‖E =| det(xij) |= abs


∣∣∣∣∣∣∣∣
x11 . . . x1n
x21 . . . x2n

xn1 . . . xnn

∣∣∣∣∣∣∣∣


where xi = (xi1, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n.

In this study, we suppose X to be an n−normed space having dimension d; where 2 ≤ d <∞.

Definition 1.2. [37] A sequence (xk) in n−normed space (X, ‖•, •, . . . , •‖) is said to be convergent to L in X if

lim
k→∞

‖xk − L, z2, · · · , zn‖ = 0

for every z2, · · · , zn ∈ X . In such a case, we write lim
k→∞

xk = L and call L the limit of (xk).

Example 1.2. [23] Let x = (xk) = ( k
k+1 ,

1
k , . . . ,

1
k ), L = (1, 0, . . . , 0) and z = (z1, z2, . . . , zn). It is clear that (xk) is

convergent to L = (1, 0, . . . , 0) in n−normed space (X, ‖•, •, . . . , •‖).

Definition 1.3. [37] A sequence (xk) in n−normed space (X, ‖•, •, . . . , •‖) is said to be a Cauchy sequence in X if
for every ε > 0, there exists a Kε ∈ N such that

‖xk − xm, z2, z3, . . . , zn‖ < ε

for all k,m ≥ Kε and every z2, z3, . . . , zn ∈ X.

Definition 1.4. [23] Let (xk) be a sequence in n−normed linear space (X, ‖•, •, . . . , •‖) and r be a non-negative real
number. (xk) is said to be rough convergent (r-convergent) to L if

∀ε > 0,∃Kε ∈ N : k ≥ Kε ⇒ ‖xk − L, z2, · · · , zn‖ < r + ε

for every z2, · · · , zn ∈ X.
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Definition 1.5. [23] Let (xk) be a sequence in n−normed space (X, ‖•, •, . . . , •‖). (xk) is said to be a rough Cauchy
sequence satisfying

∀ε > 0,∃Kε ∈ N : k,m ≥ Kε ⇒ ‖xk − xm, z2, · · · , zn‖ < ρ+ ε

for ρ > 0 and every z2, · · · , zn ∈ X. ρ is roughness degree of (xk).

Definition 1.6. (cf. [33]) A double sequence (xtk) in (X, ‖•, •, . . . , •‖) is said to be bounded if there exists a non-
negative real number M such that ‖xtk, z2, · · · , zn‖ < M for all t, k ∈ N.

Definition 1.7. [30] A double sequence (xtk) in n−normed space (X, ‖•, •, . . . , •‖) is said to be convergent to L ∈ X
if for each ε > 0, there exists a Kε ∈ N such that

‖xtk − L, z2, · · · , zn‖ < ε

for all t, k ≥ Kε and every z2, · · · , zn ∈ X.

Definition 1.8. [30] A double sequence (xtk) in n−normed space (X, ‖•, •, . . . , •‖) is said to be a Cauchy sequence
if for each ε > 0, there exists a Kε ∈ N

‖xtk − xmv, z2, · · · , zn‖ < ε

for all t, k,m, v ≥ Kε and every z2, · · · , zn ∈ X.

2. Main results
We introduced the concepts of rough convergence, rough Cauchy double sequence and the set of rough limit

points set of a double sequence in this work and we obtained the rough convergence criteria associated with this
set in n-normed space. We later demonstrated that this set is both closed and convex. Finally, we investigated the
relationships between rough convergence and rough Cauchy double sequence in n-normed spaces.

Definition 2.1. Let (xtk) be a double sequence in n−normed space (X, ‖•, •, . . . , •‖) and r be a non-negative real

number. (xtk) is said to be rough convergent (r−convergent) to L denoted by xtk
‖•,•,...,•‖−→ r L if

∀ε > 0,∃Kε ∈ N : t, k ≥ Kε ⇒ ‖xtk − L, z2 · · · , zn‖ < r + ε (2.1)

for every z2, · · · , zn ∈ X .

If (2.1) holds, L is an r−limit point of (xtk), which is usually no more unique (for r > 0). So, we have to consider
the so-called r−limit set (or shortly r−limit) of (xtk) defined by

LIMr
nxtk := {L ∈ X : xtk

‖•,•,...,•‖−→ r L}. (2.2)

A double sequence (xtk) is said to be r−convergent if LIMr
nxtk 6= ∅. In this case, r is called the convergence degree

of the double sequence (xtk). For r = 0 we have the classical convergence in n−normed space again. But our proper
interest is the case r > 0. There are several reasons for this interest. For instance, since an originally convergent
double sequence (ytk) (with ytk → L) in n−normed space often cannot be determined (i.e., measured or calculated)
exactly, one has to do with an approximated double sequence (xtk) satisfying

‖xtk − ytk, z2, · · · , zn‖ ≤ r

for all n and every z2, z3, . . . , zn ∈ X , where r > 0 is an upper bound of approximation error. Then, (xtk) is no more
convergent in the classical sense, but for every z2, · · · zn ∈ X ,

‖xtk − L, z2, · · · , zn‖ ≤ ‖xtk − ytk, z2, · · · , zn‖+ ‖ytk − L, z2, · · · , zn‖ ≤ r + ‖ytk − L, z2, · · · , zn‖

implies that (xtk) is r−convergent in the sense of (2.1).

Example 2.1. The double sequence (xtk) = ((−1)tk, (−1)tk, . . . , (−1)tk) is not convergent in n-normed space
(X, ‖•, •, . . . , •‖), but it is rough convergent to L = (0, 0, . . . , 0) for every z2, · · · , zn ∈ X. It is clear that

LIMr
nxtk =

{
∅, if r < 1

[(−r,−r, . . . ,−r), (r, r, . . . , r)], otherwise.
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Sometimes we are interested in the set of r−limit points lying in a given subset D ⊂ X, which is called r−limit
in D and denoted by

LIMD,r
n xtk := {L ∈ D : xtk

‖•,•,...,•‖−→ r L}. (2.3)

It is clear that
LIMX,r

n xtk = LIMr
nxtk and LIMD,r

n xtk = D ∩ LIMr
nxtk.

First, let us transform some properties of classical convergence to rough convergence in n−normed space
(X, ‖•, •, . . . , •‖). It is well known if a sequence converges then its limit is unique. This property is maintained for
rough convergence with roughness degree r > 0, but only has the following analogy.

Theorem 2.1. Let (X, ‖•, •, . . . , •‖) be an n−normed space and consider a double sequence (xtk) ∈ X.We have diam(LIMr
nxtk) ≤

2r. In general, diam(LIMr
nxtk) has no smaller bound.

Proof. We have to show that

diam(LIMr
nxtk) = sup {‖x1 − x2, z2, · · · , zn‖ : x1, x2 ∈ LIMr

nxtk ≤ 2r} , (2.4)

where (X, ‖•, •, . . . , •‖) is an n−normed space and for every z2, · · · , zn ∈ X. Assume the contrary that

diam(LIMr
nxtk) > 2r.

Then, there exist x1, x2 ∈ LIMr
nxtk satisfying

d := ‖x1 − x2, z2, . . . , zn‖ > 2r

for every z2, z3, · · · , zn ∈ X. For an arbitrary ε ∈ (0, d−2r2 ), it follows from (2.1) and (2.2) that there is a Kε ∈ N such
that for t, k ≥ Kε,

‖xtk − x1, z2, . . . , zn‖ < r + ε and ‖xtk − x2, z2, . . . , zn‖ < r + ε

for every z2, z3, . . . , zn ∈ X. This implies

‖x1 − x2, z2, . . . , zn‖ ≤ ‖xtk − x1, z2, . . . , zn‖+ ‖xtk − x2, z2, . . . , zn‖
< 2(r + ε)

< 2r + 2(
d− 2r

2
)

= d

for every z2, z3, . . . , zn ∈ X , which conflicts with d = ‖x1 − x2, z2, . . . , zn‖. Hence, (2.4) must be true. Consider a
convergent double sequence (xtk) with lim

t,k→∞
xtk = L. Then, for

Br(L) := {x1 ∈ X : ‖x1 − L, z2, z3, . . . , zn‖ ≤ r}

it follows from

‖xtk − x1, z2, z3, . . . , zn‖ ≤ ‖xtk − L, z2, z3, . . . , zn‖+ ‖L− x1, z2, z3, . . . , zn‖
≤ ‖xtk − L, z2, z3, . . . , zn‖+ r

for every z2, z3, . . . , zn ∈ X and for x1 ∈ Br(L), from (2.1) and (2.2) that

LIMr
nxtk = Br(L).

Since diam(Br(L)) = 2r, this shows that in general the upper bound 2r of the diameter of an r−limit set cannot be
decreased anymore.

Obviously the uniqueness of limit (of classical convergence) can be regarded as a special case of latter property,
because if r = 0 then diam(LIMr

nxtk) = 2r = 0, that is, LIMr
nxtk is either empty or a singleton.

The following property shows an analogy between boundedness and rough convergence of a double sequence
in n−normed space.
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Theorem 2.2. Let (X, ‖•, •, . . . , •‖) be an n−normed space and consider a double sequence (xtk) ∈ X. If the double sequence
(xtk) is bounded then there exists an r ≥ 0, such that LIMr

nxtk 6= ∅.

LIM(xtvks ),r
n xtvks 6= ∅.

Proof. For every z2, z3, . . . , zn ∈ X if

s := sup{‖xtk, z2, z3, . . . , zn‖ : t, k ∈ N} <∞.

Then, LIMs
nxtk contains the origin of X. So, LIMr

nxtk 6= ∅.

The converse of the previous theorem might not hold true since a convergent double sequence is not always
bounded. Let’s now introduce the notion of loosely boundedness for n−normed spaces, which is analogous to [33].

Definition 2.2. A double sequence (xtk) in X is said to be loosely bounded if there exist an M ∈ R+ and a K ∈ N
such that ‖xtk, z2, z3, . . . , zn‖ < M for all t, k ≥ K.

Every bounded double sequence is obviously loosely bounded, but the converse is not true.

Theorem 2.3. Let (X, ‖•, •, . . . , •‖) be an n−normed space and consider a double sequence (xtk) ∈ X. The double sequence
(xtk) is loosely bounded if and only if there exists an r ≥ 0, such that LIMr

nxtk 6= ∅.

Proof. Let (xtk) be a loosely bounded double sequence. Then there exist an M ∈ R+ and a K ∈ N such that
‖xtk, z2, z3, . . . , zn‖ < M for all t, k ≥ K. Then, LIMM

n xtk contains the origin of X. So, LIMM
n xtk 6= ∅.

Conversely, let LIMr
nxtk 6= ∅ for some r ≥ 0. Let L ∈ LIMr

nxtk. We take ε = 1. Then there exists a Kε ∈ N such
that

‖xtk − L, z2, z3, . . . , zn‖ < r + 1 for all t, k ≥ Kε.

So, (xtk) is loosely bounded.

Now let (ti)i∈N and (kj)j∈N be two strictly increasing sequences of natural numbers. If (xtk)t,k∈N is a double
sequence in (X, ‖•, •, . . . , •‖), then we can define (xtikj )i,j∈N as a subsequence of (xtk)t,k∈N. (See, [33]).

Proposition 2.1. Let (X, ‖•, •, . . . , •‖) be an n−normed space and consider a double sequence (xtk) ∈ X. If (xtikj ) is a
subsequence of (xtk) then,

LIMr
nxtk ⊆ LIMr

nxtikj

in n-normed space (X, ‖•, •, . . . , •‖).

Proof. Let L ∈ LIMr
nxtk. Then for any ε > 0, there exists a Kε ∈ N such that

‖xtk − L, z2, z3, . . . , zn‖ < r + ε

for all t, k ≥ Kε and every z2, z3, . . . , zn ∈ X. Since (ti) and (kj) are strictly increasing sequences, so there exists a
k0 ∈ N such that tk0 > Kε and kk0 > Kε. Therefore, we get

‖xtikj − L, z2, z3, . . . , zn‖ < r + ε

for all ti, kj ≥ Kε and every z2, z3, . . . , zn ∈ X. So, L ∈ LIMr
nxtikj .

Theorem 2.4. Let (X, ‖•, •, . . . , •‖) be an n−normed space and consider a double sequence (xtk) ∈ X. For all r ≥ 0, the
r−limit set LIMr

nxtk of an arbitrary double sequence (xtk) is closed.

Proof. Let (ysv) be an arbitrary double sequence in LIMr
nxtk which converges to some point L. For each ε > 0 and

every z2, z3, . . . , zn ∈ X, by definition there exist mε/2, kε/2 ∈ N such that

‖ymε/2
− L, z2, z3, . . . , zn‖ <

ε

2
and ‖xtk − ymε/2

, z2, z3, . . . , zn‖ < r +
ε

2

whenever k ≥ kε/2. Consequently for every z2, z3, . . . , zn ∈ X,

‖xtk − L, z2, . . . , zn‖ ≤ ‖xtk − ymε/2
, z2, . . . , zn‖+ ‖ymε/2

− L, z2, . . . , zn‖
< r + ε

for k ≥ kε/2. That means L ∈ LIMr
nxtk, too. Hence, LIMr

nxtk is closed.
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Theorem 2.5. Let (X, ‖•, •, . . . , •‖) be an n−normed space and consider a double sequence (xtk) ∈ X. If

y0 ∈ LIMr0
n xtk and y1 ∈ LIMr1

n xtk,

then,
yα := (1− α)y0 + αy1 ∈ LIM(1−α)r0+αr1

n xtk, for α ∈ [0, 1].

Proof. By definition, for every ε > 0, r0, r1 > 0 and every z2, z3, . . . , zn ∈ X there exists a Kε ∈ N such that t, k > Kε

implies
‖xtk − yo, z2, . . . , zn‖ < r0 + ε and ‖xtk − y1, z2, . . . , zn‖ < r1 + ε,

which yields also, for every z2, z3, . . . , zn ∈ X,

‖xtk − yα, z2, z3, . . . , zn‖ ≤ (1− α)‖xtk − yo, z2, z3, . . . , zn‖+ α‖xtk − y1, z2, z3, . . . , zn‖
< (1− α)(r0 + ε) + α(r1 + ε)

= (1− α)r0 + αr1 + ε.

Hence, we have
yα ∈ LIM(1−α)r0+αr1

n xtk.

Theorem 2.6. Let (X, ‖•, •, . . . , •‖) be an n−normed space and consider a double sequence (xtk) ∈ X. LIMr
nxtk is convex.

Proof. In particular, for r = r0 = r1, Theorem 2.5 yields immediately that LIMr
nxtk is convex.

Theorem 2.7. If xtk
‖•,•,...,•‖−→ r L1 and ytk

‖•,•,...,•‖−→ r L2. Then,

(i) (xtk + ytk)
‖•,•,...,•‖−→ r (L1 + L2) and

(ii) α(xtk)
‖•,•,...,•‖−→ r αL1, (α ∈ R).

Proof. (i) By definition for every z2, z3, . . . , zn ∈ X,

∀ε > 0,∃Kε ∈ N : t, k ≥ Kε ⇒ ‖xtk − L1, z2, z3, . . . , zn‖ < r1 +
ε

2

and
∀ε > 0,∃Jε ∈ N : t, k ≥ Jε ⇒ ‖ytk − L2, z2, z3, . . . , zn‖ < r2 +

ε

2
.

Let j = max{Kε, Jε} and r1 + r2 = r. For every t, k > j and every z2, z3, . . . , zn ∈ X we have

‖(xtk + ytk)− (L1 + L2), z2, z3, . . . , zn‖ = ‖xtk − L1, z2, z3, . . . , zn‖+ ‖ytk − L2, z2, z3, . . . , zn‖

< r1 +
ε

2
+ r2 +

ε

2
= r + ε

and so
(xtk + ytk)

‖•,•,...,•‖−→ r (L1 + L2).

(ii) It is obvious for α = 0. Let α 6= 0. Since

xtk
‖•,•,...,•‖−→ r L1

for every ε > 0 and every z2, z3, . . . , zn ∈ X, ∃Kε ∈ N such that for every t, k ≥ Kε, we have

‖xtk − L1, z2, z3, . . . , zn‖ <
r + ε

|α|
.
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According to this, for ∀t, k ≥ Kε and every z2, z3, . . . , zn ∈ X, we can write

‖αxtk − αL1, z2, z3, . . . , zn‖ = |α||xtk − L1, z2, z3, . . . , zn‖

< |α|r + ε

|α|
= r + ε.

So,

(αxtk)
‖•,•,...,•‖−→ r αL1.

Following, we give some relations between convergence and rough convergence of double sequences in
n−normed space.

Theorem 2.8. Let (X, ‖•, •, . . . , •‖) be an n−normed space and condiser a double sequence (xtk) in X. If c is a cluster point
of (xtk), then ‖L− c, z2, · · · , zn‖ ≤ r for every L ∈ LIMr

nxtk.

Proof. Let L ∈ LIMr
nxtk. Assume the contrary that d := ‖L− c, z2, · · · , zn‖ > r. Let ε =

d− r
2

. Since L ∈ LIMr
nxtk,

there exists a Kε ∈ N such that

‖xtk − L, z2, · · · , zn‖ < r + ε

for all t, k ≥ Kε and every z2, · · · , zn ∈ X. Then we write

‖L− c, z2, · · · , zn‖ ≤ ‖xtk − L, z2, · · · , zn‖+ ‖xtk − c, z2, · · · , zn‖

for all t, k ≥ Kε and every z2, · · · , zn ∈ X. If we rewrite the inequality, we get

‖xtk − c, z2, · · · , zn‖ ≥ ‖L− c, z2, · · · , zn‖ − ‖xtk − L, z2, · · · , zn‖

> d− (r +
d− r
2

)

= ε

for all t, k ≥ Kε and every z2, · · · , zn ∈ X which contradicts that c is a cluster point. So ‖L− c, z2, · · · , zn‖ ≤ r for
every L ∈ LIMr

nxtk.

Theorem 2.9. Let (X, ‖•, •, . . . , •‖) be an n−normed space and condiser a double sequence (xtk) in X. Then (xtk) converges
to L ∈ X if and only if LIMr

nxtk = Br(L).

Proof. The first part of the proof is obtained directly from the second part of Theorem 2.1, that is, if (xtk) converges
to L ∈ X, then LIMr

nxtk = Br(L). Let us now show the second part of the theorem.

Conversely, let LIMr
nxtk = Br(L). Now let’s show that (xtk) converges to L, that is, for every α > 0, there exists

a Kα ∈ N such that ‖xtk − L, z2, · · · , zn‖ ≤ α for all t, k ≥ Kα and every z2, · · · , zn ∈ X. Now we can take a fixed
α > 0, such that r + ε < α for r > 0 and ε > 0. For L ∈ LIMr

nxtk, there exists a Kα ∈ N such that

‖xtk − L, z2, · · · , zn‖ < r + ε < α

for all t, k ≥ Kα and every z2, · · · , zn ∈ X. Therefore (xtk) converges to L ∈ X.

Definition 2.3. Let (xtk) be a double sequence in n−normed space (X, ‖•, •, . . . , •‖). (xtk) is said to be a rough
Cauchy double sequence with roughness degree ρ, if

∀ε > 0,∃Kε ∈ N : m, v, t, k ≥ Kε ⇒ ‖xmv − xtk, z2, z3, . . . , zn‖ < ρ+ ε

is hold for ρ > 0, L ∈ X and every z2, z3, . . . , zn ∈ X . ρ is also called a Cauchy degree of (xtk).
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Proposition 2.2. (i) Monotonicity: Assume ρ′ > ρ. If ρ is a Cauchy degree of a given double sequence (xtk) in n−normed
space (X, ‖•, •, . . . , •‖), so ρ′ is a Cauchy degree of (xtk).

(ii) Boundedness: A double sequence (xtk) is loosely bounded if and only if there exists a ρ ≥ 0 such that (xtk) is a ρ−
Cauchy double sequence in n−normed space (X, ‖•, •, . . . , •‖).

Theorem 2.10. If (xtk) is rough convergent in n−normed space (X, ‖•, •, . . . , •‖), i.e., LIMr
nxtk 6= ∅ if and only if (xtk) is

a ρ-Cauchy double sequence for every ρ ≥ 2r. This bound for the Cauchy degree cannot be generally decreased.

Proof. A Cauchy double sequence is loosely bounded. By Theorem 2.3, (xtk) is rough convergent, that is, LIMr
nxtk 6=

∅. So, it is sufficient to prove the first part of the theorem. Let L be any point in LIMr
nxtk. Then, for all ε > 0, there

exists a Kε ∈ N such that m, v, t, k ≥ Kε implies

‖xmv − L, z2, z3, . . . , zn‖ ≤ r +
ε

2
and ‖xtk − L, z2, z3, . . . , zn‖ ≤ r +

ε

2

for every z2, z3, . . . , zn ∈ X . Therefore, for m, v, t, k ≥ Kε, we have

‖xmv − xtk, z2, z3, . . . , zn‖ = ‖xmv − L+ L− xtk, z2, z3, . . . , zn‖
≤ ‖xmv − L, z2, z3, . . . , zn‖+ ‖L− xtk, z2, z3, . . . , zn‖

≤ r +
ε

2
+ r +

ε

2
= 2r + ε

for every z2, z3, . . . , zn ∈ X . Hence, (xtk) is a ρ-Cauchy double sequence for ρ ≥ 2r. By Proposition 2.2, every ρ ≥ 2r
is also a Cauchy degree of (xtk). It is clear that this bound 2r can not be generally decreased, similar to Proposition
5.1 in [16].
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