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A TUTORIAL ON THE SINGULAR VALUE
DECOMPOSITION '

Abdurrahman KARAMANCIOGLU' and Can OZDEMIR®

ABSTRACT: 4An mxn real matrix A can be factored as UWV", where U and V are
orthonormal, and W is upper left diagonal.  This factorization is called Singular: Value
Decomposition (SVD). The matrices U, W, and V are useful in characterizing the matrix A. In
this manuscript geometric characterizations are emphasized. Geomeiric characterizations are
analyzed in terms of subspaces, matrix scaling, and norms. We also present a numerical viewpoint
for SVD in order to keep the material self-contained. In the last section we treaf a special problem
where action of the matrix A is restricted to a given subspace.
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TEKIL DEGER AYRISTIRMAYA GENEL BAKIS

OZET: Gergel bir A matrisi UWV " seklinde ifade edilebilir; burada U ve V ortonormal, W
ise sol iist kogegen matrislerdir. Bu iglem Tekil Deger Ayrignrma olarak adlandirilir. Bu ayrighrma
A matrisinin gegitli ozellikierini belirlemede kullamighdir. Bu ¢aligmada bir matrisin geomeltrik
ozelliklerinin belirlenmesi vurgulonmaktadir. Geometrik dzellikler alt uzaylar, olgekleme yetenegi ve
rormlar tirinden incelenmektedir. SVD ye sayisal bir bakiy agisimin konu biitinligi agisindan
sunulmasinin ardindan makalenin son kisminda bir matrisi dlcekleme etkisinin verilen bir alt uzayda
sinirlandirildigi bir ozel problem incelenmektedir.
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I. INTRODUCTION

In this section the singular value decomposition (SVD) is introduced through explicit construction.
Several propertics of symmetric matrices are discussed in the construction process. We also include an
example to illustrate the steps in the construction.

In Section 11 the range and null spaces of a given matrix is obtained from its SVD. Discussing also the
complementary subspaces of matrices the results are presented in a table form. In Section IIl scaling
abilities of matrices in various directions are investigated. The results are related to the matnix norms.
In section IV and V we discuss several side issues and a numerical viewpoint for SVD as a matter of
self-containedness. We treat a special problem in Section VI: We derive procedures o find the
maximum amplification abilities of matrices in a given subspace. '

For a given matrix A € R™", the SVD provides a set of real numbers (will be called singular values),

and orthonormal bases for very useful subspaces in R” and R”. Using these, the matrix A is
characterized geometrically and computationally.

Symmetric matrices play particularly important role in the decomposition process. The following lemma
characterizes the eigenvectors of symmetric matrices. '

Lemma L1 (for instance [4]) Eigenveciors of any symmetric matrix AsR"" form an
. orthonormal basis for R". i 0

Next we present the Singular Value Decomposition theorem. We also present a proof for this theorem in

order to establish notation and utilize certain parts in the succeeding sections. For the proofs using
alternative combinations of mathematical tools, reader may refer to [2], [3], [4] or [5].

Theorem 1.2 4ny A €R™" can be factored as

A=UWVT (1)
suchthat U eR™™ and V eR™" are orthonormal, and W €R™" has the form
W 0
2

with W diagonal and full-rank.

Proof
We will first construct the matrix U' AV using orthonormal U and V , and show that this matnx
equals upper-left diagonal matrix W as in Equation 2. Since Q" =Q"! is valid for any orthonormal

Q, we will conclude that A= uwv’™,

Let A,, i=1,...,n be the eigenvalues of ATA. The matrix A"A is obviously rcal symmetric.

Since real matrices of the form A" A have nonnegative eigenvalues, we are allowed to group them as
positive and zero ones. Let A, >0 fori=1...,s and A, =0 fori=s+1L....,n . Select an

orthonormal matrix V :[v1 vy vn] such that its each column v, is an eigenvector of ATA
corresponding to A,, i = 1,...,n. Note that existence of V' is a consequence of Lemma L1.

Set w, ':Wi!l and u, = Av,/w, for i=1,..,s. Together with appropriate w,,,...,U,, an
orthonormal matrix U = [u, u, um] can be formed. The appropriate column vectors can easily be
found using Gram-Schmidt process.



Now observe that:
(OBS1) s<nands<m

(0OBS2) Av, =0 fori=s+1,...,m, since ||Avi||§ =4, |iv”j =A,,and 4, is nonzero only if
i=1,...,5. Hence ||A'vi ||2 =0fori=s+1,...,n and “Avi”j =0 implies Av, =0,

(OBS3) u/u; =0 for i#j and i,j=1,...,m

Let us construct W:=U" AV . Iis (,j)-th element w, ;equals u’ Av,. Panition this matrix into two

submatrices W, and W, such that they contain first s and last #-s columns of W respectively. The
observation (OBS2) implies W,=0. For W, the i-th diagonal element is

u Av, = (Av, /w, )T Av, = (viTAT/w,)Av‘ =viAv, /w, =w,
and nondiagonal elements are zero due to (OBS1) and (OBS3).

Thus W, with the form given by Equation 2, satisfics W =TU" AV . This implies A = UWVT, which
completes the proof. a

Note that the proof shows existence of the decomposition by constructing the factors explicitly. Before
proceeding with geometric properties of this decomposition few remarks are in order.

In the proof, without noticing, we obtained eigenvectors of AA T from that of ATA , and used in the
construction of U . Indeed, each column vector u,, /= 1,...,s, is an eigenvector of AAT associated

with the eigenvalue A,. Clearly,
AA"u, = AAT(Av, /w,) = A(ATAV, )W, = ALy, /1w, = A, (Av, /W) = A,

proves this assertion. It should be observed that nonzero eigenvalues of A TA and AA" are the same.

The diagonal elements of \ ,namely w,, i=12,....5, are called singular values of A. A natural
consequence of this definition is that the matrices A and AT have the same singular values. Since
T
AT =(UWVT) =VW'UT = VWU,

singular values are invariant under transposition.

II. GEOMETRIC NOTIONS

The SVD provides two insight-giving subspaces of a decomposed matrix: its range and null spaces.
These are denoted by &) and 7(.) respectively. The singular value decomposition provides orthogonal

bases for thesc subspaces (see for instance [1], [2], and [5]). Their orthogonal complements are
inherently available in this decomposition.

We justify in simple terms that SVD of A contains its range and null spaces as follows. From

Expression 1 we obtain
AV =UW,
that is,

Ay, v =,]=[w, 0, ---um]P: :ﬂ

or



[Avi--- Av, Ay ---ﬁwn]:[w]ul ceew 20 0] 3
To display Equation 3 more intuitively, we equate columns of the lefi- and right-hand side matrices in
two parts:

s+1

Av,=wu,, i=1...5s 4)
and

Av, =0, i=s+1...,n %)
Nonzero vectors resulted by action of A on the columns of V form a basis for &A). These basis
vectors wu, ,...,w_u, (cquivalently, u,,...,u,), in fact, form an orthogonal basis for this subspace.
For a verification of orthogonality recall how these vectors have been constructed. The null space of A
is apparently the columns of V that are mapped to zero vectors by A. These are the last »-s columns of
W that is, %0 ¥, a0,V o

s+12 n°

It has been shown that first s columns of U and last #-s columns of V serve as range and null spaces of
A respectively. Since cach of U and V is an orthonormal matrix, bases for orthonormal complements of
Z(A) and Z(A) arc also parts of these matrices. In more precise terms, last #-s columns of U form a

basis for 2(A)" . Similarly, first s columns of V form a basis for ZZ(A)" . The perp sign, L, denotes
orthogonal complementation.

The four subspaces extracted from U and V are related to cach other by 2(A)" = #(A") and
#(A)' =2(A"). Table 2.1 summarizes subspaces of A and relevant basis vectors.

Subspace Basis Vectors
A) | P
A) Ve

2(A)" e
7%(A)" ViV,

Table 2.1 The subspaces of matrix A

In this section columns of U and V have been related to range and null spaces of A In the next section,
the singular values are related to the size of action of A in various directions.

I1I. SVD CHARACTERIZATION OF MATRIX MAGNIFICATION

Operating on a vector a matrix may rotate and scale 1t. In several engineering applications matrices
characterize systems with their extreme abilities in rotating and scaling. For instance, in control
engineering a generalization of gain and phase margin to multivariable systems is related to smallest
singular value of the return difference matrix ([6], [7]). Also in signal processing the direction where
the oriented energy is maximum is related to the largest singular value of the matrix formed by sample
vectors [8). In this section maximum (minimum) scaling ability of matrices is related to their largest
(smallest) singular values in simple and intuitive terms.

Consider Eq. (4)

Av,=wu, i=1...35
and note that the norms of both v, and u, are unity. Matrix A maps unity-norm v;to a vector w,u,,
whose norm is w,. Thus

lavil, =, =l =,



for i=1,...,s, that is, any vector in the direction v, is w; times magnified by A.

We next show that max, fa1 “Ax"2 is achieved for some xe{vl,...,v,}, and equals

max,_, {w,},thatis,
4], = max {+.}-

Since V is an orthonormal matrix, its columns form an orthonormal basis for R”. We can write any
unity-norm vector x in R" as
A=QV, ta,v,++a,v,

forsome @,, i=1,...,n, such that ZLafz]. Using this
|Ax]; = Aca, v ++a v,

= ”al Av,

= e, w,v, +

2
aiwl

anwn 3

Since U is orthonormal and since orthonormal operators do not change the norm
2
o 1 W}

Jax]; =
a,w

n h 2

=% (@) < max {w 3 Za = max {w }= max {wz}
5 i€{luan - © 7 &= " gl
This shows that the norm of interest is upper bounded.

|Ax|, < max {w,} forall x|, =1 (6)
To show that this upper bound is actually achieved let w, :=max, ., ,{w,} and select x=v;
[ax], =Javil, = o, =il =wi] = mex v} @)

il
Equations 6 and 7 show that

A, = max (w,} ®)

le{l
We have shown that the greatest singular value is the maximum amplification obtainable by the
operator. Likewise, the lcast singular value can be associated by the least amplification obtainable by
full column rank operators:

Theorem IIL1 Let the null space of A eR™" contains only the zero vector. Then
mm]]Ax“ = mm {w }

0

Let us investigatc a relation between the least and greatest singular values of nonsingular operators. Let
A €R™" be nonsingular. Then the SVD of A is
At=vVW'y"’



with
T }
w,'
Wl= 0
0 0 - 0 w']
Hence the singular values of A™ are w;', w;', ...,w,". Together with Theorem II.1 and Eqn. 8

this gives rise to the following corollary.

Corollary IIL2 Let A € R"™ be nonsingular then
. 1

4 -

2. =

minHz:l ”AKHZ

IV. A COMPACT REPRESENTATION OF SVD AND EXTENSION TO
THE COMPLEX FIELD

In this section existence of a compact representation of SVD will be shown as a corollary of Theorem
1.2. Following this, an extension of the SVD to the complex field will be presented.

The following corollary may be proven by a simple inspection. We present the proof in order to form a
background for the succeeding comments.

Corollary IV.1 Any A€R™" can be factored as
- A=UWV'’
such that U eR™* and V eR" satisfy U'U =V'V =1_, where 1, is the sx s unit
matrix with s.= rank(A). W eR*** is diagonal with rank(A) = rank(W)A

Proof
From Theorem 1.2 it is possible to factorize A as A= UWV" . In an explicit form:
v,
W o] v’
A= [ul “s us+1 um] T,
0 0_ vnl
.
_w]v} Z
wvl
1"[“1 ul us+l “um] ‘e
0
L0 |




[w,vT
T
:[ul us 0 ’ 0} w:)v’
= 0 -
Wl‘vlT
:[ul ene us} 14
AN

Sy w Wy, e v

= UWVT
Since U and V are partitions of U and V in Expression 1, the assertions U'0=V'V= I, and
rank(A4) = rank(W ) follow Theorem 1.2. 0

This version of SVD also preserves the singular values, however, does not contain columns of U and V
associated with 2(A") and Z(A"). Depending on the application of SVD Theorem IV.2 may be

found more practical, since its construction requires less computation and storage. Several numerical
analysis softwares use the compact representation of SVD [9].

Thus far we have considered only the real matrices to decompose. The motivations for this are the
physical motivations and simplicity in presentation. Generalization of the SVD to complex matrices is
straightforward: Fr it

Theorem IV.2 Any AcC™" can be factored as
A=UWV"
such that U ¢C™™ and V eC™ are orthonormal, and W € R™" has the form

W o
00
with W diagonal and full-rank. ]

Changing the ficld of A to complex numbers has changed the ficlds of U and V. However, ficld of the
singular values remained unchanged. In the proof a complex version of Lemma 1.1 can be used. For this
refer to any textbook showing that symmetric matrices generalizes to Hermitean matrices in complex
setting. Corollary IV. 1-like version of Theorem [V.2 is straightforward, and omitted.

V. A COMPUTATIONAL VIEWPOINT

In this section we briefly present construction of SVD by computers. Then we discuss the meaning of
relatively small singular values in computing the solutions of lincar algebraic equations.

In the first section we have presented a systematic method of constructing the SVD. This method uses
the eigenvalues of AA” in the construction. Lets recall that these eigenvalues are the squares of the
singular values of A. However, direct computation of the eigenvalues of AA" is not used in practice,
since squaring A may causc loss of information in finite precision machines. Francis is the first



addressing this problem and proposes the best solution ever ([10] and [11]); Transform A into a form
which preserves the singular values, and which aliows extraction of the orthogonal factors of SVD using
numerically harmless operations. A slightly improved and recapitulated form of this algorithm takes
place in the literature few years later [12]. .

Algorithm of Francis requires bringing the matrix A into an upper bidiagonal form via unitary
transformations. Indeed there exists orthogonal matrices P T and Q such that PTAQ=A is upper
bidiagonal. P and Q can be obtained as products of sequences of appropriate Houscholder matrices
([12] or any advanced textbook). Then iterative multiplication of A, by appropriately selected unitary
matrices converges to an upper diagonal matrix A whose upper diagonal entries are the singular values
of A. This iterative part of the algorithm is called QR algorithm. Denoting the resultant iterative
matrices by R* and S we can writt RTPTAQS = A . This yield the SVD of A: (PR)A(QS)".

For parallel machines Kogbetliantz's algorithm is more efficient compared to that of Francis [13]. This
‘algorithm also cxtends to some other orthogonal decompositions such as the QR decomposition.

The ratio w_, /w,, is called the condition number. Large condition numbers cause error in
numerical solutions of linear algebraic equations [12]. This phenomenon may be avoided with a little

penalty which is illustrated as follows: Let A have the singular value decomposition UWV', and let x
be the unknown to be solved in the linear algebraic equation
Ax =b. (10)
Assume that the condition number of A is “large”, that is, larger than a certain threshold number which
is determined by numerical representation range of the computing machine. Without loss of gencrality
_we assume that some singular values are as small as cot}ld be affected by the round-off error. Equations
corresponding to these singular values are noise~corrupted equations, and they contribute o the error in
the solutions. Therefore, the noise-corrupted equations should be disregarded. Substituting the SVD of
A in Eqn. 10 we obtain
UWV'x=b. T
Substituting 0 for the small singular values eliminates the corresponding equations in Eqn. 10. Writing
Eqn. 11 in scalar notation shows this. Many commercial softwares recommends zero the noise-affected
singular values and use least squares method to selve the modified equations [9].

VI. AN APPLICATION: MAXIMUM AMPLIFICATION IN A GIVEN
SUBSPACE

Let the singular value decomposition UWVT of AeR™" be known. Foragiven {x,y} cR" we

want to find max,_ |Am| subject to m espan{x,y}.

w1

Using Gram-Schmidt algorithm it is possible to find orthonormal sct {X,¥} such that

span{x,y} =span{X,¥}. Let m be expressed as m=gq X +a,y forsome a,,a, eR.

* Orthogonality of {X,¥} and |m|=1 imply a} +a; =1. Let us transform m into another basis by
p=V'm. Now maximizing ||Am|| is equivalent 10 maximizing “AVp“ The equality AV=UW

" implies AVp=UWp, or explicitly :

; AVp=p, (a,,a,)wu ++p (a ,a,)wu, (12)



where p;, and w;, # = 1,...,s (as defined in Section I, s is the number of nonzero singular values) are the
first s components of p and first s columns of U respectively, and w;, i=1,...,s are the (7,7)-th
componenis of W. The problem now is to solve

max oy (a0 )wu+4p, (@@, | (13)
for ¢, and a,. Exploiting that U is orthonormal Equation 13 is equivalent to
max {|p,(a,, @, [ ++p, (@, @)W, . (14)

Equation 14 has two variables: &, and @, . In order to reduce it to a single variable, we can utilize the
following change of variables
a, =cosd (15)
and
a, =siné (16)
Using Equations 15 and 16 Equation 14 becomes,
2
max {r, (8)w,|

for some 7,(#), i=1.2,...,5. Note that Equation 17 is a maximization without any constraint.

(17

Example VL1 Let the matrix A be given as
1/4  —3/2 -3/4
Jila 12 -3/4
A=
0 v3 0
Wiz o 3/2
whose SVD can be computed as

—

_ 1 0 0}
1/2 3/4 0 3/4 s | - Ll
J3/2 174 0 —=J3/4)0 2 0 5w
00 3
0 3720172, V372 0 12
0 o 1 0o |0 0 0

} such that HAmH is maximum.

KIK
Let us obtain the unity norin vector m & spanll 1
o/ 4

1/45 || -24/5/45 1]fo

The orthonormal set { 2/ J' V5145 } span the same subspace spanned by {{2 || 1 |}.
0 || 4 f5/9 1o]]4
Now let
1145 —2+/5/45
m=a,|2/V5 |+a,| V5745 | (18)
0 4519

and
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/2 0 -3/2]%a,-2Ea,
p=V'm=| 0 1 0 *a, +8g, (19)
312 0 12 g,
La, ~B1+10J3)a, |
= J.a +£a2 ; (20)

Using transformations 15 and 1 6 we ob!am
z—fgcosﬂfﬁ(l + IO‘J')Siﬂﬂ
r= Zcosf +-5 Lsing 21
L-"f 059+—(10 J3)sin6
whose squared norm is

(mso (1+10f)snn9) (Lcosﬂ+—sm6’) +9(5‘%0059+%(10—J§)5in6)2

2

1232-160v3 ., , 12-8043

—FF—F S8In 9_—““*-_
405 45

Using the identities cos’ @ = 1(1+ cos28), sin? @ =1 (1-cos26) and
sinfcosff = %[sin(ﬁ + ) + sin(6 - ﬁ)] this becomes

403 - T ;:goﬁ N 30958—11060~/§ 9

Further simplifications is obtained by using acosf +bsin@ =+ a’* +b* Sin(9 + arcta.n(—g—)) :

23

= —5— cos’ 8+ sinfcosé. (22)

2041825 + 46400+/3 csig) 3095~ 16043
\/ PEpe 1n(29 + arctan === mg) 210 : (24)
This norm is maxr'mized by maximizing the sin(.) term. Maxima are achieved whenever its
argument is = n=13,.... Carrying out the operations,
631+1604/3
20 + arctan(m) 7 (25)
8=04488674 (26)
and from Equations 15 and 16,
a, =09 (27
and
a,=0434 (28)
are obtained. _
Therefore the vector m which maximizes !!Am!! in a given two dimensional space is:
0.35936
m=| 082655 | a
0526

Note that by using transformations 15 and 16 we have removed the constraint @} + a3 = 1. Also the
problem is reduced to onc unknown 6 from @, and @, .
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Alternatively, we could have solved the problem without any transformation. In this case Expression 14
can be written as ‘

23 2 , 8043-12 1232-16043 ., 2

Lo+t a0, 25

max 5 1 45 - 172 - 405 2 (29)
a; +a,

The normalization is used to remove the constraint. However, maximizing Eqn. 29 we obtain only the
direction of the maximum. This maximum satisfies

21,2 4 80y3-12 1232-16043 2
174 [5051 F R G e al}:o

2 2
oa, a; +a;

or more explicitly

80v3 — 12 2, 1262+ 32043
45 : 405
Solving Eqn. 30 for ar, wc obtain

12 =803 TN

o0, +—— 30
1@ 5 (30)

a, =-2.07615776%

or
o, =0481658969, .

By testing the second one gives direction for the maximum amplification. In this direction
(a,,a,)=1(09,0434) satisfies the norm constraint. This result is the same as the one given in
Equations 27 and 28.

VII. CONCLUSION
Various geometric characterizations of matrices have been discussed in Singular Value Decomposition
(SVD) framework. Construction of SVD, range and null spaces, their complements, and magnification

by matrices have been emphasized particularly. Examples have been taken place in the paper for the
sake of clarity in presentation.
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