MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES

https://doi.org/10.36753/mathenot.1316554 12 (1) 28-35 (2024) - Research Article ISSN: 2147-6268 ©MSAEN

The Farey Sum of Pythagorean and Eisenstein Triples

Mircea Crasmareanu*

Abstract

A composition law, inspired by the Farey addition, is introduced on the set of Pythagorean triples. We study some of its properties as well as two symmetric matrices naturally associated to a given Pythagorean triple. Several examples are discussed, some of them involving the degenerated Pythagorean triple (1, 0, 1). The case of Eisenstein triples is also presented.

Keywords: Farey sum, Pythagorean (Eisenstein) triple, Symmetric matrix

AMS Subject Classification (2020): 11D09; 37D40

*Corresponding author

1. The Farey composition law on Pythagorean triples

Fix the set $\mathbb{N}^2(<) := \{(p,q) \in \mathbb{N}^* \times \mathbb{N}^*; p < q\}$ and the map:

$$P: \mathbb{N}^2(<) \to (\mathbb{N}^*)^3, \quad P(p,q):=(q^2-p^2, 2pq, p^2+q^2).$$

It is well-known that P provides a parametrization (up to a strictly positive multiplicative factor) of the set of Pythagorean triples $PT := \{(a, b, c) \in (\mathbb{N}^*)^3; 2|b, a^2 + b^2 = c^2\}$. If, in addition gcd(p, q) = 1 with $2 \nmid (q - p)$ then (a, b, c) is a primitive (i.e. gcd(a, b) = 1) Pythagorean triple.

The aim of this short note is to study the transport of a natural sum from $\mathbb{N}^2(<)$ to *PT*. Namely, defining $(p,q) \oplus (p',q') := (p+p',q+q')$ it follows the pair (PT, \oplus) with:

$$(a, b, c,) \oplus (a', b', c') := (a'', b'', c'') = ((q + q')^2 - (p + p')^2, 2(p + p')(q + q'), (p + p')^2 + (q + q')^2).$$

More precisely, we have:

$$a'' := a + a' + 2(qq' - pp'), \quad b'' := b + b' + 2(pq' + qp'), \quad c'' := c + c' + 2(qq' + pp').$$

$$(1.1)$$

Remark 1.1. If the initial pair (p,q) from $\mathbb{N}^2(<)$ is considered as the ratio $\frac{p}{q} \in (0,1)$ then the sum:

$$\frac{p}{q} \oplus \frac{p'}{q'} := \frac{p+p'}{q+q'}$$

⁽Cite as "M. Crasmareanu, The Farey Sum of Pythagorean and Eisenstein Triples, Math. Sci. Appl. E-Notes, 12(1) (2024), 28-35")

Received: 19-06-2023, Accepted: 05-12-2023, Available online: 08-12-2023

is called *the mediant* in [1] due to the double inequality:

$$\frac{p}{q} < \frac{p+p'}{q+q'} < \frac{p'}{q'}$$

But we prefer to use the name of *Farey sum* after [2, p. 209] although, obviously, the initial sum on $\mathbb{N}^2(<)$ is the restriction of the additive law of the real 2-dimensional linear space \mathbb{R}^2 ; another source for the applications of the Farey sequences in hyperbolic dynamics is [3]. Our choice for this name is also inspired by the very nice picture of page 23 from the book [4] illustrating a relationship between the circular Farey diagram and the Pythagorean triples. We point out that a group structure on the subset of primitive Pythagorean triples is considered in [5]. \Box

Properties 1.1. 1) The composition law \oplus on *PT* is commutative but without a neutral element. 2) The *height* of the Pythagorean triple pt := (a, b, c) is $h(pt) := c - b = (q - p)^2$. For our triple of Pythagorean triples it follows:

$$h((pt)'') = h((pt)') + h(pt) - 2(q-p)(q'-p') < h((pt)') + h(pt)$$

3) The usual CBS inequality provides an upper bound for the resulting Pythagorean triple in terms of the given $(a, b, c,), (a', b', c') \in PT$:

$$a'' < a + a' + 2\sqrt{cc'}, \quad b'' < b + b' + 2\sqrt{cc'}, \quad \sqrt{c''} \le \sqrt{c} + \sqrt{c'}$$
(1.2)

with equality in the last relation if and only if c = c' which, in turn, yields c'' = 4c = 4c' as consequence of the relation:

$$(a, b, c) \oplus (a, b, c) = 4(a, b, c).$$

Example 1.1. 1) Since $(1,3) \oplus (2,3) = (3,6)$ we have $2(4,3,5) \oplus (5,12,13) = 9(3,4,5)$.

2) The sum $(1,2) \oplus (1,3) = (2,5)$ gives $(3,4,5) \oplus 2(4,3,5) = (21,20,29)$.

3) The restriction of the complex multiplication to the unit circle S^1 gives a group multiplication on the set of *all* Pythagorean triples:

$$(a, b, c) \odot (a', b', c') = (aa' - bb', ab' + a'b, cc'), \quad (a, b, c) \odot (a, b, c) = (a^2 - b^2, 2ab, c^2 = a^2 + b^2)$$

having as neutral element the degenerate Pythagorean triple (1, 0, 1) which can be considered as the image through the map *P* of the pair $(\tilde{p}, \tilde{q}) = (0, 1)$. For our sum we have:

$$(a, b, c) \oplus (1, 0, 1) = (a + 2q + 1, b + 2p, c + 2q + 1), \quad (3, 4, 5) \oplus (1, 0, 1) = 2(4, 3, 5),$$

4) Fix $k \in \mathbb{N}^*$ and a triangle Δ . Then we call Δ as being a *k*-triangle if its area \mathcal{A} is *k* times its semi-parameter $s = \frac{1}{2}(a+b+c)$. Let us find the *k*-rectangular triangles for a prime number *k*. From ab = k(a+b+c) it results:

$$p(q-p) = k$$

with only two solutions:

$$\begin{cases} (p=1,q=k+1), & (pt)_1 = (k(k+2), 2(k+1), k^2 + 2k + 2), & \mathcal{A}_1 = k(k+1)(k+2), \\ (p=k,q=k+1), & (pt)_2 = (2k+1, 2k(k+1), 2k^2 + 2k + 1), & \mathcal{A}_2 = k(k+1)(2k+1) \end{cases}$$

Hence, their Farey sum is:

$$(pt)_1 \oplus (pt)_2 = (k+1)^2(3,4,5).$$

Also concerning the area there exist pairs of Pythagorean triples sharing it; for example the area A = 210 is provided by:

$$(p_1 = 2, q_1 = 5)$$
 $(p_1)_1 = (21, 20, 29),$ $(p_2 = 1, q_2 = 6),$ $(p_1)_2 = (35, 12, 37)$

and their Farey sum is:

$$(p = 3, q = 11), \quad pt = 2(56, 33, 65)$$

5) Let $(F_n)_{n \in \mathbb{N}}$ be the Fibonacci sequence and let $p = p_n := F_{n+1} < q = q_n := F_{n+2}$. It results the *n*-Fibonacci-Pythagorean triple $(Fpt)_n = (a_n, b_n, c_n)$:

$$a_n = F_n F_{n+3}, \quad b_n = 2F_{n+1}F_{n+2}, \quad c_n = F_{n+1}^2 + F_{n+2}^2$$

for which we have the Farey sum of Fibonacci type:

$$(Fpt)_n \oplus (Fpt)_{n+1} = (Fpt)_{n+2}.$$

6) Fix *c* a hypotenuse which as natural number has only two representations as sum of different squares; for example $65 = 1^2 + 8^2 = 4^2 + 7^2$ or $145 = 1^2 + 12^2 = 8^2 + 9^2$. Then we call the corresponding Pythagorean triples (a_1, b_1, c) , (a_2, b_2, c) as being *hypotenuse* – *related* and we can perform their Farey sum. For our examples above we have:

$$\begin{cases} (p_1 = 1, q_1 = 8) \oplus (p_2 = 4, q_2 = 7) = (p = 5, q = 15), (63, 16, 65) \oplus (33, 56, 65) = 50(4, 3, 5), \\ (p_1 = 1, q_1 = 12) \oplus (p_2 = 8, q_2 = 9) = (p = 9, q = 21), (143, 24, 145) \oplus (17, 144, 145) = 18(20, 21, 29). \end{cases}$$

The class of these *c* is provided by the expression $c = p_1^{a_1} p_2^{a_2}$ with $p_1 < p_2$ prime numbers of the form 4k + 1; recall also that any prime number of the form 4k + 1 is a sum of two squares. Related to this discussion we recall that a positive integer *k* is a sum of two triangular numbers:

$$k = \frac{u(u+1)}{2} + \frac{v(v+1)}{2} \tag{1.3}$$

if and only if 4k + 1 is a sum of squares; namely (1.3) implies $4k + 1 = (v - u)^2 + (u + v + 1)^2$. Hence this k with u < v provides the Pythagorean triple:

$$(p = v - u < q = u + v + 1), \quad a = (2u + 1)(2v + 1), \quad b = 2(v - u)(u + v + 1), \quad c = 4k + 1.$$
 (1.4)

As example, c = 65 is provided by k = 16 which is generated by two triangular numbers:

$$u_1 = 3 < v_2 = 4$$
, $(a_1, b_1, c) = (63, 16, 65)$, $u_2 = 1 < v_2 = 5$, $(a_2, b_2, c) = (33, 56, 65)$.

7) Fix 2*N* an even number and ask the given triangle has the perimeter 2s = 2N. It follows the quadratic Diophantine equation:

$$q(p+q) = N$$

which for some value of N has only two solutions; namely $N \in \{120, 180, 240, 252, 336, ...\}$. Then we call the corresponding Pythagorean triples (a_1, b_1, c) , (a_2, b_2, c) as being *perimeter* – *related* and we can perform their Farey sum. For the example of N = 120 we have $(p_1 = 2 < q_1 = 10)$ and $(p_1 = 7 < p_2 = 8)$ and then:

$$2^{3}(12, 5, 13) \oplus (15, 112, 113) = 3^{4}(3, 4, 5).$$

Returning to the last inequality (1.2) the right-hand-side of it can be interpreted in terms of a quasi-arithmetic mean. Fix an open real interval *I* and $M : I \times I \rightarrow I$ a *mean* i.e. for any pair $(x, y) \in I \times I$ we have the double inequality:

$$\min\{x, y\} \le M(x, y) \le \max\{x, y\}.$$

Recall also that *M* is called *quasi-arithmetic* if there exists a continuous and strictly monotonic function $f : I \to \mathbb{R}$ such that:

$$M(x,y) = M_f(x,y) := f^{-1}\left(\frac{f(x) + f(y)}{2}\right).$$

Hence, with $I = \mathbb{R}^*_+ := (0, +\infty)$ the last inequality (1.2) reads:

$$c'' \le 4M_{\sqrt{\cdot}}(c,c').$$

2. Two symmetric matrices associated to a given Pythagorean triple

In the following we provide a matrix formalism associated to a given Pythagorean triple. Namely, the relations (1.1) can be put into the form:

$$\begin{pmatrix} a''\\b''\\c'' \end{pmatrix} := \begin{pmatrix} a\\b\\c \end{pmatrix} + \begin{pmatrix} a'\\b'\\c' \end{pmatrix} + 2\Gamma \cdot \begin{pmatrix} p'\\q' \end{pmatrix}, \quad \Gamma := \begin{pmatrix} -p & q\\q & p\\p & q \end{pmatrix} \in M_{3,2}(\mathbb{Z}^*).$$

The matrix Γ and its transpose Γ^t provides two new matrices.

I) a symmetric 2×2 one:

$$A := \Gamma^t \cdot \Gamma = \begin{pmatrix} 2p^2 + q^2 & pq \\ pq & p^2 + 2q^2 \end{pmatrix} = \begin{pmatrix} c + p^2 & \frac{b}{2} \\ \frac{b}{2} & c + q^2 \end{pmatrix} \in Sym(2, \mathbb{N}^*), \det A = 2c^2 > 0$$

Allowing the pair (p,q) to be a point in the Euclidean plane \mathbb{R}^2 then the map *P* is a regular parametrization from $\mathbb{R}^2 \setminus \{(0,0)\}$ of the cone $C : x^2 + y^2 - z^2 = 0$ (which can be called *the Pythagorean cone*) and hence *A* is exactly the first fundamental form of this quadric in \mathbb{R}^3 . Its coefficients of the fundamental forms are in the Gauss notation:

$$\begin{cases} E = 4(2p^2 + q^2), \quad F = 4pq(=2b), \quad G = 4(p^2 + 2q^2) \\ L = \frac{2\sqrt{2}p^2}{p^2 + q^2} \le 2\sqrt{2}, \quad M = \frac{\sqrt{2}pq}{p^2 + q^2} \left(= \frac{\sqrt{2}}{2}\sin B < \frac{\sqrt{2}}{2} \right), \quad N = \frac{2\sqrt{2}q^2}{p^2 + q^2} \le 2\sqrt{2}. \end{cases}$$

Returning to the matrix A, recall after [6] that any symmetric 2×2 matrix has two Hermitian parameters, one real being half of its trace, and one complex, called *Hopf invariant*, which for our A is:

$$H(A) = \frac{p^2 - q^2}{2} - (pq)i = \frac{1}{2}(p - iq)^2 \in \mathbb{C}^*.$$

Let us remark that if p and q share the same parity (which means that (a, b, c) is not a primitive Pythagorean triple since 2 divides also a) then H(A) is a Gaussian integer. Recall also that a proof of the fact that the map P is a parametrization of the set PT is based exactly on the complex number $(p + iq)^2 = 2\overline{H(A)}$ since c = |2H(A)|. The eigenvalues and associated eigenvectors of the matrix A are:

$$\lambda_1 = c < \lambda_2 = 2c, \quad \bar{v}_1 = (-q, p) = -q + ip = i \cdot \sqrt{2\overline{H(A)}}, \quad \bar{v}_2 = (p, q) = p + iq = \sqrt{2\overline{H(A)}}.$$

So, the invertible matrix making *A* a diagonal one is:

$$\left\{ \begin{array}{ll} S = \begin{pmatrix} -q & p \\ p & q \end{pmatrix} \in GL(2,\mathbb{Z}) \cap Sym(2), \quad S^{-1} = \frac{1}{c}S \in GL(2,\mathbb{Q}) \cap Sym(2) \\ S^{-1} \cdot A \cdot S = diag(c,2c), \quad H(S) = -q - pi, \quad \det S = -c < 0. \end{array} \right.$$

For example:

$$A(1,0,1) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad S(1,0,1) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Recall that a matrix $U \in GL(n, \mathbb{R})$ can be consider as corresponding to a mathematical game G(U) of two persons, both having *n* strategies; then *the value* of this game is ([7, p. 449]) $v(G(U)) = \frac{1}{s(U^{-1})}$ where $s(U^{-1})$ means the sum of all elements of U^{-1} . For the matrix *A* the value of its corresponding game is:

$$v(G(A)) = \frac{2c^2}{3c-b} < c, \quad v(G(p=1,q=2)) = \frac{50}{11}$$

II) a symmetric 3×3 one:

$$\begin{cases} B := \Gamma \cdot \Gamma^t = \begin{pmatrix} c & 0 & a \\ 0 & c & b \\ a & b & c \end{pmatrix} \in Sym(3, \mathbb{N}^*), \\ \frac{1}{c}B = \begin{pmatrix} 1 & 0 & \sin(\angle A) \\ 0 & 1 & \sin(\angle B) = \cos(\angle A) \\ \sin(\angle A) & \sin(\angle B) = \cos(\angle A) & 1 \end{pmatrix} \in Sym(3) = Sym(3, \mathbb{R}). \end{cases}$$

$$(2.1)$$

Again, its eigenvalues and associated eigenvectors are:

$$\lambda_1 = 0 < \lambda_2 = c < \lambda_3 = 2c, \quad \bar{v}_1 = (-a, -b, c), \quad \bar{v}_2 = (-b, a, 0), \quad \bar{v}_3 = (a, b, c)$$

Hence, the invertible matrix making the matrix *B* a diagonal one is:

$$\begin{cases} S = \begin{pmatrix} -a & -b & a \\ -b & a & b \\ c & 0 & c \end{pmatrix} \in GL(3, \mathbb{Z}) & \det S = -2c^3 < 0, \\ S^{-1} = \frac{1}{2c^2} \begin{pmatrix} -a & -b & c \\ -2b & 2a & 0 \\ a & b & c \end{pmatrix} \in GL(3, \mathbb{Q}), \quad S^{-1} \cdot B \cdot S = diag(0, c, 2c). \end{cases}$$

Recall also that a matrix from Sym(3) represents geometrically a conic, see for example [8]. The conic associated to the matrix B reduces to the double point $\left(-\frac{a}{c}, -\frac{b}{c}\right) \in S^1$. For example:

$$B(1,0,1) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad S(1,0,1) = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Let us remark that the second matrix from the relation (2.1) yields the function:

$$f:\left(0,\frac{\pi}{2}\right)\to Sym(3)\setminus GL(3,\mathbb{R}), \quad f(t):=\left(\begin{array}{ccc}1&0&\sin t\\0&1&\cos t\\\sin t&\cos t&1\end{array}\right)$$

as restriction to (the first quadrant of) the unit circle S^1 of the map $F : \mathbb{R}^2 \to Sym(3)$:

$$\begin{cases} F(x,y) := \begin{pmatrix} x^2 + y^2 & 0 & y \\ 0 & x^2 + y^2 & x \\ y & x & x^2 + y^2 \end{pmatrix}, & \det F(x,y) = (x^2 + y^2)^2 (x^2 + y^2 - 1), \\ F|_{\mathbb{C}^*} : (x,y) = r(\cos\varphi, \sin\varphi), F(r,\varphi) := r \begin{pmatrix} r & 0 & \sin\varphi \\ 0 & r & \cos\varphi \\ \sin\varphi & \cos\varphi & r \end{pmatrix}, \det F(r,\varphi) = r^4 (r^2 - 1). \end{cases}$$

The matrix $S \in GL(3, \mathbb{R})$ making diagonal the symmetric matrix f(t) is:

$$\begin{cases} S(t) := \frac{1}{2} \begin{pmatrix} -\sin t & -\cos t & 1\\ -\sin 2t & 2\sin^2 t & 0\\ \sin t & \cos t & 1 \end{pmatrix}, & S^{-1}(t) := \begin{pmatrix} -\sin t & -\frac{\cos t}{\sin t} & \sin t\\ -\cos t & 1 & \cos t\\ 1 & 0 & 1 \end{pmatrix}, \\ S(t) \cdot f(t) \cdot S^{-1}(t) = diag(0, 1, 2) \end{cases}$$

while the matrix $S \in GL(3, \mathbb{R})$ making diagonal the symmetric matrix $F|_{\mathbb{C}^*}$ is:

$$\begin{cases} S(x,y) := \frac{1}{2r^2} \begin{pmatrix} -yr & -xr & r^2 \\ -2xy & 2y^2 & 0 \\ yr & xr & r^2 \end{pmatrix}, & S^{-1}(x,y) := \begin{pmatrix} -\frac{y}{r} & -\frac{x}{y} & \frac{y}{r} \\ -\frac{x}{r} & 1 & \frac{x}{r} \\ 1 & 0 & 1 \end{pmatrix}, \\ S(t) \cdot F(r,\varphi) \cdot S^{-1}(t) = diag(r^2 - r, r^2, r^2 + r). \end{cases}$$

From a differentiable point of view *F* is an immersion of \mathbb{R}^2 into $\mathbb{R}^6 = Sym(3)$ since the rank of the Jacobian matrix of *F* is 2. With the notation $u = x^2 + y^2$ the equation det F = 1, i.e. $F(x, y) \in SL(3, \mathbb{R})$, means the cubic equation:

$$u^{3} - u^{2} - 1 = \left(u - \frac{1}{3}\right)^{3} - \frac{1}{3}\left(u - \frac{1}{3}\right) - \frac{29}{27} = 0$$

which admits only one real (and positive) solution $u_1 \simeq 1.4656$. Naturally, we can associate the cubic (in fact elliptic) plane curve:

$$\mathcal{C}: v^2 = u^3 - u^2 - 1$$

whose details can be found on: https://www.lmfdb.org/EllipticCurve/Q/496/e/1.

Returning to the case of 2×2 matrices let us remark that the first part of relations (1.4) gives an affine map:

$$\left(\begin{array}{c} u\\v\end{array}\right) \rightarrow \left(\begin{array}{c} p\\q\end{array}\right) := C \cdot \left(\begin{array}{c} u\\v\end{array}\right) + \left(\begin{array}{c} 0\\1\end{array}\right), \quad C := \left(\begin{array}{c} -1 & 1\\1 & 1\end{array}\right).$$

The eigenvalues of *C* and the square matrix *S* making *C* a diagonal one are:

$$\lambda_1 = -\sqrt{2} < \lambda_2 = \sqrt{2}, \quad S = \begin{pmatrix} -1 - \sqrt{2} & \sqrt{2} - 1 \\ 1 & 1 \end{pmatrix}, \quad S^{-1} = \frac{1}{4} \begin{pmatrix} -\sqrt{2} & 2 - \sqrt{2} \\ \sqrt{2} & 2 + \sqrt{2} \end{pmatrix}$$

with $S^{-1}CS = diag(-\sqrt{2}, \sqrt{2}).$

We finish this section by introducing a composition law on $\mathbb{R}^*_+ = (0, +\infty)$, inspired by the equality case discussed in the Property 1.2.3):

$$x \oplus_F y := (\sqrt{x} + \sqrt{y})^2$$

Apart from commutativity and $x \oplus_F x = 4x$ we note the property $\cos^2 t \oplus_F \sin^2 t = 1 + \sin 2t$.

3. The Farey sum of a class of Eisenstein triples

For the sake of completeness we present now the case of Eisenstein triples. Recall that an Eisenstein triangle has an angle of 60° . By supposing this angle to be $\angle C$ it results:

$$a^2 - ab + b^2 = c^2$$

and hence, a *Eisenstein triple* is a triple of positive integers satisfying this Diophantine equation; then $\min\{a, b\} \le c \le \max\{a, b\}$. We point out that recently, the Eisenstein triples are used in [9] to characterize the bijective digitized rotations on the hexagonal grid. Contrary to the Pythagorean case we have only a *partial* parametrization:

$$a = a(p,q) := q^2 - p^2, \quad b = b(p,q) := 2pq - p^2, \quad c = c(p,q) := p^2 + q^2 - pq = (q-p)^2 + pq$$
 (3.1)

and the limit case p = q gives the degenerate Eisenstein triple $p^2(0, 1, 1)$. Then we can define a Farey sum on the class of (3.1) (p, q)-Eisenstein triples:

$$(a, b, c,) \oplus (a', b', c') := (a'', b'', c'') =$$
$$= ((q+q')^2 - (p+p')^2, 2(p+p')(q+q') - (p+p')^2, (p+p')^2 + (q+q')^2 - (p+p')(q+q')).$$
(3.2)

Example 3.1. 1) Since (p = 1, q = 2) yields the equilateral triangle 3(1, 1, 1) and (p = 1, q = 3) gives the Eisenstein triple (8, 5, 7) we have:

$$(3,3,3) \oplus (8,5,7) = (21,16,19), \quad (p''=2,q''=5)$$

2) Again $(a, b, c) \oplus (a, b, c) = 4(a, b, c)$ and $(a, b, c) \oplus (0, 1, 1) = (a + 2(q - p), b + 2q + 1, c + p + q + 1)$ with the example $3(1, 1, 1) \oplus (0, 1, 1) = (5, 8, 7)$.

The matrix expression of the Farey sum (3.2) is:

$$\begin{pmatrix} a''\\b''\\c'' \end{pmatrix} := \begin{pmatrix} a\\b\\c \end{pmatrix} + \begin{pmatrix} a'\\b'\\c' \end{pmatrix} + \Gamma \cdot \begin{pmatrix} p'\\q' \end{pmatrix}, \quad \Gamma := \begin{pmatrix} -2p & 2q\\2(q-p) & 2p\\2p-q & 2q-p \end{pmatrix} \in M_{3,2}(\mathbb{Z}).$$

The associated symmetric matrices are:

I)

$$A := \Gamma^t \cdot \Gamma = \begin{pmatrix} 12(p^2 - pq) + 5q^2 & -6p^2 + 5pq - 2q^2 \\ -6p^2 + 5pq - 2q^2 & 5p^2 + 4(2q^2 - pq) \end{pmatrix} \in Sym(2, \mathbb{Z})$$

with:

$$TrA = 17p^2 - 16pq + 13q^2$$
, det $A = 12(2p^4 - 4p^3q + 10p^2q^2 - 8pq^3 + 3q^4)$.

II)

$$B := \Gamma \cdot \Gamma^t = \begin{pmatrix} 4(p^2 + q^2) & 4p^2 & -4p^2 + 6pq - 2q^2 \\ 4p^2 & 4(2p^2 - 2pq + q^2) & -6p^2 + 10pq - 2q^2 \\ -4p^2 + 6pq - 2q^2 & -6p^2 + 10pq - 2q^2 & 5p^2 - 8pq + 5q^2 \end{pmatrix} \in Sym(3, \mathbb{Z})$$

with:

$$TrB = 17p^2 - 16pq + 13q^2$$
, $\det B = 48q(2p^5 - 6p^4q + 10p^3q^2 - 7p^2q^3 + q^5)$.

To the equilateral triangle 3(1, 1, 1) corresponds the matrices:

I)

$$A(p=1,q=2) = \begin{pmatrix} 8 & -4 \\ -4 & 29 \end{pmatrix} \in Sym(2,\mathbb{Z}), \quad \lambda_1 = \frac{37 - \sqrt{505}}{2} < \lambda_2 = \frac{37 + \sqrt{505}}{2}$$

with TrA = 37, det $A = 6^3$, Hopf invariant $H(A) = -\frac{21}{2} + 4i$ and:

$$S = \frac{1}{8} \left(\begin{array}{cc} 21 + \sqrt{505} & 21 - \sqrt{505} \\ 8 & 8 \end{array} \right) \in GL(2,\mathbb{R}), \quad S^{-1} = \frac{1}{2\sqrt{505}} \left(\begin{array}{cc} 8 & \sqrt{505} - 21 \\ -8 & \sqrt{505} + 21 \end{array} \right).$$

II)

$$\begin{cases} B(p=1,q=2) = \begin{pmatrix} 20 & 4 & 0 \\ 4 & 8 & 6 \\ 0 & 6 & 9 \end{pmatrix} \in Sym(3,\mathbb{Z}), \\ \lambda_1 \simeq 1.98 < \lambda_2 \simeq 13.51 < \lambda_3 \simeq 21.50, \quad \det B = 576 = 24^2. \end{cases}$$

Article Information

Acknowledgements: The author is grateful to the referees for their careful reading of this manuscript and several valuable suggestions which improved the quality of the article.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References

- [1] Kramer, Jürg., Pippich, A. M. V.: Snapshots of modern mathematics from Oberwolfach: Special values of zeta functions and areas of triangles. Notices of American Mathematical Society, **63**(8), 917-922 (2016).
- [2] Bonahon, F.: Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots. American Mathematical Society; Princeton, NJ: Institute for Advanced Study. 2009.
- [3] Katok, S., Ugarcovici I.: Symbolic dynamics for the modular surface and beyond. Bulletin of American Mathematical Society, New Ser. 44(1), 87-132 (2007).
- [4] Hatcher, A.: Topology of Numbers. American Mathematical Society. 2022.
- [5] Jitman, S., Sangwisut, E.: The group of primitive Pythagorean triples and perplex numbers. Mathematics Magazine. 95(4), 285-293 (2022).
- [6] Crasmareanu, M.: The diagonalization map as submersion, the cubic equation as immersion and Euclidean polynomials. Mediterranean Journal of Mathematics. 19(2), 65 (2022).
- [7] Barron, E. N.: Game Theory: An Introduction. 2nd. Revised and Enlarged ed., John Wiley & Sons. 2013.
- [8] Crasmareanu, M.: Conics from the Cartan decomposition of SO(2, 1). Mathematics. 11(7), 1580 (2023).
- [9] Pluta, K., Roussillon, T., Coeurjolly, D., Romon P., Kenmochi, Y., Ostromoukhov V.: *Characterization of bijective digitized rotations on the hexagonal grid*. Journal of Mathematical Imaging and Vision. **60**(5), 707-716 (2018).

Affiliations

MIRCEA CRASMAREANU **ADDRESS:** Faculty of Mathematics, University "Al. I. Cuza", Iasi, 700506, Romania http://www.math.uaic.ro/~mcrasm . **E-MAIL:** mcrasm@uaic.ro **ORCID ID:** 0000-0002-5230-2751