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Abstract 

X-ray computed tomography (CT) aims production of 2-dimensional mass-density (or X-ray 
attenuation coefficient) maps of the sliced interior body by using directed X-rays through it to 
construct 3D CT images from the collection of these sliced 2D maps. Since the CT scan provides 
us with the interior structure of the body without any cut or physical damage, it is indispensable 
in our modern medical applications. However, since the X-rays involve ionizing radiation, it is 
dangerous for living organisms and it brings about the ALARA (as low as reasonably achievable) 
principle in medical applications emphasizing as high-quality CT images (with the highest possible 
resolution) as possible by using as little X-ray exposure of the body under scan as possible. This 
challenging task along with the correct interpretation of these CT images to lead a correct 
diagnosis and treatment plan brings about designing various fan geometries, scanning styles, and 
advanced image reconstruction techniques in the evolution of X-ray CT scans. We can see that 
X-ray CT scans have been evolved enormously since the first discovery in the early 1970s and it 
continues today with applications of the artificial intelligence (AI) and deep learning (DL) in our 
modern CT with promising successful results. In this work, a pedagogical study of our modern X-
ray CT with the related review of literature regarding i-scanning geometry, ii-reconstruction 
techniques, and iii-AI&DL applications is being presented hoping to be useful as a quick reference 
especially for the scholars and researchers in the field. 
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1. Introduction 

Goal of the computed tomography (CT) is for sure to produce mass-density maps (or 
maps of X-ray attenuation coefficient distribution as will be explained here soon 
afterwards) of the internal structure of the 3D objects, i.e., a human body (or parts of the 
body), as sliced 2D graphs to constitute a 3D CT-scan graph by using directed beams of 
waves (or rays) through it without cutting or looking from any internal point of it. 
Ultrasound or X-rays can be used as directed beams through the body to achieve this 
purpose and we study only the X-ray CT here in this work. As we all are familiar in our 
modern life today, the CT has become an indispensable tool in our modern medical 
applications where these produced CT images are frequently used for diagnosis and 
patient treatment plan by the physicians. Although there is no cut or any means of 
physical damage to the body under scan to pay for such wonderful images, which also 
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makes it indispensable in the practical applications of today’s health sciences, there is 
an ALARA (as low as reasonably achievable) principle in medical applications 
emphasizing as high-quality CT images (with the highest possible resolution) as possible 
by using as little X-ray exposure of the body under scan as possible [1-9]. To maintain 
this principle, along with the other demands such as scanning speed, image quality, 
performance, computational speed, etc., CT scanning technique has been evolved with 
revolutionary improvement since the first discovery in 1970s [10] and it continuous with 
the promising applications of today’s artificial intelligence (AI) and deep learning (DL) 
techniques [1,2,4,6-9,11]. This work deals with a brief review of it in a classification and 
dimensional analyses of the literature regarding the associated principles and techniques 
in the field.  

In this work, we focus on components, development, and literature review of our modern 
image reconstruction (IR) techniques in the X-ray CT with the conventionally and 
commercially used analytic image reconstruction (AIR) and iterative image 
reconstruction (IIR) techniques within the seven-generations of scanning geometries 
along with the emphasis on recent applications of modern AI and DL in the field. In this 
work, we shortly study classification of literature in the modern X-ray CT with the 
dimensional analyses to be as a quick reference guide hoping to be useful for the 
scholars and the researchers in the field. Main abbreviations for the X-ray CT concept 
we used in this work (as also conventionally used in the literature) are listed as shown in 
Table 1. 

Table 1. Abbreviations for the X-ray CT concept we used in this work 

Name of the category Name of the category 

AI: Artificial intelligence DLIR-M: Medium-dose DL (applied) image reconstruction 

AIR: Analytic image reconstruction FBP: Filtered back-projection 

AR: Analytic (image) reconstruction IR: Image reconstruction 

ART: Algebraic Reconstruction Technique IIR: Iterative (image) reconstruction 

CT: Computer tomography SART: Simultaneous Algebraic Reconstruction Technique 

DL: Deep learning SIIRT: Simultaneous Iterative Reconstr. Technique (SIIRT) 

DLIR: Deep learning (applied) image reconstruction MLEM: Maximum Likelihood Expectation Maximization 

DLIR-H: High-dose DL (applied) image reconstruction PL: Penalized Likelihood 

DLIR-L: Low-dose DL (applied) image reconstruction  

 

2. Components and development of X-ray CT 

From literature, we can say that processes in medical applications of X-ray CT involve 
the following steps [1,2,4-6,8,9,11-13,16]: i) Scanning the body of the patient by the X-
rays and recording the measured intensities of the receding X-rays from the patient (by 
sensors), which can be called as construction of image data, ii) Acquiring the 2D or 3D 
graphs of internal structure from scan data, which is called as image reconstruction (IR), 
and iii) Further image processing of the image reconstructed X-ray CT-scan graphs, such 
as segmentation, classification, deblurring, etc., which can be called as post IR 
processing or simply image processing (IP), and iv) Interpreting the image reconstructed 
CT-scan graphs or post IR-processed graphs by the physicians, i.e., diagnosis, treatment 
plan, etc., which can be called as clinical (or medical routine) as shown schematically in 
Fig.1. Artificial Intelligence (AI) and Deep Learning (DL) based parts where we see in IR 
and post IR-processing steps are marked in red in Fig.1.  

We see that major improvement of X-ray CT-scan in history has been in two fields: i) in 
scanning process and ii) in IR-process. Regarding the scanning process, chronologically 
we see that there are seven generations of CT-scans where design of scanning 
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apparatus and scanning geometry have been improved with revolutionary designs so far 
[2,4,10,12,14,15,17-21]. Various scanning geometries are actually the pencil-beam 
approximation of the early generation X-ray CT scans where discrete scanning angle (𝜃) 

and separation of sensors (𝑠) are the two-fundamental parameters forming the dataset 
of the measured output intensity, in the form, say 𝐼(𝑠, 𝜃), from which the internal mass-

density map of the related slice of the body, 𝑓(𝑥, 𝑦) , is formed (or in CT terms, 
reconstructed) [12,14,17,22]. Regarding the image re-construction process, since the 
various scanning geometries are basically the pencil-beam approximated early 
generation CT-scans, there are basically two fundamental reconstruction techniques 
inherent from the early generation scans: i) Analytic image reconstruction (AIR) [4,23-
26] and ii) iterative image reconstruction (IIR) techniques [5,24-26]. Note that, IIR 
methods are sometimes referred to as (or related with) algebraic IR as in [4,12,13,27]. 
The AIR involving (and also frequently used for AIR interchangeably) the conventional 
Filtered back propagation (FBP) method was the originally used image reconstruction 
technique used in the early stage of the discovery of the CT-scan through the 1990s and 
it involves the Fourier-slice theorem where the Fourier transform and reverse Fourier 
transform are involved with the filtered back-projection (FBP) applications [4,23-26]. 
Although conventional FBP technique provides theoretically exact solutions assuming 
noiseless measurement of output X-rays as a line integral of attenuation (ray-sum) 
through the patient in the IRC process, reconstructed images are normally blurred in 
practical applications but they can be enhanced by the use of some filters to some extent 
[4,24-26]. On the other hand, IIR techniques basically rely on the fundamentals of 
Kaczmarz’s algorithm, which was originally proposed by Kaczmarz in 1937 [28], which 
technically enables better images in greater performance but it could not have found 
clinical applicability by 2009 at which substantial advances in the hardware technology 
occurred [13,26].  

Most of the recent X-ray CT scans (those without AI and DL applications) use some 
advanced IR techniques such as Simultaneous Algebraic Reconstruction Technique 
(SART), Maximum Likelihood Expectation Maximization (MLEM), and Penalized 
Likelihood (PL), etc., since being in higher performance thanks to the modern advanced 
hardware technology [5,23,24]. However, the ALARA principle causes restrictions in 
practical medical (clinical) applications especially in pediatric or other risky applications 
due to the danger of the exposure of high-dose X-rays for such patients since production 
of high-quality X-ray CT images require high dose X-ray applications in both AIR and IIR 
methods [2,17,22]. But this problem seems being solvable through today’s advances in 
the AI and DL fields [1,2,4,6-9,11]. We can see that AI and DL applications to the IRs 
can provide high quality X-ray CT images with promising results as being used in today’s 
modern X-ray CT scans frequently. We study it in Sect. 5. 

 



126                                                                                                                                                                                              C. Deniz 

 

Figure 1.  Steps of medical applications of modern X-ray computed tomography 

3. Pencil Beam approximation and the Image Reconstruction (IR) Techniques 

A schematic sketch of the “pencil-beam approximated X-ray CT scan” given in Fig. 1 
describes the fundamental model where parallel beams of X-rays are collimated in the 
form of a so-called “pencil-beam shape” where the beams are assumed to be directed 
from top of a pencil to its tip as an analogy through the patient’s body. This model is 
actually originated from the first-generation scanners which is actually entirely different 
in comparison to today’s scanners where beam shapes (being in fan, conic, etc.) and 
scanning styles (being in stationary or rotary multi-sensor array in the gantry, helical 
scan, etc.) are completely different as discussed in the next section. But majority of the 
scanning techniques can mainly be modelled by this model to explain the fundamental 
principles of the conventional IR techniques in the X-ray CT [12,14]. We also note that 
calculations regarding IRs of beam shapes other than pencil-beam approximation are 
studied in details in [12]. As can be seen from Fig.2, parallel pencil-beam shaped X-rays 
are very thin (about 1 mm to 10 mm) and they are incident on an outer surface of a 3D 
object (such as a patient’s body or some part of it) to pass through it with an attenuation 
as a measure of the mass-density distribution of the interior region on the path in the 
longitudinal direction. The detectors on the other side of the body detect and measure 
this attenuated output intensities receding from the patient’s body when they hit the 
sensors. Intensities of the parallel input beams (incident on the patient’s body) are set to 
a constant value, say 𝐼0, and the attenuated output beams (from the patient’s body) for 
each scan angle 𝜃 is detected and measured by the parallel sensors separated by a 

distance of 𝑠, say 𝐼(𝑠, 𝜃). An entire scan of a slice of a body completes with a total of 
𝑛 numbers of scans between start and end scanning angles 𝜃1 and 𝜃𝑛, namely in 𝜃1 ≤
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𝜃𝑖 ≤ 𝜃𝑛, as the pairs of sensor and detector arrays attached to the gantry rotates in 
discreate 𝜃 → 𝜃𝑖  angles as shown in Fig. 1. Since X-rays interact with matter with a 

longitudinal attenuation depending on the mass-density of the matter at that point via the 
Beer-Lambert law [14,18,23,29-31], measured output intensity of each beam (from the 
patient’s body) is attenuated as a sum of attenuations of each tiny-sliced cubes (or 
rectangular prisms), called as voxels (as an implication of three-dimensional pixels), in 
comparison to the input intensity as shown in Fig.1. Consequently, each output beam 
involves sum of attenuations of each voxel, in other words, sum of mass-density 
distribution of the body between its end points in the direction of the related X-ray beam 
through its path. Once a complete scan of a slice is completed for all angles, a 2D graph 
regarding the measured output intensities for all these scan angles at all the sensor 
locations, called as a sinogram, i.e., [1,12,24], is produced, then the internal structure of 
the body in the form of mass-density function, say 𝑓(𝑥, 𝑧), is computationally produced. 

To illustrate, bones have higher mass-densities hence greater attenuation coefficients in 
comparison to the fatty regions and a 2D graph of 𝑓(𝑥, 𝑧) is obviously informative to the 

physicians showing how the internal structure of the patient’s body is. 

Fundamental IR techniques, which can be modelled as the pencil-beam approximated 
model in Fig. 2 as explained above, can be classified conventionally in two groups, 
namely, analytic image reconstruction (AIR) techniques and iterative image 
reconstruction (IIR) techniques as being studied in the next sections. 

 

Figure 2.  A schematic sketch of pencil-beam approximated X-ray CT-scan. 

3.1. A short Review of Analytical Image Reconstruction (AIR) Methods 

Most commonly used analytical reconstruction methods on commercial CT scanners are 
all in the form of filtered back-projection (FBP), which uses a one-dimensional filter on 
the projection data before back-projecting them onto the image space in 2D 
[12,17,19,24]. From the conventional pencil-beam approximated model in Fig. 2, we see 
that both source arrays and the detector arrays (in the opposite side) attached to each 
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other rotate together in the gantry by an angle of 𝜃 for each detector measurement and 
the process repeats 𝑛 times in 𝜃1 ≤ 𝜃𝑖 ≤ 𝜃𝑛 where 𝑖 is the index of scan angle (or simply 

scan index) to complete the whole scan of one slice in total 𝑛-scans. Since the intensity 

of the X-ray detected at the 𝑗-th detector (for a specific 𝑖 −th scan) is attenuated by the 
longitudinal density of the body under study (along the propagation direction of the X-ray 
beam), intensities measured by the 𝑗 −th detector is the line integral of the attenuated 
intensities (via the Beer-Lambert law) along the path from source to the detector. Another 
expression involves mathematically a line integral of the mass-density distribution of that 
region (or voxel) via Dirac Delta function 𝛿(𝑥𝑐𝑜𝑠𝜃𝑖 + 𝑧𝑠𝑖𝑛𝜃𝑖 − 𝑠) to select the correct path 

on the line 𝑥𝑐𝑜𝑠𝜃 + 𝑧𝑠𝑖𝑛𝜃 (See Fig.1), namely, 

𝑝𝑖(𝑠, 𝜃𝑖) = ∫ ∫ 𝑓(𝑥, 𝑧)𝛿(𝑥𝑐𝑜𝑠𝜃𝑖 + 𝑧𝑠𝑖𝑛𝜃𝑖 − 𝑠)𝑑𝑥𝑑𝑧.

∞

−∞

∞

−∞

 [1] 

Consequently, projection 𝑝𝑖(𝑠, 𝜃) represents a line integral whose input is the detector 
readings for the projection angle 𝜃 ← 𝜃𝑖  given in Fig. 2, which is referred to as mass 

Radon transform (or simply Radon transform) [6,12,13,31-33], Now the problem is the 
inverse process to find 𝑓(𝑥, 𝑦)  from 𝑝𝑖(𝑠, 𝜃) , which is referred to as inverse Radon 
transform. Back projection is not exactly an inverse Radon transform but a kind of a 
conjugate process to assign a point (𝑥, 𝑦)  in the object coordinates. Reconstruction 
process involves the solution of the measured intensity involving measured angle and 
linear shift position of the related X-ray tube in terms of integral equations by inversion, 
which is known as the Back projection. Traditionally, a filter, called as Ram-Lak filter to 
compensate the low-pass blur due to the different numbers of projections passing 
through the center and periphery of the image region is used in the FBP method [6,24,31-
33]. FBP involves the Radon transform described above and the Fourier Slice Theorem 
(FST) which states that the one-dimensional Fourier transform 𝑝(𝜔, 𝜃) of a projection 

𝑃(𝑠, 𝜃) in parallel-beam geometry for a fixed rotation angle 𝜃 is identical to the one-
dimensional profile through the origin of the 2-D Fourier transform 𝐹(𝜔𝑐𝑜𝑠 𝜃, 𝜔𝑠𝑖𝑛 𝜃) of 

the irradiated object element in (𝑥, 𝑦).  

3.2. A short Review of Iterative Image Reconstruction (IIR) Methods  

Conventional IIR methods involve the following: Algebraic Reconstruction Technique 
(ART), Simultaneous Algebraic Reconstruction Technique (SART), Maximum Likelihood 
Expectation Maximization (MLEM), Penalized Likelihood (PL), etc. [13,23,30]. In this 
work, we focus on the ART technique, which is the mostly studied technique originally 
introduced by Kaczmarz in 1937 for the first time [28]. In the ARTs, related matrix 
obtained by the detector measurement for various angle scans have an 𝑀 by 𝑁 equation 

system as follows [13, pp.276-278]: 

𝑊. 𝐹 = 𝑃 ⇒ ∑ 𝑤𝑖𝑗𝑓𝑗 = 𝑝𝑖 ,   𝑠. 𝑡.  𝑖 = 1,2, … , 𝑀; 𝑗 = 1,2, … , 𝑁

𝑛

𝑗=1

 [2] 

where 𝑀 is the total number of rays (in all projections), 𝑝𝑖 is the ray-sum measured for 

the 𝑖−th ray, 𝑤𝑖𝑗 is the weighing parameter where Kaczmarz’s method is associated. 

Here value of 𝑓(𝑥, 𝑧) as a square grid on the related voxel is considered to be constant 

(since the size of the voxel is too small) and 𝑓𝑗  denotes this constant value in the 𝑗th cell 

where 𝑁 is the total number of cells in the path of the related beam. The problem then 

becomes finding the unknown 𝑓𝑗 values from the system of 𝑀 equations in 𝑁 unknowns 
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(where 𝑊 becomes the matrix of constant coefficients) by the iterative methods as being 
presented in [13]. To illustrate it, let us suppose a standard 255x255 image, then it 
means: 𝑁 ≈65.000≈ 𝑀 with 𝑊: 𝑀𝑥𝑁 matrix (with many zeros due to the voxels not in 

the beam path). Such a hard work by iterative methods became applicable thanks to the 
advances in hardware technology around 1990s. 

Each linear equation in the system forms a line and the solution is the point of their 
intersections. Computation starts with an initial guess then it follows its projection firstly 
on the first line and secondly its projection to the second line to continue the same 
procedure for all lines. Then it repeats by taking it as the initial guess of the second tour 
to converge to the intersection point. Finally, it stops when the desired accuracy (or 
iteration number) has been reached. In each iteration with index 𝑖, these guess points 

have a displacement vector: 𝑓(𝑖) which is composed of 𝑁 components: 𝑓1
(𝑖)

, 𝑓2
(𝑖)

, … , 𝑓𝑁
(𝑖)

in 

the 𝑁 dimensional space. For example, our initial guess with 𝑓(0) is firstly projected on 

the related hyperplane to give 𝑓(1), then it is projected on the second equation to give 

𝑓(2), and the process continues similarly. In order to get 𝑓(𝑖) from the 𝑓(𝑖−1), Kaczmarz’s 

algorithm has the following operation mathematically [13]: 

𝑓(𝑖) = 𝑓(𝑖−1) −
[𝑓(𝑖−1). 𝑤⃗⃗⃗𝑖 − 𝑝𝑖]

𝑤⃗⃗⃗𝑖 . 𝑤⃗⃗⃗𝑖
. 𝑤⃗⃗⃗𝑖 [3] 

where 𝑤⃗⃗⃗𝑖 = (𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑁) and 𝑤⃗⃗⃗𝑖 . 𝑤⃗⃗⃗𝑖 is the dot product. Proofs and details including 

the convergence conditions and illustrations for higher dimensions are available in 
[13,31,34]. Fundamental iterative image reconstruction techniques such as Algebraic 
Reconstruction Techniques (ART), Simultaneous Iterative Reconstruction Technique 
(SIIRT), Simultaneous Algebraic Reconstruction Technique (SART), etc. works on this 
principle. 

4. Scanning Geometry and evolution of CT scans 

Since the first model of X-ray CT scanner, scanning geometry (and hence scanning 
mechanism and scanning technology) has been evolved enormously and each 
revolutionary design has been referred to as a new generation scan. There are totally 
seven-generations of X-ray CT-scanners developed and used so far, all being completely 
different from each other [2,4,10,12,14,15,17-21]. Although scanning mechanisms could 
be different, image reconstruction techniques can be studied via the pencil-beam 
approximated X-ray CT-scan whose schematic sketch is given in Fig.2 since they can 
be approximated and modelled by it as explained above. 

The first and second-generation CT-scanners being of the only translational types among 
them are as shown schematically in Fig.3. First generation scanner shown Fig.2a has a 
unique X-ray source and sensor pair and it starts scanning translationally along the 
𝑥 −axis for angle 𝜃 → 𝜃𝐴 = 0° in time 𝑡 as  𝑡𝐴0 ≤ 𝑡 ≤ 𝑡𝐴𝑛 then angle changes from 𝜃𝐴 =
0° to 𝜃𝐵by rotating around the 𝑦 −axis and the translational scan starts again but in the 

reverse direction (along the −𝑥′ −axis now) in the rotated coordinate system. When it 

completes, angle then changes from 𝜃𝐵 to 𝜃𝐶 and the translational motion but now being 
in the reverse direction (along the +𝑥′ −axis) in the rotated coordinate system starts 

again. Consequently, first-generation X-ray CT scanners scan in “translational-rotational” 
modes [10,12,14,18]. Second generation scanner shown Fig.2b has the same 
“translational-rotational modes” like the first generation but it includes many sensors as 
a sensor array in comparison to the first generation. We see that scanning speed is 
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increased in the second generation. The first and the second-generation CT scanners 
are the only scanners having translational scanning modes and no more used in today’s 
medical applications. 

 

a) First generation 

 

b) Second generation 

Figure 3. A schematic sketch of the first and second-generation X-ray CT-scanners 
(not in scale-patient size is exaggerated). 

The third and fourth-generation CT-scanners being of the first only-rotary types are as 
shown schematically in Fig.4. We note here that size of the patient’s body (or the organ 
of the patient under study) in the schematic sketches in Fig. 3&4 are exaggerated with 
respect to the size of the girth since the beams shown in blue are approximately paraxial 
(and they would actually fill the entire body if the size of the body were not exaggerated). 
The third-generation scanner shown in Fig. 4a has a multisensory array attached to a 
single X-ray source rotates around the y-axis on the gantry. Scanning principle of the 
fourth-generation CT scanner shown in Fig. 4b is similar to the third generation but the 
sensor array is stationary and fills the entire inner surface of the gantry [12,18]. The third 
and fourth-generation CT scanners are the “only rotary mode” scanners (no translational 
mode). 

Several other CT scanning geometries have been developed and marketed afterwards 
but none of them fits precisely the conventional CT categories studied above. Remaining 
generations are technologically advanced scanners. Since the scanning time of the first 
four generations are too long for some certain applications such as cardiac-scans, the 
fifth generation X-ray CT scanners were developed. They involve an electron beam 
accelerated by the applied high voltages and deflected by the deflection coils to a 
stationary tungsten-arc target attached to the inner surface of the gantry running entirely 
in a stationary mode [4,12,14,17]. In the fifth-generation scan, there is no translational or 
rotational part relative to the gantry, and hence it can be counted as a “stationary mode” 
scanner. As the accelerated and deflected high-energy electrons hit the tungsten arc, X-
rays are produced at the point of impact. In other words, the tungsten arc acts as an 
instantly triggerable X-ray source at the desired position by the high energy electrons. 
Since the accelerated and deflected electron beams hit the tungsten arc in a very fast 
rotary scanning nature, scanning speed increases enormously for the applications 
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requiring high-speed scan like cardiac applications. It is capable of ultra-fast scans, i.e., 
50-milisecond scan time and production of 17 CT slices/second, for such special and 
advanced applications. Its use in cardiac tomographic imaging is frequently referred to 
as “cine CT”. 

 

a) Third-generation 

 

b) Fourth-generation 

Figure 4. A schematic sketch of the third and fourth-generation X-ray CT-scanners (not 
in scale-patient size is exaggerated).  

Although the fifth-generation scanners present much more desired benefits, they are too 
expensive and consequently, a doughnut-shaped sixth-generation CT scanner was 
developed. It is frequently referred to as “spiral/helical CT” and it involves “X-ray source 
rotation” and “exam-table translation” perpendicular to it to form a spiral (or helical) scan 
around the patient [4,10,12,14,17,18]. In effect, the patient lying on the exam table 
passes through a doughnut shaped rotating scanner or in other words, x-ray tube rotates 
in helical path. In conventional scanners, scanning time could be around 10-15 minutes 
but in some instances, entire scan can take a single breath-hold time in the 6th generation 
CTs. It is also called as “volumetric scanners” since having a single fan-beam source 
and a stationary multidetector array in the gantry to fill a volume of X-rayed tissue. It 
provides high image resolution and improved image quality. Due to the helical path, a 
three-dimensional data set is obtained and they are used for image reconstruction into 
sequential images for a stack. In the sixth generation, the tube is energized continuously, 
and data are also collected continuously. The gantry also rotates continuously. It involves 
a slip-ring technology and there are three slip-rings attached to the gantry as terminal 
connections to the X-ray tube, detector and control sensors which enables a high-speed 
rotation. Slip-ring arrangement enables a rotation speed around 5s/rot a rotation angle 
more than 360◦ as a continuous rotation with continuous data acquisition. As to the 
seventh-generation scanners, it involves multi-sliced detectors allowing acquisition of 
multiple slices in single row and this makes it to be frequently referred to as “MS (multi-
slice) CT-scanners” [2,14,17,19]. They are the most advanced X-ray scanners 
developed so far. It generally uses third generation CT shown in Fig.4a with helical 
scanning and low voltage slip rings.  In the seventh generation CTs, A body section can 
be scanned faster with a multiple row of detectors system with multiple fan beams 
scanning simultaneously. It also uses slip-ring technology for switching power and image 
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data. It involves a conical shaped fan-beam and a fast rotation speed (about 0.5 to 0.8 
sec per rotation) which reduces the examination time. The image quality is mostly similar 
to that of single slice scanners.  It enables high spatial resolution. 

5. Artificial Intelligence (AI) and Deep Learning (DL) in X-ray CT 

We have seen that scan techniques (or geometries) and IR techniques in X-ray CT have 
evolved to maintain the ALARA principle to produce CT images in high qualities besides 
other needs such as high performance, high scan and IR speed, etc. Now we continue 
with that application of AI and DL in the IR stage, as marked in red in Fig. 1, being closely 
related to the scan technique and the IR techniques we studied above, can give 
promising results. We will also see that, beside the IR stage, AI and DL can also be 
applied as post-IR applications for some specific purposes of image processing, like 
segmentation, classification, deblurring, etc. as their classical uses to maintain clinical 
needs. In X-ray CT, any result which might seem perfect in X-ray CT graphs should also 
be tested and studied clinically [1,35]. Hence, we also review the related articles in this 
section. 

DL is actually a sub-class of the Machine learning (ML) which is also a sub-class of the 
AI as shown in Fig. 5 [1,35]. The Artificial neural networks (ANNs) are one of the methods 
in the ML and Deep neural networks (DNN) are some special types and more advanced 
form of the ANNs. DNNs involve the Convolutional neural networks (CNNs) which 
involves advanced network architecture and their principles are available in [1,11,35] as 
well as ordinary conventional AI/DL textbooks. 

 

Figure 5. Schematic sketch of clusters of Artificial intelligence 

We have seen above that IR techniques of most of the scan geometries (for all seven-
generations of CT-scans) can be studied in the conventional Pencil-beam approximated 
model where the sensor readings in eqn. (1) are 𝑝𝑖(𝑠, 𝜃𝑖) for the 𝑖 −th scan index in a 
single slice-scan. Then the IR part works out to reconstruct the mass-density function (or 
the X-ray attenuation function of the body) by computing function 𝑓  in (1) or (2) 

analytically (for the AIR) or iteratively (for the IIR). From literature we know that the FBP, 
which is the conventional and fundamental of the AIR methods, gives better results than 
the IIR methods when it is used with the necessary filters (also including the AI/DL 
applications as filters), though IIR enables advanced modifications for greater 
performance [1,5,7,8,11,20,22,36-38] (See also Fig. 5). However, there is a serious 
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problem that the superior FBP method (with respect to the IIR techniques) requires 
application of high-dose X-ray beams to the body under scan for higher image qualities, 
which violates the ALARA principle [5,7,8,11,36]. This problem and the solution 
suggested by one of the vendors of AI/DL-based CT-scan systems (GE Healthcare) 
regarding the effect of the application of AI/DL to the IR process is shown in Fig. 6 [36]. 

 

Figure 6. Comparison of the constructed image results of AIR (or FBP) and IIR 
techniques with the so-called new area, that is, AI/DL-applied IR                             

(image reconstruction) [36]). 

Today, we see from literature that success of the AI and DL applied X-ray CT are being 
tested and reported in various medical applications, such as scans in pediatry, brain-
trauma, lung, etc., in the health sciences, i.e., [1,38-54]. Such practical applications 
involve commercially available in three forms: high-dose deep learning (based) image 
reconstruction (DLIR-H), medium-dose deep learning (based) image reconstruction 
(DLIR-M), and low-dose deep learning (based) image reconstruction (LDLIR-H) modules 
commercially available by two vendors (to our knowledge), namely, TrueFidelity by GE 
Healthcare and AiCE by Canon Medical Systems [1,35-54]. Mechanism of AI/DL applied 
X-ray CT given in [36,39] relies on using FBP-reconstructed high-quality images 
(obtained by high-dose X-ray application) as ground truth images in supervised learning. 
Here, ground truth images are the images of our training dataset used in the related DNN 
designed [1]. Some of the clinical results of AI/DL-based X-ray CT work with apparently 
promising results are given in Table 2 where Image qualities obtained after the 
reconstruction techniques under study (AI/DL-applied or other classical IRs) are 
evaluated and compared with each other by either qualitatively, or quantitatively, such 
as in [38,41,46]. In these papers, as being standard routine, qualitative evaluations and 
comparisons are made by the experienced physicians contrary to the conventional 
quantitative work in the field of image processing where image parameters such as 
Signal to noise ratio (SNR) and Contrast to noise ratio (CNR) are evaluated and 
compared [1,2,11]. 

Table 2. Dimensional analyses of some AI/DL based clinical CT applications by GE 
Healthcare’s TrueFidelity™. 

Ref. 
# 

Organ, CT type, 
experimental (phantom, 

patient, etc.) 
Feature and/or aim of the work Properties and outcomes 

[38] Head CT in trauma Image optimization 
DLIR outperformed ASIR-V both 
qualitatively and quantitatively 

[39] Pediatric, head CT 
-Image optimization: improve 
image quality 
-Detection: lesion detection 

DL-H reduces noise and improves 
quality of the images 

[40] 

Chest CT (with aorta, lung 
tissue, subscapularis 
muscle, liver, and 
vertebrae), 50 patients but 
48 selected (22 male, 26 
female) 

Image optimization: 
Comparison of SNR and CNR 
values obtained by DLIR-M, DLIR-
H, and ASIR-V 50% by ANOVA (or 
the Friedman) test 

-All three IRs do not change significantly 
for p<0.001 but differ in soft tissue for 
p>0.05.  
-Order of best noise reduction (by 
increasing CNR and CNR) without 
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distorting the image texture: DLIR-
H>DLIR-M>ASIR-V% 

[41] 
Abdominal CT, 50 patients 

(62%F; 56.74∓17.05 
years) 

Image optimization: 
Comparison of image quality of 
IRs obtained by ASIR-V at 40%, 
DLIR-L, DLIR-M, and DLIR-H 
qualitatively and quantitatively 
(200 datasets, each IR technique 
being 50 data). 
-Qualitative analyses: by a point-
based Likert scale adapted 
from the European guidelines on 
quality criteria for CT. 
-Quantitative analyses: by CNR for 
portal vein and liver via ANOVA (or 
the Friedman test). 

→ Qualitatively: 
-DLIRs had better absolute scores than 
ASIR-V. 
-DLIR-H demonstrated the best image 
quality performance compared to ASIR-
V for all metrics. 
- Figure of merit (FOM) analysis also 
demonstrated that qualitative 
improvements were amplified by the 
DLIR  
→Quantitatively:  
- All DLIRs had better qualitative scores 
than ASIR-V. 
-Compared to ASIR-V, DLIRs had a 
lower image noise (2.86 vs 1.40–2.29), 
better image contrast (2.55 vs 1.41– 
1.96), finer small structure visibility (2.34 
vs 1.51–1.90), and 
improved image sharpness (2.01 vs 
1.60–1.86). 
-Among DLIRs, DLIR-H had the best 
scores followed by 
DLIR-M and DLIR-L. 
-Mean time to reconstruct images with 
DLIR was longer than with ASIR-V. 

[45] 
Phantom study with 7 dose 
levels: CTDIvol: 
15/10/7.5/5/2.5/1/0.5mGy 

Image optimization: 
Comparison of image quality of 
FBP, ASİR-V50%(AV50), ASİR-
V100%(AV100), DLIR-L, DLIR-M, 
and DLIR-H via noise-power 
spectrum (NPS) and task-based 
transfer function (TTF) 

The new TrueFidelity™ deep learning 
image reconstruction algorithm reduced 
noise magnitude and improved spatial 
resolution and detectability without 
changing noise texture relative to FBP. 

6. Conclusion and Discussion 

In this work, we have studied a general review of X-ray CT focusing on scanning 
technique (or scan geometry) and IR techniques along with their relationship with the 
ALARA principle pedagogically. We see that, regarding the scan geometry, there are 
seven generations of CT-scans so far and two-main types of image reconstruction 
techniques: i) Analytical image reconstruction (AIR) and ii) Iterative image reconstruction 
(IIR). Here we have shortly reviewed the main principles about IR and CT-scanning 
techniques with the application of AI/DL via the considerations of the ALARA principle. 
We see that clinical results show promising results for the application of AI/DL in X-ray 
CT applications. We hope that this work becomes useful as a quick and brief reference 
for the scholars and researches in the field of AI/DL and X-ray CT.  
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