The Farey Sum of Pythagorean and Eisenstein Triples

Mircea Crasmareanu*

Abstract

A composition law, inspired by the Farey addition, is introduced on the set of Pythagorean triples. We study some of its properties as well as two symmetric matrices naturally associated to a given Pythagorean triple. Several examples are discussed, some of them involving the degenerated Pythagorean triple $(1,0,1)$. The case of Eisenstein triples is also presented.

Keywords: Farey sum, Pythagorean (Eisenstein) triple, Symmetric matrix
AMS Subject Classification (2020): 11D09; 37D40
*Corresponding author

1. The Farey composition law on Pythagorean triples

Fix the set $\mathbb{N}^{2}(<):=\left\{(p, q) \in \mathbb{N}^{*} \times \mathbb{N}^{*} ; p<q\right\}$ and the map:

$$
P: \mathbb{N}^{2}(<) \rightarrow\left(\mathbb{N}^{*}\right)^{3}, \quad P(p, q):=\left(q^{2}-p^{2}, 2 p q, p^{2}+q^{2}\right)
$$

It is well-known that P provides a parametrization (up to a strictly positive multiplicative factor) of the set of Pythagorean triples $P T:=\left\{(a, b, c) \in\left(\mathbb{N}^{*}\right)^{3} ; 2 \mid b, a^{2}+b^{2}=c^{2}\right\}$. If, in addition $\operatorname{gcd}(p, q)=1$ with $2 \nmid(q-p)$ then (a, b, c) is a primitive (i.e. $\operatorname{gcd}(a, b)=1)$ Pythagorean triple.

The aim of this short note is to study the transport of a natural sum from $\mathbb{N}^{2}(<)$ to $P T$. Namely, defining $(p, q) \oplus\left(p^{\prime}, q^{\prime}\right):=\left(p+p^{\prime}, q+q^{\prime}\right)$ it follows the pair $(P T, \oplus)$ with:

$$
(a, b, c,) \oplus\left(a^{\prime}, b^{\prime}, c^{\prime}\right):=\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)=\left(\left(q+q^{\prime}\right)^{2}-\left(p+p^{\prime}\right)^{2}, 2\left(p+p^{\prime}\right)\left(q+q^{\prime}\right),\left(p+p^{\prime}\right)^{2}+\left(q+q^{\prime}\right)^{2}\right)
$$

More precisely, we have:

$$
\begin{equation*}
a^{\prime \prime}:=a+a^{\prime}+2\left(q q^{\prime}-p p^{\prime}\right), \quad b^{\prime \prime}:=b+b^{\prime}+2\left(p q^{\prime}+q p^{\prime}\right), \quad c^{\prime \prime}:=c+c^{\prime}+2\left(q q^{\prime}+p p^{\prime}\right) . \tag{1.1}
\end{equation*}
$$

Remark 1.1. If the initial pair (p, q) from $\mathbb{N}^{2}(<)$ is considered as the ratio $\frac{p}{q} \in(0,1)$ then the sum:

$$
\frac{p}{q} \oplus \frac{p^{\prime}}{q^{\prime}}:=\frac{p+p^{\prime}}{q+q^{\prime}}
$$

Received : 19-06-2023, Accepted : 05-12-2023, Available online : 08-12-2023
(Cite as "M. Crasmareanu, The Farey Sum of Pythagorean and Eisenstein Triples, Math. Sci. Appl. E-Notes, 12(1) (2024), 28-35")
is called the mediant in [1] due to the double inequality:

$$
\frac{p}{q}<\frac{p+p^{\prime}}{q+q^{\prime}}<\frac{p^{\prime}}{q^{\prime}} .
$$

But we prefer to use the name of Farey sum after [2, p. 209] although, obviously, the initial sum on $\mathbb{N}^{2}(<)$ is the restriction of the additive law of the real 2-dimensional linear space \mathbb{R}^{2}; another source for the applications of the Farey sequences in hyperbolic dynamics is [3]. Our choice for this name is also inspired by the very nice picture of page 23 from the book [4] illustrating a relationship between the circular Farey diagram and the Pythagorean triples. We point out that a group structure on the subset of primitive Pythagorean triples is considered in [5].
Properties 1.1. 1) The composition law \oplus on $P T$ is commutative but without a neutral element.
2) The height of the Pythagorean triple $p t:=(a, b, c)$ is $h(p t):=c-b=(q-p)^{2}$. For our triple of Pythagorean triples it follows:

$$
h\left((p t)^{\prime \prime}\right)=h\left((p t)^{\prime}\right)+h(p t)-2(q-p)\left(q^{\prime}-p^{\prime}\right)<h\left((p t)^{\prime}\right)+h(p t) .
$$

3) The usual CBS inequality provides an upper bound for the resulting Pythagorean triple in terms of the given $(a, b, c),,\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \in P T$:

$$
\begin{equation*}
a^{\prime \prime}<a+a^{\prime}+2 \sqrt{c c^{\prime}}, \quad b^{\prime \prime}<b+b^{\prime}+2 \sqrt{c c^{\prime}}, \quad \sqrt{c^{\prime \prime}} \leq \sqrt{c}+\sqrt{c^{\prime}} \tag{1.2}
\end{equation*}
$$

with equality in the last relation if and only if $c=c^{\prime}$ which, in turn, yields $c^{\prime \prime}=4 c=4 c^{\prime}$ as consequence of the relation:

$$
(a, b, c) \oplus(a, b, c)=4(a, b, c) .
$$

Example 1.1. 1) Since $(1,3) \oplus(2,3)=(3,6)$ we have $2(4,3,5) \oplus(5,12,13)=9(3,4,5)$.
2) The sum $(1,2) \oplus(1,3)=(2,5)$ gives $(3,4,5) \oplus 2(4,3,5)=(21,20,29)$.
3) The restriction of the complex multiplication to the unit circle S^{1} gives a group multiplication on the set of all Pythagorean triples:

$$
(a, b, c) \odot\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a a^{\prime}-b b^{\prime}, a b^{\prime}+a^{\prime} b, c c^{\prime}\right), \quad(a, b, c) \odot(a, b, c)=\left(a^{2}-b^{2}, 2 a b, c^{2}=a^{2}+b^{2}\right)
$$

having as neutral element the degenerate Pythagorean triple $(1,0,1)$ which can be considered as the image through the map P of the pair $(\tilde{p}, \tilde{q})=(0,1)$. For our sum we have:

$$
(a, b, c) \oplus(1,0,1)=(a+2 q+1, b+2 p, c+2 q+1), \quad(3,4,5) \oplus(1,0,1)=2(4,3,5) .
$$

4) Fix $k \in \mathbb{N}^{*}$ and a triangle Δ. Then we call Δ as being a k-triangle if its area \mathcal{A} is k times its semi-parameter $s=\frac{1}{2}(a+b+c)$. Let us find the k-rectangular triangles for a prime number k. From $a b=k(a+b+c)$ it results:

$$
p(q-p)=k
$$

with only two solutions:

$$
\left\{\begin{array}{lll}
(p=1, q=k+1), & (p t)_{1}=\left(k(k+2), 2(k+1), k^{2}+2 k+2\right), & \mathcal{A}_{1}=k(k+1)(k+2), \\
(p=k, q=k+1), & (p t)_{2}=\left(2 k+1,2 k(k+1), 2 k^{2}+2 k+1\right), & \mathcal{A}_{2}=k(k+1)(2 k+1)
\end{array}\right.
$$

Hence, their Farey sum is:

$$
(p t)_{1} \oplus(p t)_{2}=(k+1)^{2}(3,4,5) .
$$

Also concerning the area there exist pairs of Pythagorean triples sharing it; for example the area $\mathcal{A}=210$ is provided by:

$$
\left(p_{1}=2, q_{1}=5\right) \quad(p t)_{1}=(21,20,29), \quad\left(p_{2}=1, q_{2}=6\right), \quad(p t)_{2}=(35,12,37)
$$

and their Farey sum is:

$$
(p=3, q=11), \quad p t=2(56,33,65) .
$$

5) Let $\left(F_{n}\right)_{n \in \mathbb{N}}$ be the Fibonacci sequence and let $p=p_{n}:=F_{n+1}<q=q_{n}:=F_{n+2}$. It results the n-FibonacciPythagorean triple $(F p t)_{n}=\left(a_{n}, b_{n}, c_{n}\right)$:

$$
a_{n}=F_{n} F_{n+3}, \quad b_{n}=2 F_{n+1} F_{n+2}, \quad c_{n}=F_{n+1}^{2}+F_{n+2}^{2}
$$

for which we have the Farey sum of Fibonacci type:

$$
(F p t)_{n} \oplus(F p t)_{n+1}=(F p t)_{n+2} .
$$

6) Fix c a hypotenuse which as natural number has only two representations as sum of different squares; for example $65=1^{2}+8^{2}=4^{2}+7^{2}$ or $145=1^{2}+12^{2}=8^{2}+9^{2}$. Then we call the corresponding Pythagorean triples $\left(a_{1}, b_{1}, c\right)$, $\left(a_{2}, b_{2}, c\right)$ as being hypotenuse - related and we can perform their Farey sum. For our examples above we have:

$$
\left\{\begin{array}{l}
\left(p_{1}=1, q_{1}=8\right) \oplus\left(p_{2}=4, q_{2}=7\right)=(p=5, q=15),(63,16,65) \oplus(33,56,65)=50(4,3,5), \\
\left(p_{1}=1, q_{1}=12\right) \oplus\left(p_{2}=8, q_{2}=9\right)=(p=9, q=21),(143,24,145) \oplus(17,144,145)=18(20,21,29) .
\end{array}\right.
$$

The class of these c is provided by the expression $c=p_{1}^{a_{1}} p_{2}^{a_{2}}$ with $p_{1}<p_{2}$ prime numbers of the form $4 k+1$; recall also that any prime number of the form $4 k+1$ is a sum of two squares. Related to this discussion we recall that a positive integer k is a sum of two triangular numbers:

$$
\begin{equation*}
k=\frac{u(u+1)}{2}+\frac{v(v+1)}{2} \tag{1.3}
\end{equation*}
$$

if and only if $4 k+1$ is a sum of squares; namely (1.3) implies $4 k+1=(v-u)^{2}+(u+v+1)^{2}$. Hence this k with $u<v$ provides the Pythagorean triple:

$$
\begin{equation*}
(p=v-u<q=u+v+1), \quad a=(2 u+1)(2 v+1), \quad b=2(v-u)(u+v+1), \quad c=4 k+1 . \tag{1.4}
\end{equation*}
$$

As example, $c=65$ is provided by $k=16$ which is generated by two triangular numbers:

$$
u_{1}=3<v_{2}=4, \quad\left(a_{1}, b_{1}, c\right)=(63,16,65), \quad u_{2}=1<v_{2}=5, \quad\left(a_{2}, b_{2}, c\right)=(33,56,65) .
$$

7) Fix $2 N$ an even number and ask the given triangle has the perimeter $2 s=2 N$. It follows the quadratic Diophantine equation:

$$
q(p+q)=N
$$

which for some value of N has only two solutions; namely $N \in\{120,180,240,252,336, \ldots\}$. Then we call the corresponding Pythagorean triples $\left(a_{1}, b_{1}, c\right),\left(a_{2}, b_{2}, c\right)$ as being perimeter - related and we can perform their Farey sum. For the example of $N=120$ we have ($p_{1}=2<q_{1}=10$) and ($p_{1}=7<p_{2}=8$) and then:

$$
2^{3}(12,5,13) \oplus(15,112,113)=3^{4}(3,4,5) .
$$

Returning to the last inequality (1.2) the right-hand-side of it can be interpreted in terms of a quasi-arithmetic mean. Fix an open real interval I and $M: I \times I \rightarrow I$ a mean i.e. for any pair $(x, y) \in I \times I$ we have the double inequality:

$$
\min \{x, y\} \leq M(x, y) \leq \max \{x, y\}
$$

Recall also that M is called quasi-arithmetic if there exists a continuous and strictly monotonic function $f: I \rightarrow \mathbb{R}$ such that:

$$
M(x, y)=M_{f}(x, y):=f^{-1}\left(\frac{f(x)+f(y)}{2}\right) .
$$

Hence, with $I=\mathbb{R}_{+}^{*}:=(0,+\infty)$ the last inequality (1.2) reads:

$$
c^{\prime \prime} \leq 4 M_{\sqrt{ }}\left(c, c^{\prime}\right) .
$$

2. Two symmetric matrices associated to a given Pythagorean triple

In the following we provide a matrix formalism associated to a given Pythagorean triple. Namely, the relations (1.1) can be put into the form:

$$
\left(\begin{array}{l}
a^{\prime \prime} \\
b^{\prime \prime} \\
c^{\prime \prime}
\end{array}\right):=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+\left(\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right)+2 \Gamma \cdot\binom{p^{\prime}}{q^{\prime}}, \quad \Gamma:=\left(\begin{array}{cc}
-p & q \\
q & p \\
p & q
\end{array}\right) \in M_{3,2}\left(\mathbb{Z}^{*}\right) .
$$

The matrix Γ and its transpose Γ^{t} provides two new matrices.
I) a symmetric 2×2 one:

$$
A:=\Gamma^{t} \cdot \Gamma=\left(\begin{array}{cc}
2 p^{2}+q^{2} & p q \\
p q & p^{2}+2 q^{2}
\end{array}\right)=\left(\begin{array}{cc}
c+p^{2} & \frac{b}{2} \\
\frac{b}{2} & c+q^{2}
\end{array}\right) \in \operatorname{Sym}\left(2, \mathbb{N}^{*}\right), \operatorname{det} A=2 c^{2}>0
$$

Allowing the pair (p, q) to be a point in the Euclidean plane \mathbb{R}^{2} then the map P is a regular parametrization from $\mathbb{R}^{2} \backslash\{(0,0)\}$ of the cone $C: x^{2}+y^{2}-z^{2}=0$ (which can be called the Pythagorean cone) and hence A is exactly the first fundamental form of this quadric in \mathbb{R}^{3}. Its coefficients of the fundamental forms are in the Gauss notation:

$$
\left\{\begin{array}{l}
E=4\left(2 p^{2}+q^{2}\right), \quad F=4 p q(=2 b), \quad G=4\left(p^{2}+2 q^{2}\right) \\
L=\frac{2 \sqrt{2} p^{2}}{p^{2}+q^{2}} \leq 2 \sqrt{2}, \quad M=\frac{\sqrt{2} p q}{p^{2}+q^{2}}\left(=\frac{\sqrt{2}}{2} \sin B<\frac{\sqrt{2}}{2}\right), \quad N=\frac{2 \sqrt{2} q^{2}}{p^{2}+q^{2}} \leq 2 \sqrt{2}
\end{array}\right.
$$

Returning to the matrix A, recall after [6] that any symmetric 2×2 matrix has two Hermitian parameters, one real being half of its trace, and one complex, called Hopf invariant, which for our A is:

$$
H(A)=\frac{p^{2}-q^{2}}{2}-(p q) i=\frac{1}{2}(p-i q)^{2} \in \mathbb{C}^{*}
$$

Let us remark that if p and q share the same parity (which means that (a, b, c) is not a primitive Pythagorean triple since 2 divides also a) then $H(A)$ is a Gaussian integer. Recall also that a proof of the fact that the map P is a parametrization of the set $P T$ is based exactly on the complex number $(p+i q)^{2}=2 H(A)$ since $c=|2 H(A)|$. The eigenvalues and associated eigenvectors of the matrix A are:

$$
\lambda_{1}=c<\lambda_{2}=2 c, \quad \bar{v}_{1}=(-q, p)=-q+i p=i \cdot \sqrt{2 \overline{H(A)}}, \quad \bar{v}_{2}=(p, q)=p+i q=\sqrt{2 \overline{H(A)}}
$$

So, the invertible matrix making A a diagonal one is:

$$
\left\{\begin{array}{l}
S=\left(\begin{array}{cc}
-q & p \\
p & q
\end{array}\right) \in G L(2, \mathbb{Z}) \cap \operatorname{Sym}(2), \quad S^{-1}=\frac{1}{c} S \in G L(2, \mathbb{Q}) \cap \operatorname{Sym}(2), \\
S^{-1} \cdot A \cdot S=\operatorname{diag}(c, 2 c), \quad H(S)=-q-p i, \quad \operatorname{det} S=-c<0
\end{array}\right.
$$

For example:

$$
A(1,0,1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), \quad S(1,0,1)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Recall that a matrix $U \in G L(n, \mathbb{R})$ can be consider as corresponding to a mathematical game $G(U)$ of two persons, both having n strategies; then the value of this game is ([7, p. 449]) $v(G(U))=\frac{1}{s\left(U^{-1}\right)}$ where $s\left(U^{-1}\right)$ means the sum of all elements of U^{-1}. For the matrix A the value of its corresponding game is:

$$
v(G(A))=\frac{2 c^{2}}{3 c-b}<c, \quad v(G(p=1, q=2))=\frac{50}{11}
$$

II) a symmetric 3×3 one:

$$
\left\{\begin{array}{l}
B:=\Gamma \cdot \Gamma^{t}=\left(\begin{array}{ccc}
c & 0 & a \\
0 & c & b \\
a & b & c
\end{array}\right) \in \operatorname{Sym}\left(3, \mathbb{N}^{*}\right) \tag{2.1}\\
\frac{1}{c} B=\left(\begin{array}{ccc}
1 & 0 & \sin (\angle A) \\
0 & 1 & \sin (\angle B)=\cos (\angle A) \\
\sin (\angle A) & \sin (\angle B)=\cos (\angle A) & 1
\end{array}\right) \in \operatorname{Sym}(3)=\operatorname{Sym}(3, \mathbb{R}) .
\end{array}\right.
$$

Again, its eigenvalues and associated eigenvectors are:

$$
\lambda_{1}=0<\lambda_{2}=c<\lambda_{3}=2 c, \quad \bar{v}_{1}=(-a,-b, c), \quad \bar{v}_{2}=(-b, a, 0), \quad \bar{v}_{3}=(a, b, c)
$$

Hence, the invertible matrix making the matrix B a diagonal one is:

$$
\left\{\begin{array}{l}
S=\left(\begin{array}{ccc}
-a & -b & a \\
-b & a & b \\
c & 0 & c
\end{array}\right) \in G L(3, \mathbb{Z}) \quad \operatorname{det} S=-2 c^{3}<0, \\
S^{-1}=\frac{1}{2 c^{2}}\left(\begin{array}{ccc}
-a & -b & c \\
-2 b & 2 a & 0 \\
a & b & c
\end{array}\right) \in G L(3, \mathbb{Q}), \quad S^{-1} \cdot B \cdot S=\operatorname{diag}(0, c, 2 c) .
\end{array}\right.
$$

Recall also that a matrix from $\operatorname{Sym}(3)$ represents geometrically a conic, see for example [8]. The conic associated to the matrix B reduces to the double point $\left(-\frac{a}{c},-\frac{b}{c}\right) \in S^{1}$. For example:

$$
B(1,0,1)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), \quad S(1,0,1)=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) .
$$

Let us remark that the second matrix from the relation (2.1) yields the function:

$$
f:\left(0, \frac{\pi}{2}\right) \rightarrow \operatorname{Sym}(3) \backslash G L(3, \mathbb{R}), \quad f(t):=\left(\begin{array}{ccc}
1 & 0 & \sin t \\
0 & 1 & \cos t \\
\sin t & \cos t & 1
\end{array}\right)
$$

as restriction to (the first quadrant of) the unit circle S^{1} of the map $F: \mathbb{R}^{2} \rightarrow \operatorname{Sym}(3)$:

$$
\left\{\begin{array}{l}
F(x, y):=\left(\begin{array}{ccc}
x^{2}+y^{2} & 0 & y \\
0 & x^{2}+y^{2} & x \\
y & x & x^{2}+y^{2}
\end{array}\right), \quad \operatorname{det} F(x, y)=\left(x^{2}+y^{2}\right)^{2}\left(x^{2}+y^{2}-1\right), \\
\left.F\right|_{\mathbb{C}^{*}}:(x, y)=r(\cos \varphi, \sin \varphi), F(r, \varphi):=r\left(\begin{array}{ccc}
r & 0 & \sin \varphi \\
0 & r & \cos \varphi \\
\sin \varphi & \cos \varphi & r
\end{array}\right), \operatorname{det} F(r, \varphi)=r^{4}\left(r^{2}-1\right) .
\end{array}\right.
$$

The matrix $S \in G L(3, \mathbb{R})$ making diagonal the symmetric matrix $f(t)$ is:

$$
\left\{\begin{array}{l}
S(t):=\frac{1}{2}\left(\begin{array}{ccc}
-\sin t & -\cos t & 1 \\
-\sin 2 t & 2 \sin ^{2} t & 0 \\
\sin t & \cos t & 1
\end{array}\right), \quad S^{-1}(t):=\left(\begin{array}{ccc}
-\sin t & -\frac{\cos t}{\sin t} & \sin t \\
-\cos t & 1 & \cos t \\
1 & 0 & 1
\end{array}\right), \\
S(t) \cdot f(t) \cdot S^{-1}(t)=\operatorname{diag}(0,1,2)
\end{array}\right.
$$

while the matrix $S \in G L(3, \mathbb{R})$ making diagonal the symmetric matrix $\left.F\right|_{\mathbb{C}^{*}}$ is:

$$
\left\{\begin{array}{l}
S(x, y):=\frac{1}{2 r^{2}}\left(\begin{array}{ccc}
-y r & -x r & r^{2} \\
-2 x y & 2 y^{2} & 0 \\
y r & x r & r^{2}
\end{array}\right), \quad S^{-1}(x, y):=\left(\begin{array}{ccc}
-\frac{y}{r} & -\frac{x}{y} & \frac{y}{r} \\
-\frac{x}{r} & 1 & \frac{x}{r} \\
1 & 0 & 1
\end{array}\right), \\
S(t) \cdot F(r, \varphi) \cdot S^{-1}(t)=\operatorname{diag}\left(r^{2}-r, r^{2}, r^{2}+r\right) .
\end{array}\right.
$$

From a differentiable point of view F is an immersion of \mathbb{R}^{2} into $\mathbb{R}^{6}=\operatorname{Sym}(3)$ since the rank of the Jacobian matrix of F is 2 . With the notation $u=x^{2}+y^{2}$ the equation $\operatorname{det} F=1$, i.e. $F(x, y) \in S L(3, \mathbb{R})$, means the cubic equation:

$$
u^{3}-u^{2}-1=\left(u-\frac{1}{3}\right)^{3}-\frac{1}{3}\left(u-\frac{1}{3}\right)-\frac{29}{27}=0
$$

which admits only one real (and positive) solution $u_{1} \simeq 1.4656$. Naturally, we can associate the cubic (in fact elliptic) plane curve:

$$
\mathcal{C}: v^{2}=u^{3}-u^{2}-1
$$

whose details can be found on: https://www.lmfdb.org/EllipticCurve/Q/496/e/1.
Returning to the case of 2×2 matrices let us remark that the first part of relations (1.4) gives an affine map:

$$
\binom{u}{v} \rightarrow\binom{p}{q}:=C \cdot\binom{u}{v}+\binom{0}{1}, \quad C:=\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

The eigenvalues of C and the square matrix S making C a diagonal one are:

$$
\lambda_{1}=-\sqrt{2}<\lambda_{2}=\sqrt{2}, \quad S=\left(\begin{array}{cc}
-1-\sqrt{2} & \sqrt{2}-1 \\
1 & 1
\end{array}\right), \quad S^{-1}=\frac{1}{4}\left(\begin{array}{cc}
-\sqrt{2} & 2-\sqrt{2} \\
\sqrt{2} & 2+\sqrt{2}
\end{array}\right)
$$

with $S^{-1} C S=\operatorname{diag}(-\sqrt{2}, \sqrt{2})$.
We finish this section by introducing a composition law on $\mathbb{R}_{+}^{*}=(0,+\infty)$, inspired by the equality case discussed in the Property 1.2.3):

$$
x \oplus_{F} y:=(\sqrt{x}+\sqrt{y})^{2} .
$$

Apart from commutativity and $x \oplus_{F} x=4 x$ we note the property $\cos ^{2} t \oplus_{F} \sin ^{2} t=1+\sin 2 t$.

3. The Farey sum of a class of Eisenstein triples

For the sake of completeness we present now the case of Eisenstein triples. Recall that an Eisenstein triangle has an angle of 60°. By supposing this angle to be $\angle C$ it results:

$$
a^{2}-a b+b^{2}=c^{2}
$$

and hence, a Eisenstein triple is a triple of positive integers satisfying this Diophantine equation; then $\min \{a, b\} \leq$ $c \leq \max \{a, b\}$. We point out that recently, the Eisenstein triples are used in [9] to characterize the bijective digitized rotations on the hexagonal grid. Contrary to the Pythagorean case we have only a partial parametrization:

$$
\begin{equation*}
a=a(p, q):=q^{2}-p^{2}, \quad b=b(p, q):=2 p q-p^{2}, \quad c=c(p, q):=p^{2}+q^{2}-p q=(q-p)^{2}+p q \tag{3.1}
\end{equation*}
$$

and the limit case $p=q$ gives the degenerate Eisenstein triple $p^{2}(0,1,1)$. Then we can define a Farey sum on the class of (3.1) (p, q)-Eisenstein triples:

$$
\begin{gather*}
(a, b, c,) \oplus\left(a^{\prime}, b^{\prime}, c^{\prime}\right):=\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)= \\
=\left(\left(q+q^{\prime}\right)^{2}-\left(p+p^{\prime}\right)^{2}, 2\left(p+p^{\prime}\right)\left(q+q^{\prime}\right)-\left(p+p^{\prime}\right)^{2},\left(p+p^{\prime}\right)^{2}+\left(q+q^{\prime}\right)^{2}-\left(p+p^{\prime}\right)\left(q+q^{\prime}\right)\right) \tag{3.2}
\end{gather*}
$$

Example 3.1. 1) Since $(p=1, q=2)$ yields the equilateral triangle $3(1,1,1)$ and $(p=1, q=3)$ gives the Eisenstein triple $(8,5,7)$ we have:

$$
(3,3,3) \oplus(8,5,7)=(21,16,19), \quad\left(p^{\prime \prime}=2, q^{\prime \prime}=5\right)
$$

2) Again $(a, b, c) \oplus(a, b, c)=4(a, b, c)$ and $(a, b, c) \oplus(0,1,1)=(a+2(q-p), b+2 q+1, c+p+q+1)$ with the example $3(1,1,1) \oplus(0,1,1)=(5,8,7)$.

The matrix expression of the Farey sum (3.2) is:

$$
\left(\begin{array}{l}
a^{\prime \prime} \\
b^{\prime \prime} \\
c^{\prime \prime}
\end{array}\right):=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+\left(\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right)+\Gamma \cdot\binom{p^{\prime}}{q^{\prime}}, \quad \Gamma:=\left(\begin{array}{cc}
-2 p & 2 q \\
2(q-p) & 2 p \\
2 p-q & 2 q-p
\end{array}\right) \in M_{3,2}(\mathbb{Z})
$$

The associated symmetric matrices are:
I)

$$
A:=\Gamma^{t} \cdot \Gamma=\left(\begin{array}{cc}
12\left(p^{2}-p q\right)+5 q^{2} & -6 p^{2}+5 p q-2 q^{2} \\
-6 p^{2}+5 p q-2 q^{2} & 5 p^{2}+4\left(2 q^{2}-p q\right)
\end{array}\right) \in \operatorname{Sym}(2, \mathbb{Z})
$$

with:

$$
\operatorname{Tr} A=17 p^{2}-16 p q+13 q^{2}, \quad \operatorname{det} A=12\left(2 p^{4}-4 p^{3} q+10 p^{2} q^{2}-8 p q^{3}+3 q^{4}\right)
$$

II)

$$
B:=\Gamma \cdot \Gamma^{t}=\left(\begin{array}{ccc}
4\left(p^{2}+q^{2}\right) & 4 p^{2} & -4 p^{2}+6 p q-2 q^{2} \\
4 p^{2} & 4\left(2 p^{2}-2 p q+q^{2}\right) & -6 p^{2}+10 p q-2 q^{2} \\
-4 p^{2}+6 p q-2 q^{2} & -6 p^{2}+10 p q-2 q^{2} & 5 p^{2}-8 p q+5 q^{2}
\end{array}\right) \in \operatorname{Sym}(3, \mathbb{Z})
$$

with:

$$
\operatorname{Tr} B=17 p^{2}-16 p q+13 q^{2}, \quad \operatorname{det} B=48 q\left(2 p^{5}-6 p^{4} q+10 p^{3} q^{2}-7 p^{2} q^{3}+q^{5}\right)
$$

To the equilateral triangle $3(1,1,1)$ corresponds the matrices:
I)

$$
A(p=1, q=2)=\left(\begin{array}{cc}
8 & -4 \\
-4 & 29
\end{array}\right) \in \operatorname{Sym}(2, \mathbb{Z}), \quad \lambda_{1}=\frac{37-\sqrt{505}}{2}<\lambda_{2}=\frac{37+\sqrt{505}}{2}
$$

with $\operatorname{Tr} A=37, \operatorname{det} A=6^{3}$, Hopf invariant $H(A)=-\frac{21}{2}+4 i$ and:

$$
S=\frac{1}{8}\left(\begin{array}{cc}
21+\sqrt{505} & 21-\sqrt{505} \\
8 & 8
\end{array}\right) \in G L(2, \mathbb{R}), \quad S^{-1}=\frac{1}{2 \sqrt{505}}\left(\begin{array}{cc}
8 & \sqrt{505}-21 \\
-8 & \sqrt{505}+21
\end{array}\right) .
$$

II)

$$
\left\{\begin{array}{l}
B(p=1, q=2)=\left(\begin{array}{ccc}
20 & 4 & 0 \\
4 & 8 & 6 \\
0 & 6 & 9
\end{array}\right) \in \operatorname{Sym}(3, \mathbb{Z}), \\
\lambda_{1} \simeq 1.98<\lambda_{2} \simeq 13.51<\lambda_{3} \simeq 21.50, \quad \operatorname{det} B=576=24^{2} .
\end{array}\right.
$$

Article Information

Acknowledgements: The author is grateful to the referees for their careful reading of this manuscript and several valuable suggestions which improved the quality of the article.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of data and materials: Not applicable.

References

[1] Kramer, Jürg., Pippich, A. M. V.: Snapshots of modern mathematics from Oberwolfach: Special values of zeta functions and areas of triangles. Notices of American Mathematical Society, 63(8), 917-922 (2016).
[2] Bonahon, F.: Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots. American Mathematical Society; Princeton, NJ: Institute for Advanced Study. 2009.
[3] Katok, S., Ugarcovici I.: Symbolic dynamics for the modular surface and beyond. Bulletin of American Mathematical Society, New Ser. 44(1), 87-132 (2007).
[4] Hatcher, A.: Topology of Numbers. American Mathematical Society. 2022.
[5] Jitman, S., Sangwisut, E.: The group of primitive Pythagorean triples and perplex numbers. Mathematics Magazine. 95(4), 285-293 (2022).
[6] Crasmareanu, M.: The diagonalization map as submersion, the cubic equation as immersion and Euclidean polynomials. Mediterranean Journal of Mathematics. 19(2), 65 (2022).
[7] Barron, E. N.: Game Theory: An Introduction. 2nd. Revised and Enlarged ed., John Wiley \& Sons. 2013.
[8] Crasmareanu, M.: Conics from the Cartan decomposition of $S O(2,1)$. Mathematics. 11(7), 1580 (2023).
[9] Pluta, K., Roussillon, T., Coeurjolly, D., Romon P., Kenmochi, Y., Ostromoukhov V.: Characterization of bijective digitized rotations on the hexagonal grid. Journal of Mathematical Imaging and Vision. 60(5), 707-716 (2018).

Affiliations

Mircea Crasmareanu
Address: Faculty of Mathematics, University "Al. I. Cuza", Iasi, 700506, Romania http://www.math.uaic.ro/~mcrasm .
E-MAIL: mcrasm@uaic.ro
ORCID ID: 0000-0002-5230-2751

