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ABSTRACT: An m y, n real matm A can be factored as ITWV , where V and V are
orthonormal, and W is upper left diagonal. Thîs factorization is called Singular Vaîue
Decomposilion (SVD). The matrlces U, W, and V are usefül in characterizing ıhe malrix A. in
this manuscript geometric characterizations are emphasized. Geometric characîerizations are
anaîyzed in terms ofsubspaces, matrix scaling, cmd norms. We also presenî a numerical viewpoint
for SVD m orcfer to keep the maîerial setf-contained. in the last section we îreat a special problem
where action ofîhe matrix A is restncted to a gıven subspace.
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ÖZET: Gerfel bir A matrisi UWV şeklinde ifade edilebilir: burada V ve V ortonormal, W
ise sol üst köşegen matrislerdir. Bu işlem Tekil Değer Ayrıştırma olarak adlandınhr. Bu ayrıştırma
A matrisinin çeşitli özelliklerim belirlemede kullanışlıdır. Bu çalışmada bir matrisin geometrik
özellîklerimn helirîenmesi vurgulanmaktadif. Geometrik özellikler alt uzaylar, öîçekleme yeteneği ve
normlar türiınden incelenmekledir. SVD ye sayısal bir bakış açısınn konu bütünlüğü açisindan
sunulmasmm ardindan makaîenm son kîsmmda bir matrisi ölçekteme etkisinin verilen bir alî uzayda
smırlandmldı^ı bir özel problem inceîenmekîsdir.
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I. INTRODUCTION

in this section the singular value decomposıtıon (SVD) is introduced througb explicit constructıon.
Several properties of symmctrie matrices are discussed in the constnıction process. We also include an
example to illustrate the steps in the construction.

hı Secüon II the rangc and null spaces ofagiven matrix is oblained from its SVD. Discussingalso Üıe
complementary subspaces of matrices ttıe results are presented in a (able form. in Section III scaling
abilities ofmatrices in various directions are investigated. The results are related to the matrix norms.
in section FV and V we discuss several side issues and a numerical viewpoinl for SVD as a matter of
self-containedncss. We treal a special problem in Seclion VI: We derive procedures lo find the
maximum amplifıcation abilities ofmatrices in a gtven subspace.

For a given matrix A e R""", Uıe SVD provides a set of real numbers (vvill be called singular values),
and orthonomıal bases for very usefiıl subspaces in R' and R". Using these, the matrix A is
characteri2ed geometrically and computationally.

Symmelric mauices play particularly important röle m the decomposition process. The following lemma
characterizes the eigenvectors of symmetric matrices.

Lenlma 1.1 (for mslance [4]) Eigenvectors of any symmelric matris A e R form an
orthonormal basis for R". rl

Next we present the Singular Value Decomposition theorem. We also present a proof for this theorem in
order to establish notatıon and utilıze certain parts in the succeeding sections. For üıe proofs using
altemativecombinaüonsofmathcmaticaltools, readermayreferto [2], [3], 14]or[5]. ^ ,

Theorem 1.2 Any A eR"'" can be factored as
A-UWVT (l)

such ıhat V e R""* and V e R"*" are onhomrmal, and W e R"" has the form

\w °1 (2)
o o

wiîh W diagonal andfull-rank,

Froof
We will fırst constmct the matnx UT AV using orthonormal U and V, and show that üus matrix
equals upper-left diagonal matrix W as in Equation 2. Since QT = Q is valid for any orthonormal
Q, we will conclude tiıat A = UWV .

Let A,, i= \,..., n be Üıe eigenvalues of ATA. The matrix AA is obviously real symmelric.
Since real matrices of the form A A have nonnegative eigenvalues, we are allovved to group them as
positive and mro ones. Let /l, >0 for ı'= l,..., s and A, =0 for i=î+l,..., n Select an
orthonormal matrix V =[v, v, "' v, ] such that its each column v, is an eigenvector of A A
corresponding to A,, i =!,..., ». Note that existence of V isa consequence of Lemma 1. 1.

Set w, = ^I, and u, = Av, /»', far i= l,..., i. Together with appropriate u^,,..., ı^, an
orthonomıal matrix U =[u, u;-" u^] can be förmed. The appropriate column vectors can easily be
found usirig Gram-Schmıdt proccss:



Now observe that: , . ,

(OBS1) soıands&m

(OBS2) Av, =0 for;=î+],..., m, since |Avı|^/l, . |]v, ||=A,, and-î, is nonzcro only if
i=î,..., s. Hence ||Av, ||; =OCo[i= î+ l,..., ", and ||Av, [|; =OimpliesAv, =0.

(OBS3) u,Tu, -0 for İ4-] and İJ=\,..., m

Let us construct W: = U AV . Its (;J)-th element w, equals u^Av^... Partitİon this matrix mto two
submatrices W, and W; such that üıey contain first s and last n-s columns of W respectively. The
observation (OBS2) implies W;=0. For Wı, the ı-th diagonal element is

u,TAv, =(Av, /w, )TAv, =(v, [AT/w, )Av, =V,ÎA, V|/U', =»v,
and nondiagonal elements are zero due to (OBS1) and (OBS3).

Thus W, with the fomı given by Equation 2, satisfies W=UTAV, Thisimplies A = UWV , which
completes the proof. 1-1

Note that the proof shons existence of the decomposition by constructing the factors expliciüy. Before
proceeding with geometric properties ofthis decomposition few remarks are in order.

in the proof, vrithout noticing, we obtained eigenvectors of AA ftom that of A A , and used in the
construction of U . Indeed, each column vector u,, »= l,... ,s, is an eigenvector of AA associated
with the eigenvalue A, . Clearly,

AATU| =AAT(Av, /)v, )=A(AIAVı)/w, =AA, V|/W, = A, (AV|/w, ) =-l, u,
proves this assertion. it should be observed that nonzero eigenvalues of A A and AA are Üıe same.

The dıagonal elemcnts of W , namely w;, /'= 1,2,..., s, are callcd singular values of A. A natural
consequence ofüıis defımtion is thal the matrices A and A have the same singular values. Since

AT =(UWVT)T =VWTUT =VWÜT,
singular values are invariant under transposition.

II. GEOMETRIC NOTIONS

The SVD provides two üısight-giving subspaces of a decomposed matrix: its range and null spaces.
These are denoted by <E(. ) and %(. ) respectively. The singular value decomposiüon provides orthogonal
bases for thesc subspaces (see for instance [l], [2], and [5]). Their orthogonal complements are
inherently avaılable in this dccomposition.

We justify in simple tcmıs that SVD of A contains its range and nullspaces as follows. From
Expression l we obtain

AV=UW,
Üıatis,

|w o
t"I V2 ... V. MU I "2 ... ""

o o

or



[Av, ... Av. Av,,, ... Av, ]=[»-, uı ... w, u. ... O ... 0] (3)

To display Equation 3 more intuitively, we cquatc columns of the left- and right-hand side malrices m
two parts;

Av, -ır, u,, i= l,..., s (4)
and

AV| =0, i=s+\,..., n (5)
Nonzero veclors resulted by action of A on the columns of V form a basis for %(A). Thesc basis

vectors W|Uı,..., w;u, (equivalently, u,,..., u, ), m facl, fonu an orthogonal basis far this subspace.
For a verifıcation oforthogonality recall how these vectors have been constıucled. The null space of A
is apparently the columns of V that are mapped to 2ero vectors by A. These are the last n-s columns of

Kthatis, v,,,, v,,,,..., v..

it has been shown that fırst s columns of U and last n-s columns of V scrve as range and null spaces of
A respectively. Since each of U and V is an orthonormal matrix, bases for orthonomıal complements of
®(A) and ̂ A) are also parts of these matrices. in more precise terms, last n-s columns of U form a

basis for 1S(A)L. Similarly, fırst s columns of V fom) a basis for %(A)^ . The perp sign, l, denotes
orthogonal complemenlatıon

The four subspaces extracted from U and V are related to each other by /?(A) = %(A ) and
%(A) = JÇ(A ). Table2. 1 summarizessubspaces ofA and relevaııt basis vectors.

Subspace

W)
.İKA)

«A)1
%(A)J

Basis Vectors

"l, .., U,

V, *l,..., <'.
"»I, ..., ""
V...... V.

Table 2. 1 The subspaces ofmatrix A ;

în this scction columns of U and V have bcen related to range and nuil spaces of A. in Üıe next section,
the singular values are related to the size ofaction of A İn various directions.

III. SVD CHARACTERIZATION OF MATRIX MAGNIF1CATION

Operating on a vector a matrix may rotate and scale it. in severat engineering applications matrices
characterize systems with their extreme abilities in rotating and scaling, For instance, in control
engineering a generalizalion of gain and phase margin to multivariablc systems is related to smallest
singular value ofthe retum difference matrix ([6|, [7]). Also in signal processing the direction where
the orientsd energy is maxirp. um ts relatcd to îhs largest singular value of the îTiat"x formod by sample
veclors [8], in this section maximum (minimum) scaling ability ofmatrices is related to their largest
(smallest) singular vatues in simple and intuitive terms.

Consider Eq. (4)

Av, = w, u,, /'= l,. ..,s

and note that the nomıs of both v; and u, are unity. Matrix A maps unity-nonn v, to a vector w, u,,
whose norm is w,. Thus

IAVı|l: =llw. "ı|l2 =lu'. ]'llu. ll;=w'.



for ;' = l,... , s, that is, any vcctor in the direction Vj ıs u/, times magnifıed by A.

We next show that maXj^_, |Ax|^ is achieved for some x e{vı,..., v, }, and equals
max, ^; {w;} > that is,

UAl=max{w, }'
ı=l,....,s

Since V is an orthonormal matrix, its columns form an orthonorma! basis for R". We can write any

umty-nomı vector x m R as
i=a, v, +a;v;+... +a, v.

forsome a,, t =!,..., «, suchthat ̂ ^°', -l- Usingthis
Ax A(a, vı+--+a. vj

a, Av, +.. -+a. Av, ||;

a', W|V, +. --+a, w,v,|
|2

ü
a, w,

a-w.

Since U is orthonormal and since orthonormal operators do not change Uıe nonn
]2

a, ıv,

lAiil

a.w.

=Z(a, K', )2 <,.m.M, {w.2}'Sa.2 =, m5, {w2}=, emax, {lf'?}
This shows that the norm of interest is upper bounded:

|Aıı|], < max(w, } forall ||ı||, =l
12 te{l,... j}

To show that this upper bound is actually achieved let w^: = max,^ı , ı {w, } and selectx=n
llAx|L=l|Av'kil; X't"k w. "»«2 = w, = max, {"',}

Equations 6 and 7 show that
11^2= . mm. sw ')

ıs(i,..., s}

(6)

(7)

(8)

We have shown that the grealesl singular value is the maximum amplifıcation obtainable by the
operatör. Likewise, thc least singular v-alue can be associated by Uıe leasl amplifıcation obtainable by
fiili column rank operators;

Theorem III. 1 Let ıhe null space of A e R""° conlains only ıhe zero veclor. Thm
mın
Eıi. -ı

Ax||;=^minjw,}
I^I,..., ^}

Let us investigalc a relation between the least and greatest singular values ofnonsingular operators. Let
A e R" ° be nonsingular, ThentheSVDof A-I is

A-' =VW .IUT



with

w

w o

.
- l

VI-

o o

O O ... O w,'

Hence thc singular values of A-I are w, ', w, \ ...,. ».. Together with Theorem III. l and Eqn. 8
this gives rise to the following corollary.

Corollary IU. 2 Let A e R"" be mnsingular Ihen

UA-Iİ .-
mın« Aı

IV. A COMPACT REPRESENTATION OF SVD AND EXTENSION TO
THE COMPLEX FIELD

in this section existence of a compact representation of SVD will be sho\vn as a corollary of Theorem
1. 2. Following this, an extension ofthe SVD to the complex field wıll be presented.

The following corollary may be proven by a simple inspection, We present the proof in order to form a
background far the succeeding comments.

CorollaryIV. l Any AeR""° can befactoredas
A=ÜWVT

such that ÜeR"" and V cR""' satisfy iPÜ =VTV = I,, »Aere I, is the sxs mit
matris wilh s. = rank(A). W e R'*' is djagoffo; wıA, rank(.A) = rank(W).

Proof '

From Theorem 1.2 it is possible to factorize A as A = ÜWV . in an explicit form:

A-[u, u. u. . ""]! w o

O B

x', v;

V;

L v: J

u. u. . ».l w y

o



w, v;

[u, ... u. O ...O] w,v;

o

H', V:

-[", -",]
w,v]

-[u, ... u. ]w[v, ... v, ]'
:-üwvT

Since U and V are partitions of ü and V in Expression l, the assertions U U ^V V - I, and

rank(. 4)=rank(W)followTheoremI.2. a

This version of SVD also preserves the smgular values, however, does not contain columns of U and V
associated with ^(AT) and %(A ). Depending on the application of SVD Theorem fV. 2 may be
found more practical, sincs its construction requires less computation and storage. Several numerical
analysis softwares use the compact representation of SVD [9].

Thus far we have considered only the real matrices to decompose. The moüvatıons for fhis are the
physical motivations and simplicity in presentation. Generalization of the SVD to complex matrices is
straightfonvard; ' .

Thcorem VV.ÎAny A £C can be factored as
A=ÜWVT

such ıhat V e C°"m and V e C"'" are orlhonormal, and W e R""° fa» rte/orm
w o

o o

wiîh W diagonal and jull-rank.

Changing the fıeld of A lo complex numbers has changed the fıelds of ü md V. However, fıeld ofthe
singular values remained unchanged. in the proof a complex version of Lemma 1. 1 can be used. Far this
refer to any textbook shomng that synunetric matrices generalizes to Hermitean matrices in complex
setting. Corollary IV. 1-like version ofTheorem IV.2 is straightforvvard, and omitted.

v'. A COMPUTATIONAL VIEVVPOINT

in this section we brieny prescnt construction of SVD by computers. Then we discuss the meanüıg of
relatively small singular values in computing the solutions of linear algebraic equations.

in Üıe fırst section we havc presented a systematic method of constmcting the SVD. This method uses
the eigenvalues of AA in thc construction. Lets recall that these eigenvalues are Uıe squares of Üıe
singular values of A, However, direct computaüon ofthe eigenva. lucs of AA is not used in practice,
since squaring A may cause loss of mfomıation in fınite precision machines. Francis is the first



addressing this problem and proposcs the best solution ever ([10] and [l IJ): Transform A mtoa fomı
whıch preserres the singular values, and which allows extracüon of the orthogonal factors of SVD using
numencally hannless operalions. A slightly improved and recapitulaled form of this algorithm takes
place in the lilerature few years later 112]

Algorilhm of Franas rcquires bringmg ıhe matrix A into an upper bidiagonal form via unitary
transfonnalions. Indeed there exists orthogonal matrices P and Q such that P AQ = A^ is upper
bidiagonal. Pand Q can be obtained as products of sequences of appropriate Householder matnces
([12] or any advanced tcxtbook). Tlıen iterative roultıplication of A,,, by appropriately selected unitary
matrices converges to an upper diagonal matrix A ıvhose upper dıagonal entries are the singular values
of A. This iterative part of the algorithm is called QR algorilhm. Denoting the resultant iteratıve
matricesbyRT and S wc can write RTPTAQS = A. Tlıis yield the SVD of A: (PR)A(QS)'.

For parallel machines KogbelUantz's algorithm ismore efficient compared tothat ofFrancis [13]. Thıs
aigorithm also extends to some other orthogonal decompositions such as Uıe QR decomposıtıon.

The ratio vı_. _ l u>_.. ıs called the condılıon number. Large condition numbers cause crror m
majt n^uı

numerical solutions of linear algebraic equations [12]. This phenomenon may be avoided with a little
penalty whıch is illustraled as follows; Let A have tlıe singular value dccomposition UWV , and let x
be the unknomı to be solved in the linear algebraic equaüon

Aı = b. (10)
Assume that the condıüon number of A is "large", that is, larger Üıan a certain threshold mımber which
is detennined by numerical representation rangc ofthe compuüng machine. Without loss ofgencrality
we assume thal'some singular values are as small as could be afiected by üıe round-oEFerror. Equatıons
con-espondmg to these singular values are noise-corrupted equaüons, and the)' contribute to the error m
the solutıons Therefore, the noise-corrupted equaüons should be disregarded. Substituting the SVD of
A in Eqn. 10 we oblain

UWVTx=b. ' (11)
Substituting O for the small smgular values elımimtes the correspondmg equaüons in Eqn. 10. Wntmg
Eqn. 11 inscalar notation shows this. Many commercial softwares recommends zero the noise-affected
singular values and use least squares method to solvc the modificd equations [9|.

VI. AN APPLICATION: MAXIMUM AMPLIFICATION İN A GIVEN
SUBSPACE

,Let the singularvalue decomposition UWVT of AeR""° beknown. Foragiven {x, y)cR we
wanttofmd maxyJ]Am| subjectto mespan{x, y}.

Using Gram-Schmidt algoriflun it is possiblc to fmd orthononnal set {î, y j such Üıat
span{x, yj-span{x, y}. Let m be expressed as m=n'ı;i+Q';y forsome a,, a; 6K.

Orthogonalily of (it, y) and |m^ = l imply a? +a, = l. Let us transform m into another basis by
p = VTm . Now maximizing ||Am|| is equivalent lo maMmızing ||AV^|. The equality AV=UW
implies AVp=ÜWp, or explicitly

AVp=pı(ff,, a, )w, u, +...+?, (a,, a;)w. u. (12)



vvhsiGp,, and u;, / = l,..., A- (as defmed in Section I, s is the number ofnonzero singular values) are the
fırst s components of p and first s columns of U respectively, and w,, ı=-\,..., s are the (/, /)-th
components of W. The problem now ıs to solvc

max lf/), (a,, a^w, tt, +--+p, (a,, a, ')w, u, [ (13)
G;^+aı=l'

fora; and a^. Exploitmgthat U isorthonormalEquation 13 is equivalenlto

max, (|p, (a,, a;)>f, 12 +...+!/?, (a,, a;)>f, |2}. (14)

Equation 14 has two variables; a, and a;. in order to reduce it to a single variable, we can utilize the
following change ofvrariables

a, =cos61 (15)
and

a^smff (16)
Using Equations 15 and 16 Equation 14 becomes,

max[\r, (e)w, \l+--+\r, (ö)w, \1} (17)
forsomc r, (8\ »=1, 2,..., s. NotethatEquation I7isamaximizationwithoutanyconstramt.

Esample VL1 Let fhe matris A be given as
1/4 -1/3/2 -1/3/4

V3/4 1/2 -3/4
A=

O V3
3^3/2 O

o

3/2

whose SVD can be compuîed as

1/2 -ı/3/4 0 3/4
V3/2 1/4 O -Vî/4

O t/3/2 O . 1/2

f î O O

020

003

000

1/2 O -V3/2
O l O

,,3/2 O 1/2

Let us oblain the umty norm veçîor m £ span { l \} such flıat ^Amjj is maximum.
L4J

The orthonormal set {

Now let

I/t/5
2/^5

JL

m=a

-2-1/5 / 45
^5/45
4../5/9

1/1/5
2/^5

} span ihe same subspace spanned by {

+0.

-2-1/5/45
Vİ/45
4->/5/9

(18)

Ctnd
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p=VTm^
ÎT"!1/2 O -^,3/2

O 10

1/3/2 O 1/2

^a, -40+loV3)^

2^
45
.

Fi.

a

l ' 45 "' 1

a

7?"' ^«
4./5
-t-a2

t". 4a.
^i-tA2

^a, +^(10-V3)ff,

(19)

(20)

Using transformations 15 and 16 we obtam

^. cosö-^(l+loV3)sine
.j-cosff+^smö

-çcosl9+-^(10-^)sme
(21)

whose squared norm is

^_-|. (l+10, /3)sin(?); +4(^cose+^sin@)2 +9(^. cosı9+İ. (10-^3) sin?)
A^1232-160^, -12^3 sisin2 e smöcosö.

5 ""' ' 405 45

Using tha idmlıtles cosî 0 = ^ (l + cos2(?), sin2 ö = y (l - cos20) and
sin S cos/i = y [sin($ + ft) + sm(ö - /))] this becomes

40ı/3-6 . "". 631+160ı/3__^^, 3095-160. ^/3
sin2ö+ "' '_ ..'-. - cos29+

(22)

(23)
45 - - 810 810

Further sımplificalions is oblained by usıng acosö + b sin $ = .\/a2 + A2 sin(@ + arctan(f)):

2041825+46400-1/3
656100 ı(2(? ., «J,-|, 3095-160V3

sm^+arctan^S)+-^ (24)

This norm ıs maximized by maxlmizing the sin(. ) lerm. Maxima are achieved ıvhenever ils
argumentîs 4S-, ,7=1, 3,.... Carrying ouî îhe operaiions,

' 63I. 160/3 \ _ ,
, 720/Î^OI;-^

0=0.4488674
andfrom. Equaîions Î5 and 16,

and

a, =0.9

a; =0.434

(25)

(26)

(27)

(28)

are obtained.

Therefore the veçtor m vhıch maximizes |Am| m a gıven twn ̂ imemional space is:
0.35936

m=1082655 l a

0.526

Note that by using iransformalions 15 and 16 we have removed the constraint a\ +cc\ = l. Also Üıe
problem is reduced to one unknown ö from a^ and a;.
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Altematively, we could have solved the problem wiüıout any transformation. in this case Expression 14
can be written as

23 ^ ı S0^3-t2 ^, /^ j_ 1232-]60s/r3 , ^,2
Tul '''45-~"'1"-2 1'"4Ö5 "-2

ff? +ffİ
max.^-" .:'"\1 -«^-^ (29)

a\-^a\
The noımalization is used to remove the constraint. However, maximizing Eqn. 29 we oblain only the
dircction ofthe maximum. This maximum saüsfıes

' Sr, 1 -l-"i^!î,
~S ^ l T ---45 - "- l w 2

1232-160^3 ^2

<?B, aî +a^
=0

or more explicitly
80^-12 , 1262+320^3

45
a; + a^a; +

12-801/3

Solving Eqn. 30 for a 3 we obtain

or

405

a; -2.076157769a:,

a, = 0.481658969a,.

45
a?=0.. (30)

By tesling the sccond one gives direction for the maximam amplifıcation in this direction
(a,, a ;)= (0.9,0.434) salisfıes the norm constraint. This rcsult is Üıe same as the one given m
Equations27and28.

VII. CONCLUSION

Various geometric characterizations of matrices have been discussed in Süıgular Value Decomposiüon
(SVD) framework. Construction of SVD, rangc and mili spaces, their complements, and magnification
by matrices have been emphasi2ed particularly. Examples have been taken place in the paper fer the
sake ofclarity in presentation.

Acknonledgment: Authors thank to Dr. V. Dzhaforov for his convcrsation wth them on Section VI.
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