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Abstract 

This paper conducts a comprehensive vulnerability analysis of steel structures, taking 

into account the stringent HAZUS restrictions. The demand distribution for each 

mode of failure takes the form of a normal logarithm after extracting the fragility 

chart. Thus, the two parameters of mean and standard deviation can be used to 

construct the fragility chart. A total of five modes of failure were used in this paper. 

Therefore, 10 unknown values were used to derive the fragility curves. Afterward, 

Incremental Dynamic Analysis (IDA) was used under 40 natural records to obtain the 

fragility curve. To save time in the analysis and prediction of structural responses, a 

neural network method was used to select records more efficiently. It was observed 

that this method is better than the analytical method in considering random 

uncertainty in steel structures when several acceleration values are used. 

 

Keywords: MLP algorithm, Monte Carlo method, Aleatory uncertainty, Fragility curve, 

IDA. 
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SMRF'nin Sinir Ağı ve Artımlı Dinamik Analizin 

Birleşimine Dayanan Güvenilirlik Tahmini 

 

 

 

 

 

 

 

Öz 

Bu makale, sıkı HAZUS kısıtlamalarını dikkate alarak çelik yapıların kapsamlı bir 

güvenlik açığı analizini yürütmektedir. Her başarısızlık türü için talep dağılımı, 

kırılganlık tablosunun çıkarılmasından sonra normal bir logaritma şeklini alır. 

Böylece, kırılganlık tablosunu oluşturmak için ortalama ve standart sapma olmak 

üzere iki parametre kullanılabilir. Bu yazıda toplam beş başarısızlık modu kullanıldı. 

Bu nedenle kırılganlık eğrilerini türetmek için 10 bilinmeyen değer kullanılmıştır. 

Daha sonra kırılganlık eğrisini elde etmek için 40 doğal kayıt altında Artımlı Dinamik 

Analiz (IDA) kullanılmıştır. Yapısal yanıtların analizinde ve tahmininde zaman 

kazanmak amacıyla, kayıtları daha verimli bir şekilde seçmek için bir sinir ağı 

yöntemi kullanılmıştır. Çeşitli ivme değerleri kullanıldığında çelik yapılarda rastgele 

belirsizliğin dikkate alınmasında bu yöntemin analitik yönteme göre daha iyi olduğu 

görülmüştür.  

 

Anahtar kelimeler:  MLP algoritması, Monte Carlo yöntemi, Rastgele belirsizlik, Kırılganlık 

eğrisi, IDA. 
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1. Introduction 

 

Structural collapse is a major cause of 

economic losses and human casualties in 

earthquakes (Wyllie et al., 1989). 

Furthermore, keeping structures away 

from this limit state through earthquakes 

has been a key factor in performance and 

force-based evaluation, including 

innovative performance-based seismic 

evaluation procedures (Foutch, 2000; 

Celarec & Dolšek, 2013). Using more 

accurate prediction methods for 

evaluating the collapse capacity of 

structures, considering different sources 

of uncertainties, leads to more reliable 

seismic evaluation of structures, 

earthquake risk analysis, and 

earthquake consequence management 

(Karimi ghale jough et al., 2021). 

 

To reduce the computational effort in the 

program, the Monte Carlo method for 

surface response was adopted (Jough & 

Şensoy, 2016). The response surface 

method used in Monte Carlo simulations 

has a certain limitation. It assumes a 

fixed functional form when calculating 

the standard deviation and mean of the 

collapse fragility curve. This means that 

the higher the order of the applied 

function, the more data is needed to 

accurately adjust the factors.  

 

Artificial neural networks can be used to 

approximate any type of function. Li 

(1996) stated that the radial basis 

function of an Artificial Neural Network 

(ANN) has the remarkable ability to 

promptly estimate all available 

derivatives. It is noteworthy to mention 

that all these assumptions on each 

function are relatively mild, which 

proves the fact of multivariate functions. 

Only a few studies were used the ANN 

algorithm to create fragility curves.  

 

Lagaros and Fragiadakis (2007), as well 

as Papadrakakis et al. (2008) studied the 

chance of surpassing the limit state in 

concrete dams. In addition, they 

thoroughly analyzed the susceptibility 

of these dams and took into account the 

inclusion of randomized material 

properties within the fragility curves. In 

previous studies, randomness was 

considered the main source of 

uncertainty. In the present study, a total 

of five modes of failure were used in 

nonlinear analysis. Therefore, 10 

unknown values were used to derive the 

fragility curves. The fragility curve was 

then obtained by applying Incremental 

Dynamic Analysis (IDA) to a set of 40 

natural records. Given that such 

analyses are time-consuming, a neural-

network-based method was used to 

reduce the time of analysis for the 

prediction of structural responses. It was 

observed that this method is better than 

the analytical method at considering 

random uncertainty in steel structures 

when several acceleration values are 

used.  

 

2. Fragility Curves in Steel Moment 

Building 

 

The intensity measure (IM) of strong 

ground motion is defined as an IM-

based collapse limit state in which the 

excited structure undergoes a damage 

limit state. On the other hand, the 

damage limit state is defined as the 

measure of the intensity of HAZUS 
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restrictions (Kircher et al., 2006). As a 

result, the collapse fragility curve 

formulation can be written using 

following Eq. (1). Figure 1 depicts the 

methodology considered in this study. 

 

 

Figure 1. Proposed approach flowchart for considering aleatory uncertainty. 

 

𝑃(𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒|𝐼𝑀 = 𝑖𝑚𝑖) = 𝑃(𝑖𝑚𝑖 > 𝐼𝑀𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒) = 𝐹𝐼𝑀𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒(𝑖𝑚𝑖)                   (1) 

The best probability distribution for 

representing the fragility curve’s 

collapse of any structure is a log-normal 

probability distribution function (Karimi 

& Şensoy, 2020). As a result, the log-

normal probability distribution is going 

to apply as the cumulative probability 

distribution of Eq. (1), results in Eq. (2). 

 
               𝑷(𝑪𝒐𝒍𝒍𝒑𝒂𝒔𝒆|𝑰𝑴 = 𝒊𝒎𝒊)

= (
𝑳𝑵(𝒊𝒎𝒊) − 𝑰𝑵(𝝁𝒌)

𝜷𝒌
)                                                        (2) 

 

The Gaussian distribution function, 

represented by Eq. (2), is the dispersion 

and mean of the collapse probability 

function. 

 

3. Artificial Neural Network (ANN) 

 

The procedure for the proposed method 

is defined in Figure 2. The input layer of 

the network consists of modeling 

parameters for structure. The output 

layer consists of the standard deviation 

and mean of the collapse fragility curves. 

The hidden layer consists of a number of 

artificial neurons (Karimi Ghaleh Jough 

& Beheshti Aval, 2018). The number of 

neurons in the hidden layer is referred to 

as the hidden layer size. Input weights, 

bias factors, and transfer functions 

define the connections between the 
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components of the input layer and the 

artificial neurons in the hidden layer. If I 

is an R-length input, Vector, S is hidden 

layer size, transfer functions and bios 

vectors of neurons in hidden layer are f 

and b, then output of hidden layer will 

be presented as Eq. (3). 

 

 

Figure 2. Architecture of proposed method. 

 

𝑎 = 𝑓 (𝑊1𝐼 + 𝑏1)                         (3) 

 

Output layer and w1 is an   input weight 

matrix of hidden layer. Vector of output 

is calculated by Eq. (4), in which W2 and 

b2 are weight matrix and bios vector of 

output layer neuron. 

 

𝑂 = 𝑔 (𝑊2𝐼 + 𝑏2)                       (4) 

 

To minimize prediction error, training 

data is used to evaluate weight matrices 

and bias vectors. The aim of this study is 

to evaluate training data using a limited 

simulation of modeling parameters. 

Collapse fragility analysis of the 

structure is performed using 

incremental dynamic analysis. The 

modeling parameters of the structure are 

assigned as the simulated input vector. 

To predict the mean and standard 

deviation of collapse fragility curves, 

two distinct neural networks were 

trained (Karimi ghale jough & 

Ghasemzadeh, 2023). 

 

In order to accurately estimate outcome 

variables, it is crucial to minimize errors 

rather than maximize them. This 

prevents the network from generating 

inaccurate variables for outcomes that 

were not included in the initial data. 

 

When training an artificial neural 

network (ANN), the following steps are 

involved: selecting shift parameters, 

defining the network architecture, and 

optimizing weight values. Typically, a 

portion of the reliable data is allocated 

for training purposes, for example, 80%.  

 

The remaining data is then used to 

validate the accuracy of the neural 

network predictions. To reduce 

dispersion in estimating mean and 

standard deviation, the number of 

neurons in hidden layers needs to be 

determined. The number should not be 

maximized because it can make the 

network produce inaccurate results for 

data that was not in the validation 

dataset. 

 

As a result, bios vectors and weight 

matrices are adjusted to achieve the 

lowest possible error in the estimated 

outcome variables. Also, the MSE value, 

which is an indicator of neural network 

error, is obtainable in Eq. (5). 
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𝐸 = ∑
1

2
𝑚

(𝑌(𝑥𝑚; (𝑤, 𝐴)) − 𝑡𝑚)2           (5) 
 

In which, a is S-length vector, and 

supposed to be as input to Eq. (5), the 

training pair (x, t) number is m, 

respectively, and m-th are the target data 

and input. Y is the neural network 

predicted value whose architecture is A, 

and weight matrix is W. The evaluation 

of network optimum weight, which 

minimizes the error of the network, is 

achieved by solving the minimization 

problem. T the propagation algorithm 

which is a common minimization 

algorithm is applied in this research to 

update the weight by several iterations. 

The network weights in iteration t+1 are 

calculated by Eq. (6). 

 

𝑤(𝑡+1) = 𝑤𝑡 + 𝛥 𝑤𝑡                                     (6) 

 

The value of Δ𝑤𝑡 is calculated by Eq. (7), 

and w is the matrix’s weight in iteration 

with t. 

 

𝜟 𝒘𝒕 = 𝜶. 𝜟 𝒘𝒕−𝟏 + 𝜼. 𝒅𝒕                              (7) 

                

in which dt contains partial derivatives 

of the error function and shows 

weighted search directions, the 

corresponding size of step is α and 

momentum term which has been 

defined in [0,1] is η. 

 

The Resilient back propagation learning 

algorithm, summarized as Rprop 

(Riedmiller & Braun, 1993), is adopted in 

this paper. Rprop is an effective local 

algorithm. It uses an adaptive version of 

the Manhattan-learning rule, which has 

been proven to work well in previous 

studies when combined with the 

sigmoid activation function (Riedmiller 

& Braun, 1993). 

 

4. Records Selection  

 

The key characteristics of amplitude 

intensity measures obtained from 

ground motion are PGA (high frequency 

parameter), PGV (intermediate 

frequency parameter), and PGD (low 

frequency parameter). These measures 

represent the maximum velocity, 

displacement, and effective acceleration. 

Amplitude IMs are used in the empirical 

relationship derivation applied in the 

probabilistic hazard approach. The 

variables are set based on the 

dependence of IMs on the magnitude of 

site-specific distance and ground 

motion. Multiple spectral sources and 

the amplitude distribution of a record 

amongst multiple frequencies have been 

used to explain the frequency content of 

IMs.  

 

The main properties of ground motion 

are Arias intensity (IA), which measures 

amplitude, characteristic intensity (IC), 

which indicates frequency content, and 

cumulative absolute velocity (CAV), 

which estimates the potential for 

building damage based on the record 

duration. 

 

Arias intensity (IA) is expressed as the 

time-integral of the square of the time 

series of ground motion and is defined 

by: 

𝐼𝐴 =
𝜋

2𝑔
∫[𝑎(𝑡)2]𝑑𝑡

∞

0

                                  (8) 
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Cumulative Absolute Velocity (CAV) is 

expressed as the time-integral of the 

square of the time series of ground 

motion and is defined by: 

𝑪𝑨𝑽 = ∫ |𝒂(𝒕)|𝒅𝒕|                                   (𝟗)

𝑻𝒅

𝟎

 

in which |a(t)| is the absolute value of 

acceleration in t. Characteristic intensity 

(IC) is given as: 

 

 𝑰𝑪 = 𝜶𝒓𝒎𝒔
𝟏.𝟓 𝑻𝒅

𝟎.𝟓,    

∝𝒓𝒎𝒔=
𝟏

𝒕𝒅
∫ [𝒂(𝒕)𝟐]

𝒕𝒅

𝟎
𝒅𝒕                          (10)                       

 

where αrms is given by root mean square 

of acceleration. 

 

5. Research Methodology 

 

The primary goal of incremental 

dynamic analysis (IDA) is to determine a 

curve by the intensity measure (IM) 

function that is defined by the maximum 

drift and the spectral acceleration ratio of 

the building defined by an EDP. The 

purpose of the proposed methodology is 

to apply an artificial neural network 

(ANN) with the intention of estimating 

the EDP, which is represented in terms 

of the first mode pseudo acceleration (Sa 

(T1, 5%)) for a given value of the limit 

state, which is also presented by 

obtaining the maximum drift ratio, 

which is the EDP employed in this 

manuscript. Therefore, the ANN could 

be capable of correctly estimate Sa (T1, 

5%) from a triad specified properties of 

the ground motion record that 

considered IA, IC and CAV in this paper. 

The IM must be set accordingly based on 

the seismic demand in consideration for 

a given intensity; therefore, it could be 

applied in defining the properties of the 

record as input to the ANN. In this 

study, a proposed method of seismic 

response is applied by a properly set 

ANN in the SMRF (Steel Moment 

Resistant Frame) of structural fragility 

analysis.  

 

In order to describe the input of the 

ANN at the beginning of the proposed 

method, 40 vectors of intensity measure 

are selected randomly, while the EDP in 

the Hazsus (FEMA, 2003) limit states 

(slight damage, moderate damage, 

extensive damage, complete damage, 

and collapse damage) are considered 

over the 100 sets of records, according to 

Jough & Şensoy (2016). The variation of 

these 100 records for the characteristic 

intensity measure is shown in Figure 3. 

The 40 realizations are assessed by 

means of the IDA analysis with reference 

to their structural performance. The 

training input from ANN is applied in 

the next step of the proposed 

methodology. This step includes the 

selection of a suitable ANN set and the 

validation of the ANN. Therefore, the 

training and testing procedures are done 

successfully, and the testing set is then 

capable of estimating whether the new 

design vectors are suitable in terms of 

structural constraint checks without 

computing any computational IDA 

analyses. Finally, it can be decided how 

many records are suitable for the 

prediction of the fragility curve. 
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Figure 3. Scatter plot of characteristic intensity for 100 selected records.

 

6. Structural Models and Numerical 

Simulation 

 

To evaluate the performance in curves of 

collapse fragility, the proposed method 

is applied and illustrated in a 5-storey 

moment resisting steel frame in Figure 4. 

The designed member sections are 

shown in Table 1. The plan and elevation 

of the assumed structure is symmetric, 

and that allows two dimensional 

analyses of structure. 

 

Figure 4. The analytical model of five-story, three-bay moment-resisting frame
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Table 1. Considered sections of designed structure 

story C1 C2 B1 B2 

1 BOX 180x180x2.0 BOX 300x300x2.0 IPE 400 IPE 400 

2 BOX 180x180x2.0 BOX 300x300x2.0 IPE 400 IPE 400 

3 BOX 180x180x2.0 BOX 300x300x2.0 IPE 400 IPE 400 

4 BOX 160x160x1.6 BOX 200x200x1.6 IPE 330 IPE 330 

5 BOX 160x160x1.6 BOX 200x200x1.6 IPE 330 IPE 330 

Spectral acceleration at the first-mode 

period of the structural system (Sa (T1)) 

is considered an intensity measure. This 

IM is applied in various research studies 

(Baker & Allin, 2005) and is shown to 

fulfill sufficiency and efficiency criteria 

in the prediction of structural damage, 

which is the main goal of this study. 

Maximum Inter-Storey Drift Ratio (IDR) 

is selected as an engineering demand 

parameter since it represents the global 

behavior of the building, which has a 

good correlation with global collapse. 

The construction of these buildings is 

supposed to be on soil type B. The plan 

of the building is shown in Figure 4. A 

rigid diaphragm is supposed to be based 

on the roof system in most buildings. 

 

Gravity loads are considered and 

assumed for the usual structures in Iran. 

There are a total of 7 modification factors 

(i.e., R), and each one is used by Iranian 

Seismic Code 2800 (2007). The finite 

element program OpenSees has been 

used to be able to apply analysis and 

modeling to the building samples. IDA 

analysis and nonlinear statics are done 

for a 2D external sample frame. In order 

to be able to model the steel structure 

element, a bilinear kinematic stress-

strain curve is used to model the steel 

behavior by accessing the library of 

OpenSees (McKenna, 2011). At the 

intersection point of the first and second 

tangents (i.e., tangent moduli) of this 

material, a transition curve has been 

provided. The main goal of this curve is 

to avoid any unusual change in local 

stiffness matrices because these matrices 

are used to ensure an effortless and 

smooth transition between plastic and 

elastic regions formed by elements. On 

the other hand, to be able to model the 

cross sections for beams and columns 

with the highest accuracy rate, the 

displacement-based design of beams 

and columns in accordance with fiber 

sections needs to be applied. It is 

noteworthy to mention that 

displacement-based elements are more 

stable than force-based ones. 

Furthermore, the leaning column is 

going to provide the P-delta effects. 

Also, all connections that have been 

faced with moment-resisting are going 

to be evaluated according to their 

behaviors based on the modified model 

of Ibarra-Krawinkler and considered as 

rotational springs. As stated in Figure 5, 

the model of the M2-WO panel zone has 

been selected due to the well-

representation of columns, beams, and 

panel zones yielding (2007). The static 

pushover and time history approach is 

done on the sample model to assess the 
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lateral strength and drift ratio of the 

sample structure. The capacity curve 

and drift ratio for the sample structure 

are shown in Figures 6 and 7. 

 

 
Figure 5. Detail of OpenSees model 

 
Figure 6. Drift ratio based on the nonlinear time history analysis 

 
Figure 7. Drift ratio based on the nonlinear time history analysis 
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7. Using Artificial Neural Network 

(ANN) to Predict Seismic Demand  

 

The key purpose of this paper is to study 

the behavior of SMRF structures by 

applying computationally efficient 

fragility analysis. For this target, the two 

values of Eq. (4) have to be performed 

under consideration of each limit state. 

These two parameters are affected by 

natural ground motion size sets, and the 

prediction of those leads to an analysis of 

fragility in different limit states. In this 

study, an ANN is applied to achieve the 

seismic level of demand according to 

EDP, expressed in terms of the structural 

first-mode period (Sa (T1, 5%)). The 

ground motions that express the 

uncertainty of demands have been 

defined with the help of the IMs vector 

and in accordance with the ANN itself. 

In more detail, IMs can state delegate 

values for each single ground motion 

seismic; therefore, IMs can be considered 

an input of ANN. The estimation 

abilities of the proposed ANN are 

represented for the considered examples 

as the first step of the suggested method. 

 

The target of the ANN estimation 

method is to estimate and predict the 

different sets and combinations of the 

three IMs in accordance with the limit 

state value, which is given by the 

proposed demand, to assume that they 

are more suitable for the record 

definition. Therefore, in this case study, 

the total number of input nodes for the 

ANN is considered to be 3, but there will 

be two hidden layers with a total of 42 

nodes in each. It is noteworthy to 

mention that this study has been done 

using a trial-and-error approach, and 

each of these hidden nodes is capable of 

providing a compromise between 

efficient calculations and accurate 

estimation. The damage that has been 

stated previously can be obtained by the 

total of 5 nodes in the output layer that 

correspond to the Sa (T1, 5%). Therefore, 

the 3–42–42–5 ANN configuration is 

applied for the case study. Figure 8 and 

the IDA curve of the sample structure 

are shown in Figure 9 in accordance with 

the ANN performance, where the 

obtained results of full IDA are 

compared with the estimated values of 

ANN. In Figure 10, the direct IDA 

evaluated value is represented on the 

horizontal axis, and the vertical axis 

refers to the estimated value by 

regressed analytical functions. The 

position of IDA-based values is equal to 

the approximated values, which have 

been indicated by the solid blue line. 

Also, the achieved data has been shown 

with dots, and the bounds are 

represented with dashed lines, which 

include 68.7% of the dots. The data 

deviation from the solid blue line 

(estimated error) is presented by the 

average of the ratio represented by 

equation (11). It is noteworthy to 

mention that the three training sets with 

the ground motion sizes of 40, 30, and 20 

have been tested and simulated, and as a 

result, the 40-sample size has been taken 

as an equally well-sized sample 

compared to the other two ground 

motion training sets. 
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𝑅2 = 1 − [
∑ (𝑦𝑖−𝑦�̂�)2𝑛𝑖

𝑖=1

∑ (𝑦�̂�)2𝑛𝑖
𝑖=1

]                          (11) 
Where 𝑦 and �̂� are predicted and definite 

values, respectively, and 𝑛𝑖 is consider as 

total number of samples.  

 
Figure 8. The structure of the MLP network implemented. 

 
Figure 9. IDA curve of 40 suit records in SMRF sample 

 

 
Figure 10. ANN analysis graph for 40 earthquake (a) Train data (b) Test data 
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8. Fragility Curve  

 

In the second part of this proposed 

method, five damage are applied to the 

states of fragility curves for sample 

buildings. The considered damage-

states has been defined by the values of 

maximum means drift and structural 

damage range from availability and 

usability to life cycle safety of structure 

in accordance with the sideway collapse. 

The following max  values has been 

selected, based on HAZUS (FEMA, 2003) 

research study with respect of each one 

of the five damage-states: 0.4% (slight 

damage), 0.67% (moderate damage), 

1.6% (extensive damage), 4% (complete 

damage) and 4.8% (collapse damage) or 

last-converged point on an IDA curve 

any one reaches early for the SMRF 

building with five symmetric story. For 

each single of damage state, the IM-

based and IDA has been applied to 

compute the two factors of µ and β from 

Eq. [4] by using “log fit” function of Mat-

lab. IM-based has been defined and 

calculated for all five states of damage. 

In accordance to the target of proposed 

method, five cases have been applied to 

calculate the two factors of (𝝁𝒌, 𝜷𝒌, k = 1 

. . . 5):  IDA-20, IDA-40, IDA-60, IDA-80 

and IDA-100, where 10–100 records are 

implemented. 

Figure 11 represents the fragility curves 

in different damage state that cover the 

entire damage range of sample structure. 

For the test case, the fragility curves 

deriving based on the IDA-100 are 

considered as the ‘‘perfect’’ ones. 

Initially, it can be observed that the IDA-

20 damage states are overestimated the 

structure capacity. On the other hand, 

the capacity of the structure is 

underestimated for both damage states 

of IDA-40 and IDA 60. So, it can be noted 

that 80 records offer a good prediction of 

the two Based on 𝝁𝒌and  𝜷𝒌, the fragility 

curves of IDA-80 approximately 

coincide with case of IDA-100 which is 

our acceptance criteria. So, it can be 

resulted that IDA-80 is the best case 

among others according robustness and 

efficiency. Therefore, it can be noted that 

more natural ground motions are 

required for an efficient and reliable 

computation of  𝝁𝒌 and  𝜷𝒌 factors and 

accordingly for the deriving the fragility 

curves in various damage state. 

 

9. Conclusion 

 

A neural network-based approach is 

applied for achieving a suitable 

prediction of the Sa (T1, 5%) given the 

building capacity, which is subsequently 

applied for the fragility evaluation of 

steel moment-resistant frames. 

Especially, ANN is applied as the 

proposed approach when incorporated 

into the IDA analysis, which indicates 

that it is suitable. The main target is to 

suggest a procedure capable of 

preparing accurate Sa (T1, 5%) of the 

structural frame at a suitable analytical 

time that is then incorporated into the 

computational fragility curve. ANN are 

trained to apply a fixed number of IM, 

which can be simply derived from 

natural records. For the purpose of 

efficiency and representing the proposed 

method, a five-story symmetric steel 

moment building has been discussed. 
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Figure 11. Fragility curves for five damage-states applying alternative number of 

records. 

There are three parts to numerical 

attention. Firstly, the capability of 

predicting by the ANN is tested. As was 

shown, 40 training and testing samples 

(IM) are enough for efficient training, 

testing, and validation of the ANN to 

estimate the seismic demand presented 

by the Sa (T1) for the five damage states. 

Second Based on the trained ANN's 

estimation, we have successfully derived 

a set of five damage state fragility 

curves. On the other hand, the analytical 

cost of the proposed ANN is tested. It 

was represented that the analytical cost 

applied by the predicted ANN would be 

reduced by comparing various fragility 

curves in different limit states. 
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