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Abstract  Öz 

Large-scale reservoirs provide operational flexibility to 

water managers by storing water during times with higher 

surface water availability and releasing water when it is 

most needed. Most large-scale reservoirs serve for 

multipurpose demands, such as water supply for 

agricultural, urban and environmental users, hydropower, 

recreation, fisheries and transportation. Due to its low 

operating cost, hydropower generation is often maximized 

in energy systems with mixed hydro and thermal sources. 

Hydropower generation is also used to meet peak demand 

by advantage of operating in short notice. This study aims 

to simulate reservoir operations, including release schedule 

and hydropower operations of the Yamula Dam and 

hydropower plant using machine learning. Located on the 

Kızılırmak River, the Yamula Dam is a large-scale 

multipurpose reservoir with its 3476 million cubic meters 

of storage capacity. Turbine release decisions are learned 

with Random Forests algorithm using only reservoir inflow 

and upstream streamflow conditions. The developed model 

successfully predicts reservoir releases between 2006 and 

2015, with a coefficient of determination value of 0.87. 

Model prediction results are provided, and then 

hydropower load, generation and revenue are calculated 

and results are presented. Based on simulation results, the 

Yamula Dam generates about 362.3 gigawatts hour of 

energy per year, with an annual average revenue of 14.1 

million Dollars. With the developed model, reservoir 

operations under different upstream hydrological 

conditions can also be simulated. 

 Büyük depolama kapasiteli rezervuarlar yüzey suyunun 

fazlaca bulunduğu zamanlarda suyu depolayarak ve su 

ihtiyacının en yüksek olduğu zamanlarda bu depolanan 

suyu sisteme vererek suyu yönetenlere işletim esnekliği 

sağlar. Büyük kapasiteli rezervuarlar çoğunlukla tarımsal, 

kentsel ve çevresel su ihtiyaçlarının temini, hidroelektrik, 

rekreasyon, balıkçılık ve ulaşım gibi birden çok amaca 

hizmet ederler. Düşük işletim maliyetinden dolayı 

hidroelektrik üretimi, hidro ve termik karışık enerji 

sistemlerinde genellikle maksimize edilir. Hidroelektrik 

üretim kısa sürede işletime alınma avantajından dolayı pik 

saatlerdeki talebi karşılamak için de kullanılır. Bu çalışma 

Yamula Barajı ve hidroelektrik santralinin türbin akış 

zamanlaması ve hidroelektrik operasyonlarını içeren 

rezervuar işletimini makine öğrenimini kullanarak simüle 

etmeyi amaçlamaktadır. Kızılırmak Nehri üzerinde yer alan 

Yamula Barajı 3476 milyon metreküp depolama 

kapasitesiyle birden çok amaca hizmet eden büyük ölçekli 

bir barajdır. Rastgele Karar Ormanları algoritması ile 

sadece rezervuara giren akım ve memba akım koşullarına 

göre türbin akımı kararları öğrenilmiştir. Geliştirilen model 

2006 ve 2015 yılları arasındaki türbin akımlarını, 0.87 

korelasyon katsayısı ile, başarılı bir şekilde tahmin 

edebilmektedir. Model tahmini sonuçları gösterilmiş ve 

ayrıca hidroelektrik enerjisi üretimi ve getirisi hesaplanmış 

ve sonuçlar sunulmuştur. Simülasyon sonuçlarına göre 

Yamula barajı yılda yaklaşık 362.3 gigawatt saat enerji 

üretmekte ve 14.1 milyon dolar gelir sağlamaktadır. 

Geliştirilen model ile farklı memba hidrolojik durumlarına 

göre rezervuar işletim simülasyonları da yapılabilmektedir. 

Keywords: Reservoir operations, Water management, 

Hydropower, Machine learning, Random forests 

 Anahtar kelimeler: Rezervuar işletimi, Su yönetimi, 

Hidroelektrik, Makine öğrenimi, Rastgele karar ormanları 

1 Introduction 

Small to large-scale reservoirs are used for a variety of 

purposes, such as water supply, flood mitigation, 

environmental protection, transportation, recreation, and 

hydropower. Reservoirs store water, and with their 

controlled releases, various demands, such as agricultural 

water demand during dry season or power demand during 

peak energy hours, are met [1]. Reservoirs store energy as 

higher-elevation water for hydropower. Power is produced 

by the vertical flow of water using the potential energy 

difference, or ‘water head,’ between reservoir intake and 

tailwater levels. In a power system with mixed hydro-

thermal production sources, hydropower generation is often 

maximized due to its lower operating cost than the majority 

of other power sources [2, 3]. Hydropower also offers 

operational flexibility by rapidly producing energy [4, 5] and 

by providing extra ancillary services, such as peak and 

frequency management, and spinning reserve [6]. 
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The controlled reservoir releases, especially for 

hydropower generation, are highly dependent on decisions of 

reservoir operators rather than natural hydrological 

processes [7], while flood control may affect reservoir 

releases depending on reservoir storage and upstream flow 

conditions. Reservoir operating policy is either obtained 

from rule curves or from data-driven methods [8, 9]. 

Simulation models are commonly used for determining 

reservoir storage and release decisions [10], driven by 

prescribed operating rule curves [11, 12]. These reservoir 

operating rules depend on empirical relationship between 

reservoir storage and release, which can be derived from 

optimization models [12, 13]. While simulation models are 

helpful, reservoir operator’s knowledge and experience are 

of great importance that sometimes operating rules need to 

be adapted to specific conditions, objectives or constraints 

[7, 11]. 

Data-driven methods, such as Machine Learning 

Algorithms (MLA) can extract the optimal decision 

information from operations to understand reservoir 

operator’s release decisions under various conditions, such 

as specific month of a year, reservoir inflow or upstream 

flows. MLAs mathematically relate inputs and outputs 

without requiring explicit physical system representation 

[14]. Although MLAs are widely used to estimate 

streamflow [15-23] or forecast reservoir inflow [24-26], the 

number of studies on using MLAs to simulate reservoir 

operations is limited, especially for hydropower decisions. In 

literature, Yang et al. [7] simulated reservoir operations in 

California using decision trees and Random Forests 

algorithm. Khalil et al. [27] used Support Vector Machines 

for real-time management of reservoir releases. Gangrade et 

al. [28] employed Long-Short Term Memory for long-term 

reservoir operations. Qie et al. [29] compared different 

MLAs for simulating reservoir outflow and showed that 

MLAs are promising tools in reservoir management. Herman 

and Giuliani [30] used Decision Trees to obtain optimal 

reservoir operation policies. Özdoğan-Sarıkoç et al. [31] 

used several MLAs to forecast volumes of small reservoirs. 

Data-driven reservoir simulation tools are useful tools for 

reservoir planners and operators, yet their developments are 

inadequate, especially for reservoirs in Turkey. This paper 

develops a model with Random Forests algorithm, one of 

commonly used MLAs, to simulate hydropower reservoir 

operations of the Yamula Dam and Hydroelectric Power 

Plant (HEPP), for a period between October 1, 2005 and 

September 30, 2015. The developed model is easy-to-use 

and depends only on reservoir inflow and upstream 

conditions to predict controlled reservoir releases. 

Hydropower load, generation and revenue calculated with 

predicted reservoir releases are presented. Specific 

objectives include: 

1) Effectiveness of data-driven methods on simulating 

hydropower reservoir operations. 

2) Use of Random Forests algorithm to learn and 

predict reservoir releases. 

3) Input parameter selection to build a data-driven 

model. 

4) Presenting a case study of the Yamula Dam 

operations with a comparison to observed values. 

2 Material and methods 

2.1 Study area 

The Yamula Dam and HEPP is one of major reservoirs 

located on the Kızılırmak River near the city of Kayseri 

(Figure 1). The Yamula Dam is rock-filled with a clay core 

and has a volume of about 1.6 million cubic meters. The 

reservoir has a drainage area of about 15582 square 

kilometers [32]. Three stream gauge stations are identified to 

simulate the Yamula operations, shown in Figure 1. Station 

#1501 is located downstream of the dam, and its streamflow 

records represent reservoir releases. Station #1543 is located 

upstream of the dam, and its streamflow records are assumed 

to represent reservoir inflows. Station #1535 is located far 

upstream of the dam near the city of Sivas representing the 

upper basin conditions, whose records are used by the 

developed machine learning model along with other two 

stream gauge stations. 

 

 

Figure 1. Study area: the Yamula Dam and HEPP and stream gauge stations (Image source: DSI [33]). 
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The Yamula Dam and HEPP is a multipurpose reservoir, 

including water supply for irrigation and urban users, 

hydropower generation and recreation. Table 1 shows 

characteristics of the reservoir and the hydroelectric power 

plant. The reservoir has a storage capacity of 3476 million 

cubic meters, 2025 million cubic meters of which is active 

storage, and has an area of 85.3 square kilometers. The 

Kızılırmak River at this location has an average natural flow 

of 67.7 cubic meters per second with annual average water 

volume of 2135 million cubic meters. The hydroelectric 

power plant has two Francis turbines with a total capacity of 

100 megawatts (MW). The plant has a design head of 96.47 

meters and overall efficiency of 0.85. The reliable power is 

estimated as 35.3 megawatts with an annual average reliable 

generation of 309.23 gigawatts hour (GWh) per year [32]. 

 

Table 1. The Yamula Dam and HEPP characteristics. 

Plant characteristics Value 

Storage capacity (106 m3) 3476 

Total installed capacity (MW) 100 

Average natural flow (m3/s) 67.7 

Net design head (m) 96.47 

Overall efficiency 0.85 

Reliable power (MW) 35.3 

Reliable generation (GWh/year) 309.23 

2.2 Streamflow Dataset 

The dataset includes observed streamflow values from 

three stream gauge stations. The streamflow dataset is 

obtained from DSİ [33]. Target and input variables are 

derived from this streamflow dataset. In this study, the target 

variable is Yamula Dam daily outflows (𝑄1501,𝑑) measured 

at streamflow station #1501, and 18 input variables are used 

to predict this target variable. Input variables and their data 

range, mean (𝜇) and standard deviation (𝜎) are shown in 

Table 2. These input variables are day of a month (𝑇𝑑), 

month of a year (𝑇𝑚), year (𝑇𝑦), water year (𝑇𝑤𝑦), daily 

(𝑄1543,𝑑), monthly maximum (𝑄1543,𝑚,𝑚𝑎𝑥), monthly 

average (𝑄1543,𝑚,𝑚𝑒𝑎𝑛), monthly minimum (𝑄1543,𝑚,𝑚𝑖𝑛), 

water year maximum (𝑄1543,𝑤𝑦,𝑚𝑎𝑥), water year mean 

(𝑄1543,𝑤𝑦,𝑚𝑒𝑎𝑛) and water year minimum (𝑄1543,𝑤𝑦,𝑚𝑖𝑛) of 

streamflow station #1543, and daily (𝑄1535,𝑑), monthly 

maximum (𝑄1535,𝑚,𝑚𝑎𝑥), monthly average (𝑄1535,𝑚,𝑚𝑒𝑎𝑛), 

monthly minimum (𝑄1535,𝑚,𝑚𝑖𝑛), water year maximum 

(𝑄1535,𝑤𝑦,𝑚𝑎𝑥), water year mean (𝑄1535,𝑤𝑦,𝑚𝑒𝑎𝑛) and water 

year minimum (𝑄1535,𝑤𝑦,𝑚𝑖𝑛) of streamflow station #1535. 

2.3 Random Forests machine learning model 

Random Forests (RF) is one of machine learning 

algorithms designed for classification and regression 

problems proposed by Breiman [34] and commonly used in 

hydrology and water resources [7]. The key concept of the 

RF algorithm is that it combines ensemble approach with a 

random selection of decision variables [24]. Different from 

Artificial Neural Networks, the RF is a nonparametric, 

whitebox classification and regression algorithm [24]. The 

RF algorithm also has lower runtime and less prediction error 

for water resources problems compared to other machine 

learning algorithms, such as Extreme Gradient Boosting, 

Support Vector Regressor and Artificial Neural Networks [7, 

23]. 

 

 

 

Table 2. Input variables of the training and test sets for the period from October 1, 2005 to September 

30, 2015. 

 Data range   

Input variable    

𝑇𝑑 [1, 31] - - 

𝑇𝑚 [1, 12] - - 

𝑇𝑦 [2005, 2015] - - 

𝑇𝑤𝑦 [2006, 2015] - - 

𝑄1543,𝑑 (𝑚
3/𝑠) [1.3, 546] 55.9 67.4 

𝑄1543,𝑚,𝑚𝑎𝑥 (𝑚
3/𝑠) [8.7, 546] 91.2 108.4 

𝑄1543,𝑚,𝑚𝑒𝑎𝑛  (𝑚3/𝑠) [11.2, 166.8] 55.9 50.7 

𝑄1543,𝑚,𝑚𝑖𝑛 (𝑚3/𝑠) [1.3, 175] 34.2 38.5 

𝑄1543,𝑤𝑦,𝑚𝑎𝑥 (𝑚
3/𝑠) [70.6, 546] 323 138.2 

𝑄1543,𝑤𝑦,𝑚𝑒𝑎𝑛  (𝑚3/𝑠) [19.4, 83.8] 55.9 19.3 

𝑄1543,𝑤𝑦,𝑚𝑖𝑛 (𝑚3/𝑠) [1.3, 14.7] 7.7 4 

𝑄1535,𝑑 (𝑚
3/𝑠) [2.4, 301] 33.3 41.8 

𝑄1535,𝑚,𝑚𝑎𝑥 (𝑚3/𝑠) [4.9, 301] 57.8 70.1 

𝑄1535,𝑚,𝑚𝑒𝑎𝑛 (𝑚3/𝑠) [6.4, 102.1] 33.3 31.4 

𝑄1535,𝑚,𝑚𝑖𝑛 (𝑚3/𝑠) [2.4, 91.8] 20 22.3 

𝑄1535,𝑤𝑦,𝑚𝑎𝑥 (𝑚
3/𝑠) [34.1, 301] 206 78.4 

𝑄1535,𝑤𝑦,𝑚𝑒𝑎𝑛  (𝑚3/𝑠) [9.6, 45.4] 33.2 10.8 

𝑄1535,𝑤𝑦,𝑚𝑖𝑛 (𝑚3/𝑠) [2.4, 6.2] 4.6 1 

Target variable    

𝑄1501,𝑑 (𝑚
3/𝑠) [0.4, 176] 50.5 30.4 
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Therefore, RF is employed in this study for release 

schedule prediction. Similar to other machine learning 

algorithms, RF operates based on relationship between input 

and target variables. For regression problems, the machine 

learning model is trained and tested on a historical dataset 

and predictions are made for periods where target variable 

data are assumed unavailable. In the RF algorithm, many 

binary regression decision trees are randomly grown and 

ensemble average is taken for the final decision. Binary 

decision trees operate based on true or false decisions. Input 

variables are compared to split thresholds, and if comparison 

decision is true, then the left side, if false, then the right side 

of the tree branch is followed [23]. For each decision tree, 

optimal splits in the set of input variables are determined 

[35]. The optimal split point (𝑗) minimizes the mean squared 

error, expressed in Equation (1). 

 

min
𝑘,𝑗

1

𝑛
∑(𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑛

𝑖=1

 (1) 

 

where 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is observed value, 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is predicted 

value, 𝑘 is split variable and 𝑛 is the length of training set. 

The number of trees in ensemble and maximum tree 

depth are calibrated hyper parameters for RF algorithms. The 

number of trees determines the size of forest and tree depth 

determines the size and branches of each individual tree. 

Having larger trees and forest sizes are preferred, however 

after a certain point, they do not improve results and increase 

runtime. Figure 2 shows calibrated hyper parameters that 

minimize root mean squared error. Calibrated parameters are 

as follows: the number of trees is 30 and maximum tree depth 

is 15. 

The streamflow dataset covers the period from October 

1, 2005 to September 30, 2015. 70% of the historical data is 

used to train, and remaining 30% is used to test and validate 

the developed RF model. Thus, the test set, consisting of 

observed reservoir releases, is randomly selected and unseen 

by the model. Figure 3 compares the predicted and observed 

reservoir releases of the test set. The model better predicts 

especially high reservoir releases, while some low releases 

are overpredicted between 0 and 25 𝑚3/𝑠. This is partly 

because only upstream conditions are used as inputs. Large 

releases occur during wet times, which can be learned by the 

model from upstream records. Overall, the coefficient of 

determination 𝑟2 (Equation (2)) value of 0.87 highlights the 

successful prediction capability of the developed model. 

 

 

Figure 2. Model hyper parameter calibration. 

 

 

 

Figure 3. Test predicted and observed reservoir release 

(m3/s) comparison for model validation with 30% of 

randomly selected and withheld data. 

 

𝑟2 =

[
 
 
 ∑ (𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 − 𝜇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑛

𝑖=1

√∑ (𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2𝑛
𝑖=1 √∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 − 𝜇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛

𝑖=1 ]
 
 
 
2

 (2) 

 

 

where 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is observed value, 𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the mean of observed test set, 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is predicted value, and 𝜇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is the 

mean of predicted set. 
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3 Results and discussion 

The Yamula Dam and HEPP operations are simulated 

between October 1, 2005 and September 30, 2015 at daily 

time-steps. Reservoir releases are predicted with Random 

Forests machine learning model. Using reservoir releases, 

power load, generation and revenue are calculated, and 

results are presented. 

3.1 Reservoir release 

Reservoir releases are predicted with the developed RF 

machine learning model and compared to observed releases 

of the Yamula dam, shown in Figure 4. The model slightly 

underpredicts high releases, and overpredicts low releases, 

as seen in the flow duration curves (Figure 4-a). This 

commonly occurs in RF predictions as taking ensemble 

average for the final decision reduces variance. However, 

daily release time-series are shown in Figure 4-b. The RF 

model is able to follow low and high release trends. Monthly 

and water year average releases are shown in Figure 4-c and 

Figure 4-d. Water year is between October 1 and September 

30 of a given year. While differences between monthly and 

annual average predicted and observed releases are small, the 

developed model tends to underpredict peak flows of May 

and June. Overall, the RF model can successfully predict 

reservoir releases given input conditions. As a typical large-

scale reservoir, The Yamula stores water during wet months 

and releases mostly during dry months, between April and 

September, when demand is high. While releasing water, 

hydropower energy is generated, considering peak energy 

demand hours in a given day. 

3.2 Power load and generation 

Hydropower is generated from vertical movement of 

water. Intakes divert water into penstocks, and water flow 

through turbines generate energy. The amount of power to 

be generated 𝑃 depends on turbine discharge 𝑄 and water 

head 𝐻, which is a potential energy difference between 

intakes and tailwater (Equation (3)). The water head of the 

Yamula dam changes between 74.4 m and 105.5 m, 

depending on reservoir storage. Water head can be 

represented as a time dependant function of reservoir 

storage, however, due to lack of data availability, the 

constant net design head of 96.47 m is used in calculations. 

 

 

  
(a) Flow-duration curve of daily releases (b) Daily time-series of releases 

  
(c) Monthly average releases (d) Annual average releases 

Figure 4. Predicted and observed reservoir releases (m3/s) of Yamula between 1/10/2005 and 30/09/2015. 
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There are also other constant parameters that affect power, 

which are plant efficiency 𝜂, density of water 𝜌, and 

gavitational constant 𝑔. Integrating power over time 𝑡 yields 

generation 𝐺, and multiplying generation with wholesale 

energy prices 𝑝 results in hydropower revenue, shown in 

Equation (4) and Equation (5), respectively. 

 

𝑃 = 𝜂 ∙ 𝜌 ∙ 𝑔 ∙ 𝑄(𝑡) ∙ 𝐻 (3) 

𝐺 = 𝜂 ∙ 𝜌 ∙ 𝑔 ∫ 𝑄(𝑡) ∙ 𝐻 ∙ 𝑑𝑡
𝑇

0

 (4) 

𝑅 = 𝑝 ∙ 𝜂 ∙ 𝜌 ∙ 𝑔 ∫ 𝑄(𝑡) ∙ 𝐻 ∙ 𝑑𝑡
𝑇

0

 (5) 

 

where 𝑃 is power (W), 𝐺 is generation (Wh), 𝑅 is revenue 

($), 𝜂 is overall plant efficiency, 𝜌 is density of water 

(kg/m3), 𝑔 is gravitational constant (m/s2), 𝑄 is release 

(m3/s), 𝐻 is water head (m), 𝑇 is time (hour), and 𝑝 is 

wholesale energy market price ($/Wh). 

 

  
(a) Probability exceedance of daily power (MW) (b) Monthly average power (MW) 

  
(c) Spilled power (MW) (d) Monthly average hydropower generation (GWh/month) 

  
(e) Annual total hydropower generation (GWh/year) by 

water year 

(f) Annual total hydropower generation (GWh/year) by 

calendar year 

Figure 5. Power (MW) and generation (GWh) between 1/10/2005 and 30/09/2015. 
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Figure 5 shows probability the distribution of daily power 

load, monthly average power, spilled power, and monthly 

and annual average hydropower generations with a 

comparison to actual annual average generation. The 

Yamula has two turbines with a combined capacity of 100 

MW. The plant hits that capacity during only less than 1% of 

days in a ten-year period between October 1, 2005 and 

September 30, 2015. Reliable power load of the plant (35.3 

MW) is slightly less than median power load (37.6 MW), 

corresponding to 50% exceedance probability (Figure 5-a). 

Monthly average power load is higher in April through 

September, as a result of high releases during these months. 

The peak power load of 47 MW is observed in June and 

August. Except for February and March, the monthly 

average power load is greater than reliable power in all other 

months (Figure 5-b). During the modeled period between 

October 1, 2005 and September 30, 2015, the reservoir spills 

between April 1 and May 11, 2010. This is because, the 

upper Kızılırmak River basin received 100% more 

precipitation than normal in 2010 water year [36]. Spills are 

not desired in hydropower reservoir operations, since 

hydropower is not generated when water flows through 

spillways instead of turbines. Due to spilling, power load 

between 30 to 40 MW in April and May of 2010 is lost 

(Figure 5-c). Following a similar trend as power load, 

monthly total generation is higher in April through 

September because of scheduled irrigation and water supply 

deliveries. Monthly total generation is lower in February and 

March since water demand and wholesale energy prices are 

low in these months (Figure 5-d). Between 2006 and 2015 

water years, annual total hydropower generations in 2006, 

and 2010 through 2014 water years are higher than annual 

total reliable generation of 309.2 GWh/year. Annual total 

generation is less than reliable generation in remaining years 

(2007 through 2009, and 2015), shown in Figure 5-e. Peak 

annual total generations of 522.6 and 525.3 GWh/year are 

observed in water years 2010 and 2011, respectively. 

Calendar year total annual modeled generation is compared 

to actual generation in Figure 5-f. A calendar year is between 

January 1 and December 31. Actual annual total generation 

is obtained from Enerji Atlası [37]. Except for years 2006 

and 2010, modeled annual total generation is slightly greater 

than actual generation. Assumptions, such as constant head 

and constant efficiency, can result in these differences. 

Nonetheless, annual average modeled generation of 362.3 

GWh/year is close to annual average actual generation of 

374.7 GWh/year between 2006 and 2014. 

 
(a) Monthly average wholesale energy prices ($/MWh) 

  
(b) Monthly total hydropower revenue (million $/month) (c) Annual total hydropower revenue (million $/year) 

 

Figure 6. Monthly average wholesale energy prices (a), monthly average (b) and annual total hydropower revenue (c). 
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3.3 Revenue 

Hydropower revenue is obtained from the sale of 

generated energy in an energy market. Revenue is calculated 

by multiplying generation with wholesale energy prices. 

Energy prices can be determined in a deregulated energy 

market or based on fixed contract prices between retailers 

and generators. Monthly average energy prices of the year 

2020 in $/MWh are gathered from EPİAŞ [38], shown in 

(Figure 6-a). Wholesale energy prices peak in January and 

remain lower April and May, when energy generation from 

relatively cheaper run-of-river hydropower plants reduces 

energy prices. Monthly and annual total hydropower revenue 

is calculated using 2020 energy prices (Figure 6-b and Figure 

6-c). Peak monthly total hydropower revenue of about 1.4 

million $ is obtained in January, when energy prices peak. 

Monthly revenue is also high in June through September 

with greater generation and also energy prices. The lowest 

monthly total revenue (0.77 million $) occurs in April, while 

the lowest hydropower generation is in February. The water 

year of 2008 has the lowest annual release and hydropower 

generation since it was a drought year. The total revenue in 

this year is 6.4 million $. While annual total generations in 

2010 and 2011 are close, annual total revenue in 2011 water 

year (21.5 million $) is noticeably greater than total revenue 

in 2010 (20.3 million $). This is mostly because more 

hydropower is generated in months with higher energy prices 

in 2011 compared to 2010, resulting in higher annual total 

hydropower revenue. Annual average revenue between 2006 

and 2015 is calculated as 14.1 million $ per year. 

4 Conclusions 

Reservoir operations of the Yamula Dam and HEPP were 

modeled with Random Forests machine learning algorithm. 

Daily reservoir releases are predicted with various input 

variables derived from reservoir upstream and upper basin 

stream gauge stations. These variables include time 

components of date, and minimum, mean and maximum 

flows in a given month or year, in addition to daily stream 

gauge observations. With a coefficient of determination r2 

value of 0.87, the developed model successfully estimates 

reservoir releases. Then, power load, generation and revenue 

results with predicted reservoir releases are presented. The 

Yamula’s median power load of 37.6 MW exceeds its 

reliable power load value of 35.3 MW. The hydropower 

plant generates annual average of about 362 GWh of energy 

per year, gaining a revenue of 14.1 million $ per year. The 

developed simulation model is easy-to-use and requires 

minimal data. With only reservoir inflow and upstream 

streamflow dataset, the model makes controlled release 

predictions. The developed model also can be applied 

periods where input variables are known but reservoir 

releases unknown or to simulate different upstream 

conditions and their effects on hydropower reservoir 

operations of the Yamula. A similar methodology can also 

be applied to other reservoirs in order to learn their daily 

release schedules and simulate reservoir operation. 
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