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ABSTRACT 
Computer-aided automation systems for the detection of plant diseases 

represent a challenging and highly impactful research domain in the field 

of agriculture. Tomatoes, a major and globally significant agricultural 

commodity, are cultivated in large quantities. This study introduces a 

novel approach for the automated detection of diseases on tomato leaves, 

leveraging both classical machine learning methods and deep neural 

networks for image classification. Specifically, classical learning 

methods employed the local binary pattern (LBP) technique for feature 

extraction, while classification tasks were carried out using extreme 

learning machines, k-nearest neighborhood (kNN), and support vector 

machines (SVM). In contrast, a novel convolutional neural network 

(CNN) framework, complete with unique parameters and layers, was 

utilized for deep learning. The results of this study demonstrate that the 

proposed approach outperforms state-of-the-art studies in terms of 

accuracy. 

 

The classification process covered various scenarios, including 

binary classification (healthy vs. unhealthy), 6-class classification, and 

10-class classification for distinguishing different types of diseases. The 

findings indicate that the CNN model consistently outperformed classical 

learning methods, achieving accuracy rates of 99.5%, 98.50%, and 97.0% 

for 2-class, 6-class, and 10-class classifications, respectively. Future 

research may explore the use of computer-aided automated systems to 

detect diseases in diverse plant species. 

 

Keywords: Automated agriculture, Machine learning in agriculture, Convolutional neural networks in plant pathology, Deep learning in agriculture, 

Smart farming 

 

 

1. Introduction 
 

Diseases and pests have a detrimental impact on the production of various agricultural goods, resulting in reduced yields. The 

timely detection of these diseases and pests is imperative to mitigate the resultant damage. Currently, visual observation by 

agricultural experts serves as the primary method for detection. The development of computer-aided systems for early disease 

diagnosis and treatment is proposed to address these challenges. 

 

Computer-aided systems have been widely adopted in agriculture and various other fields. Classical and deep learning 

methods are frequently employed for the classification of different plant species and disease detection. In recent years, several 

studies have concentrated on disease detection in various plants, such as tomatoes (Tian et al. 2019; Chen et al. 2020; Karthik et 

al. 2020; Ouhami et al. 2020; Wspanialy & Moussa 2020; Altuntaş & Kocamaz 2021; Gonzalez-Huitron et al. 2021; Sembiring 

et al. 2021), rice (Jiang et al. 2020; Sethy et al. 2020; Temniranrat et al. 2021), apple (Park et al. 2018; Kuta et al. 2020; Zhong 

& Zhao 2020; Rehman et al. 2021), and carrot (Methun et al. 2021) plants. Sustainable agriculture underscores the necessity for 

efficient, cost-effective, and environmentally friendly techniques. With advancements in computer hardware and software 

technology, image processing and computer vision have emerged as crucial tools in agriculture, enabling the automated and 

rapid identification of crop diseases (Xu et al. 2017). The advantages of these technologies include high processing speeds, 

minimal errors, and improved accuracy. Agricultural research is not limited solely to the automatic detection and classification 

of crop diseases, it also encompasses other aspects that enhance the overall efficiency of the agricultural sector. 

 

1.1. Related works 

 

In the past 15 years, numerous studies have been undertaken to examine plants and detect diseases by utilizing computer-based 

systems. Early studies primarily employed classical techniques, including feature extraction, selection, and fundamental image 
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processing methods. The outcomes generated from these techniques were subsequently incorporated into classical learning 

methods to facilitate learning processes. More recently, there has been a notable surge in the adoption of deep learning methods, 

which consolidate all these stages into a unified approach. In general, these research endeavors can be broadly classified into 

two primary categories: (1) classical learning methods and (2) deep learning methods. In the subsequent section, we will delve 

into the specifics of studies conducted within these two classifications. 

 

1.2. Classical machine learning-based methods 

 

Liming and Yanchao harnessed machine vision technology to enhance the commercial value of strawberries and classify them 

within the agricultural sector. They employed the k-means clustering method for strawberry classification and adopted multi-

specific decision theory to address multifaceted issues. The study provided impressive results, with strawberries being graded in 

an average of just 3 seconds. Furthermore, the strawberry size detection error remained below 5%, the color grading accuracy 

reached 88.8%, and the shape classification accuracy exceeded 90% (Liming & Yanchao 2010). In a related study, Burgos-

Artizzu and colleagues presented various image processing-based methods for estimating crop, soil, and weed percentages in 

cultivation area images. They utilized a genetic algorithm to obtain the optimal combination of method and parameter for 

different image groups, resulting in an average success rate of up to 96% for winter cereal images and 84% for maize images 

(Burgos-Artizzu et al. 2010). Adebayo and their team reviewed the application of backscatter imaging to monitor food quality 

in agriculture, specifically discussing laser light backscatter imaging (LLBI), multispectral laser backscatter imaging (MBI), and 

hyperspectral laser backscatter imaging (HBI). The study examined the effects of moisture, firmness, acidity, and external defects 

on agricultural and food quality and emphasized the importance of real-time ranking and evaluation for successful quality 

assessment (Adebayo et al. 2016). Dutta and colleagues proposed an image-processing method to differentiate untreated and 

pesticide-treated grapes, addressing the high cost, time-consuming nature, and specialized expertise required for chemical 

methods of pesticide identification. Their study introduced an effective image processing-based non-destructive method for grape 

classification, achieving 100% accuracy using a Haar filter and support vector machine (SVM) classifier (Dutta et al. 2016). 

These studies represent promising tools for quality assessment and highlight the potential for future applications to other 

agricultural products. 

 

Arakeri and Lakshmana discussed the tomato grading process in India, emphasizing the need for careful handling during 

grading due to the sensitivity of the fruit. To address this, their study proposed an automatic computer-based system. Various 

experiments were conducted on tomato images, resulting in the proposed method accurately classifying tomatoes as defective or 

flawless with 100% accuracy. Additionally, an accuracy of 96.47% was achieved for the classification of ripe and unripe 

tomatoes (Arakeri 2016). Xu and their team developed a system to rapidly and accurately determine wheat leaf rust (BYP) 

disease to take timely measures to prevent significant decreases in wheat production. BYP is one of the main fungal diseases 

that cause crop losses. The system integrated embedded Linux and digital image processing techniques and was successfully 

implemented on the ARM9 microprocessor. Digital image processing and GUI programs were written and compiled with the 

help of Qt software for crop disease detection and grading. Results were displayed on an LCD screen (Xu et al. 2017). 

 

Compared to expert diagnoses, the system proposed in the study had accuracy rates of 96.2% and 92.3%, which is close to 

the decision accuracy of the human eye. In addition, the system was more convenient than human judgment. The proposed 

system could be used as an agricultural robot to examine field areas and detect, identify, diagnose, and grade all wheat diseases 

(Liming & Yanchao 2010). In their study, Rahman and colleagues aimed to target disease detection and treatment of tomato 

plants. The study extracted 13 different statistical features using the GLCM method and classified using the SVM method. The 

study achieved a 100% success rate for the healthy class, while 95% success was achieved for early blight, 90% for Septoria leaf 

spot, and 85% for late blight (Rahman et al. 2023). Gerdan and colleagues detected tomato diseases in their study. They used 

convolutional neural networks (CNN), DenseNet201, InceptionResNetV2, MobileNet, and Visual Geometry Group 16 methods. 

The most successful method in their study was the CNN method.  

 

Table 1 provides an overview of studies conducted using classical machine learning methods, including information about 

the plant species, methods employed, and success rates achieved.  
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Table 1- Studies in the Literature Based on Machine Learning Methods 

 
Author(s) Plant Type Methods Success 

Tian et al. 2019 Tomato k-means algorithm Accuracy: 90.00%. 

Xu et al. 2017  Wheat 
Gray level histogram change, 

edge detection, noise removal. 

Recognition rate: 96.20%. 

Accuracy: 92.30%. 

Liming & Yanchao 2010 Strawberry 

Segmentation, edge detection, 

feature extraction, K-means 

clustering, and classification. 

Color grading accuracy: 88.80%. 

Shape classification accuracy: 

90.00% 

Burgos-Artizzu et al. 2010 Crop 

Segmentation, removal of 

unwanted regions, genetic 

algorithm. 

Up to 96.00% average success on 

grain images and 84.00% success 

on corn images. 

Adebayo et al. 2016 Apple 

Laser light backscatter imaging 

(LLBI), multispectral laser 

backscatter imaging (MBI), and 

hyperspectral laser backscatter 

imaging (HBI). 

Varying results for LLBI, MBI, 

and HBI at different wavelengths. 

For example, in a study 

conducted on bananas with LLBI 

in 2013, the detection accuracy 

was 96.10% at 532 nm 

wavelength. 

Dutta et al. 2016 Grape 
Haar filter, segmentation, 

feature extraction, SVM. 

100.00% accuracy was achieved 

with the SVM classifier. 

Arakeri 2016 Tomato 

Segmentation, feature 

extraction, and selection, 

artificial neural networks. 

Accuracy for imperfect and 

perfect classification: 100.00%. 

Accuracy for mature and 

immature classification: 96.47%. 

Rahman et al. 2023 Tomato GLCM, SVM 

Accuracy for: 

Healthy: 100.00%  

Early blight: 95.00% 

Septoria leaf spot: 90.00% 

Late blight:85.00%  

Gerdan et al. 2023 Tomato 

CNN, DenseNet201, 

InceptionResNetV2, 

MobileNet, Visual Geometry 

Group 16 

CNN Acc.: 99.82%, 

DenseNet201 Acc.: 92.12%, 

InceptionResNetV2 Acc.: 

92.75%,  

MobileNet Acc.: 91.50%  

Visual Geometry Group 16 Acc.: 

84.12% 

 

1.3. Deep learning-based methods 

 

Brahimi and colleagues conducted a classification process on tomato leaves with nine different diseases, utilizing a dataset 

containing 14,828 images. They employed the CNN method for classification and achieved an impressive accuracy rate of 

99.18%. The authors suggested that this method can serve as a practical tool for farmers to protect tomatoes against diseases 

(Brahimi et al. 2017). In the study by Durmuş et al., the AlexNet and SqueezeNet CNN models were tested using a GPU. The 

AlexNet model achieved 95.65% accuracy, while the SqueezeNet model achieved 94.3% accuracy, slightly outperforming 

AlexNet. The SqueezeNet model, which was nearly 80 times smaller than AlexNet, is considered a suitable choice for mobile 

deep learning classification due to its lightweight nature and low computing requirements. Furthermore, using a smaller network 

reduces data costs and enhances update rates when mobile applications are updated via mobile communication (Durmuş et al. 

2017). Prajwala and their team identified 10 different diseases in tomato crops and utilized LeNet, a convolutional neural network 

model, in their study. They emphasized that this method, offering an accuracy rate of 94-95%, can assist farmers in accurately 

identifying leaf diseases with minimal computational effort (Tm et al. 2018). In the study by Karthik et al., deep learning 

architectures were applied to detect infections in tomato leaves. They first implemented residual learning and then applied the 

attention mechanism. The study used a dataset featuring three diseases, namely early blight, late blight, and leaf blight on tomato 

leaves. The proposed approach achieved an overall accuracy of 98%, thanks to the features learned by CNN (Karthik et al. 2020). 

Ouhami and their team aimed to determine the most suitable machine-learning model for detecting tomato crop diseases in RGB 

images. They utilized transfer learning models, including DensNet161, DensNet121, and VGG16. The study targeted the 

automatic detection of six different plant diseases. The results showed that DensNet161 and DensNet121 achieved an accuracy 

of 94.93%, while VGG16 achieved an accuracy of 90.58% (Ouhami et al. 2020). Sembiring and their team developed a deep-

learning model based on the CNN architecture baseline for detecting tomato leaf diseases. The study aimed to classify ten classes 

of tomato leaves, including one healthy class and nine leaf diseases. They compared their model with VGG Net, ShuffleNet, and 

SqueezeNet architectures, demonstrating that the proposed architecture outperformed existing architectures with an accuracy of 

97.15% (Sembiring et al. 2021). 

  

Bhandari and their colleagues classified tomato leaves into nine different infectious diseases (bacterial spot, early blight, etc.) 

in their study. They used the EfficientNetB5 transfer learning method in their research and reported an average training accuracy 
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of 99.84% and an average testing accuracy of 99.07% (Bhandari et al. 2023). Tian and their team proposed a model to identify 

diseases using tomato leaf images. In this study, three different deep learning network architectures (VGG16, Inception_v3, and 

Resnet50) were used, and an Android application was also developed. The application can identify tomato diseases with a test 

accuracy of 99% (Tian et al. 2022). 

 

It is worth noting that there are more studies employing deep learning approaches in the literature than those mentioned 

above. Table 2 presents an overview of the studies reviewed.  

 
Table 2- Studies in the Literature Based on Deep Learning Methods 

 

Study 
Plant 

Type 
Methods Success 

Chen et al. 2020 Tomato 
ABCK-BWTR 

and B-ARNet Model 
Accuracy: 89.00%. 

Wspanialy & Moussa 2020 Tomato CNN (U-Net) 
PlantVillage dataset accuracy: 97.00%. 

Left-out-disease dataset accuracy: 98.70%. 

Gonzalez-Huitron et al. 2021 Tomato 
CNN implemented in 

Raspberry Pi 4 

MobileNetV2 accuracy: 75.00%. 

NasNetMobile accuracy: 84.00%. 

Xception accuracy: 100.00%. 

Karthik et al. 2020 Tomato Residual CNN Overall accuracy: 98.00%. 

Altuntaş & Kocamaz 2021 Tomato 
Concatenated Deep 

Features 
Overall accuracy: 96.99%. 

Ouhami et al. 2020 Tomato 
DensNet161, 

DensNet121, VGG16 

DensNet161 accuracy: 95.65%. 

DensNet121 accuracy: 94.93%. 

VGG16 accuracy: 90.58%. 

Sembiring et al. 2021 Tomato CNN Accuracy: 97.15%. 

Jiang et al. 2020 Rice CNN + SVM 

CNN + SVM accuracy: 96.80%. 

AlexNet accuracy: 93.79%. 

VGG accuracy: 91.65%. 

Sethy et al. 2020 Rice 
CNN (ResNet50) + 

SVM 
Accuracy: 98.38% 

Temniranrat et al. 2021 Rice CNN (YOLOv3) Average true positive rate: 95.60%. 

Park et al. 2018 Apple CNN 

Sensor type: Hyper-spectral Classifier: Local 

norm. ReLU 

accuracy: 86.11%. 

Kuta et al. 2020 Apple Manual Harvesting 

Optimal height: 1000 mm. 

The highest surface pressure picks heights: 

500 mm and 2000 mm. 

 

Zhong & Zhao 2020 Apple CNN (DenseNet-121) Accuracy: 93.71%. 

Rehman et al. 2021 Apple 
Resnet-50, MASK 

RCNN 
Accuracy: 96.60%. 

Methun et al. 2021 Carrot Inception v3 Accuracy: 97.40%. 

Durmuş et al. 2017 Tomato 
CNN (AlexNet and 

SqueezeNet) 

AlexNet accuracy: 95.65%. 

SqueezeNet accuracy: 94.30%. 

Tm et al. 2018 Tomato CNN (LeNet) Accuracy: 94.00% -95.00%. 

Brahimi et al. 2017 Tomato 
CNN (Alexnet and 

GoogleNet) 

AlexNet accuracy: 98.66%. 

GoogleNet accuracy: 99.18%. 

Bhandari et al. 2023 Tomato EfficientNetB5 Accuracy: 99.07% 

Tian et al. 2022 Tomato 
VGG16, Inception_v3, 

and Resnet50 
Accuracy: 99.00% 

 

This study is primarily concerned with the detection and classification of tomato leaf diseases, employing both classical and 

CNN deep learning techniques. The study provides several significant contributions, including the proposal of an effective and 

robust method for detecting tomato leaf diseases, the development of an original CNN model, the utilization of classical learning 

methods in a novel approach, the demonstration of the proposed method's versatility across various class numbers (2, 6, and 10), 

and the ability to adapt the proposed method to diverse plant datasets. The study also reports more favorable results compared 

to the previous literature. The suggested method has the potential to identify tomato diseases at an early stage and reduce harm 

by enabling timely disease treatment.  

 

The contributions of this study to the detection and classification of tomato leaf diseases, utilizing classical learning methods 

and CNN deep learning methods, are outlined as follows: 

 

1. An effective, successful, and robust method to detect tomato leaf diseases was proposed by analyzing images of infected 

tomato leaves. 
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2. An original CNN model was created and implemented within the scope of the study. 

3. Classical learning methods were used with a unique approach. 

4. A robust approach for tomato leaf disease is presented for different classes (2, 6, and 10 classes), and more successful 

results were obtained than other studies in the literature. To the best of our knowledge, this study is the first attempt to 

detect disease in tomato leaves using different class numbers (2, 6, and 10 classes). 

5. The proposed method is independent of the dataset, making it applicable to different plants and datasets. 

6. This study will help to detect tomato diseases early and minimize the damage to farmers by ensuring measures can be 

taken to treat the diseases on time. 

 

Overall, the study provides valuable insights into the detection and classification of tomato leaf diseases and underscores the 

effectiveness of both classical learning methods and deep learning methods in this domain. 

 

2. Material and Methods 
 

In this section of the study, comprehensive explanations are given regarding the tomato dataset used, as well as the technical 

intricacies of classical and deep learning methods. The stages of classical methods are elaborated sequentially, providing a step-

by-step understanding of their application. Additionally, each layer of the CNN model employed in our research is individually 

described, including associated parameters and configurations. 

 

2.1. Tomato dataset 

 

The tomato dataset utilized in this study is an open-access repository sourced from Kaggle, featuring a total of 18 345 images 

categorized into 10 distinct classes. These categories encompass nine disease categories and one category representing healthy 

tomato leaves [26]. The tomato dataset encompasses all major leaf diseases that can have a substantial impact on tomato 

production. Each of these leaf diseases has distinct underlying causes, necessitating different strategies, such as fertilization, 

spraying, and other interventions, to combat them effectively. The tomato dataset employed in this study (Lamrahi 2021) 

classifies these diseases into nine distinct types, and includes one category for healthy tomato leaves, as detailed in Table 3. 
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Table 3- Disease types and properties of Tomato Dataset 

 

Disease Type Image Properties of the Diseases 

Mosaic Virus 

 

The presence of light green, yellow, and dark green mosaic stains on the leaves is indicative of a 

disease caused by the tobacco mosaic virus and its various strains or breeds. 

Two-Spotted 

Spider Mite 

 

Red spiders have the potential to reproduce in areas where tomatoes are cultivated, whether in a 

greenhouse or an open field. Without prompt and effective measures, the infestation of red spiders 

can lead to significant losses in tomato crops. 

Leaf Mold 

 

The infestation of red spiders can sometimes spread to cover entire leaves, resulting in a 

substantial reduction in crop yield. Conditions that contribute to the prevalence of this disease 

include sudden temperature changes, excessive humidity, and the presence of shadowless 

greenhouses. 

Septoria Leaf 

Spot 

 

While this disease primarily affects leaves, it can also manifest on the stems, and flower stalks of 

plants. It typically begins as small yellowish areas on the leaves and subsequently changes in 

color, taking on a gray or brown appearance. 

Bacterial Spot 

 

Small brown to black spots may develop on the leaves, stems, flowers, and fruit stems. As the 

disease advances, these small spots have the potential to merge and form larger spots on the 

leaves. Furthermore, you may observe small, dark brown superficial blisters or lesions on the 

fruits. 

Early Blight 

 

The initial symptoms of the disease are typically observed on older leaves. These symptoms 

manifest as light green or yellowish-brown spots with a yellow halo. Small spots, each with a 

diameter of around 0.5 mm, gradually merge to cover the surface of the leaf. As the disease 

advances, the affected leaves may wither and die, leading to a deterioration in the quality of the 

fruit due to sun damage. 

Leaf Curl Virus 

 

In general, symptoms such as leaf shrinkage, blistering, inward curling, and deformity can be 

observed. Additionally, the leaves may exhibit yellowing starting from the edges, along with 

varying degrees of discoloration between the veins, ultimately resulting in an overall yellowed 

appearance. 

Target Spot 

 

The initial symptoms on the leaves present as small, misshapen, and greasy spots. In the later 

stages, these spots can merge and cause the entire leaf to dry out. 

Late Blight 

 

This disease results in the development of pale green to brown spots on the leaves, and 

occasionally, purplish spots may also appear. The edges of the leaf spots might exhibit a pale 

green color or show signs of waterlogging. 

Healthy 

 

Healthy leaves typically exhibit a proper, undistorted shape and maintain a vibrant green color. 

 

2.2. Preprocessing for classical learning methods 

 

To improve classification accuracy, our study initially applied preprocessing steps to the images used. As illustrated in Figure 1, 

the first step involved converting the images into grayscale. The images in the tomato dataset are originally in color. The 

subsequent preprocessing step was noise removal since it is highly unlikely that real-world images are entirely noise-free. 

Therefore, noise removal is commonly carried out as a preliminary step in many studies. In our research, we utilized the Wiener 

method for noise removal following grayscale transformation (Lim & Oppenheim 1979). The Wiener method is proficient in 

reducing image blur and is defined by the following formula: 



Irmak & Saygılı - Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 2024, 30(2): 367-385 

           373 
 

𝑊(𝑢, 𝑣) =  
𝐻(𝑢,𝑣)

|𝐻(𝑢,𝑣)|2+𝑆𝑛𝑥(𝑢,𝑣)
                                                    (1) 

 

𝑆𝑛𝑥(𝑢, 𝑣) is the signal-to-noise ratio and H (u, v) is the sinc function of the target pixel. 

 

During the preprocessing stage, image sharpening was performed on the images, followed by the application of contrast 

enhancement. In Figure 1, the preprocessing steps are applied to an image from the bacterial spot class in the dataset. Upon closer 

inspection, it becomes evident that the preprocessing steps significantly enhance the quality of the original image. 

 

 
 

Figure 1- Demonstration of the preprocessing steps in a sample leaf image 

 

2.3. Feature extraction for classical learning methods 

 

In this study, the local binary pattern (LBP) method was employed as a nonparametric feature extraction technique (Ojala et al. 

2000). The core principle of this method involves assessing the relationships between pixels by analyzing their neighborhood 

associations. The computation of LBP is carried out using Equation 2: 

 

LBPP,R(xc) = ∑ u(xp − xc)2pP−1
p=0 , u(y) = {

0,   if  y < 0
1, if  y ≥ 0 

                                                                                                           (2) 

 

Where: xc is the pixel center, xp is the central pixel neighbors, R is the distance to neighbors, and P is the number of neighbors. 

 

2.4. Classification with classical learning methods 

 

In this stage, the extreme learning machine (ELM), SVM, and k-nearest neighbor (kNN) methods were used. These methods 

were shown to be effective in various studies in the literature and yield successful results for different class numbers. SVM, 

developed by Vladimir Vapnik and Alexey Chervonenkis, is a method based on the principle of constructing a hyperplane that 

separates two classes (Schölkopf & Smola 2002). Here, (𝑥𝑖 , 𝑦𝑖)1≤𝑖≤𝑁  indicates training examples, for each example, 𝑥𝑖 ∈  𝑅𝑑 , d 

feature space, yi class label. The main purpose of SVM is to obtain a hyperplane where samples of the same class will coexist. 

This hyperplane is expressed with a line equation as in Equation 3. 

 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) > 0,  i=1, … , N                                                                                                                                           (3) 

 

The kNN algorithm belongs to the category of non-parametric classification methods (Arya et al. 1998). ELM is a model of 

a single hidden layer feed-forward neural network (SLFN) (Huang et al. 2004, 2006, 2011). The output function of ELM for 

generalized SLFNs can be expressed as follows: 

 

fL(x) = ∑ βihi(x) = h(x)βL
i=1                                                                                                          (4) 

Where: β = [β1, … , βL]T  is the output weight vector between the output layer and the hidden layers, h(x) is the output vector 

of the hidden layer, h(x) = [G(a1, b1, x), … , G(aL, bL, x)] then G(a, b, x) nonlinear piecewise continuous function, 

and {(ai, bi)}i=1
L  activation functions are randomly generated input values. 
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Parameter values for all methods used in the study are presented in Table 4. 

 
Table 4- Purpose and Parameters of the Classical Methods 

 

Operation Operation Type Parameters 

Sharpening Pre-Processing 
Radius:1 

Strength of the sharpening effect: 0.7 

RGB to Gray Conversion Pre-Processing Default 

LBP Feature Extraction 
Window Size: 3 x 3 

Cell Size: 32 

kNN Classification 
k:1 

Distance: Minkowski 

SVM Classification Default 

ELM Classification 

Kernel: RBF 

# of Hidden Neurons: 4096 

C: 1e-1 

 

In Figure 2, a structure comprising three fundamental components is observed: preprocessing, feature extraction, and 

classification, each of which encompasses sub-steps. This figure illustrates the flowchart for the classical learning model 

employed in our study. 
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Figure 2- Flowchart for the Process using Classical Learning Methods 

 

As depicted in Figure 2, both preprocessing and feature extraction methods were applied before the utilization of classical 

learning methods. A novel approach was adopted in terms of the methods used and their application. Various methods with 

different parameter values were experimentally tested both in feature extraction and preprocessing stages, and the most successful 

ones were selected. As shown in Figure 2, it is not feasible to perform studies solely on raw data when applying classical methods. 

Direct classification with raw data can result in very low success rates. Therefore, in classical methods, raw data are pre-processed 

and subjected to feature extraction, as shown in Figure 2. The success achieved by the system is directly related to the suitability 

of the feature extraction method. 

 

Feature extraction methods can assess the effectiveness of images based on their structural characteristics. However, it is 

important to note that the same feature extraction method may not yield similar success across all image datasets. Consequently, 

the selection of the most successful feature extraction method was determined by comparing the performance of various methods, 

as evident in the feature selection section of the flowchart above. This choice has a substantial impact on the model's success. 

Furthermore, during the classification stage, the system was configured for various class numbers using the 10-fold cross-

validation (CV) method. This approach contributes to the effectiveness and reliability of the obtained results. 
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2.5. Classification with deep learning methods 

 

Classical learning methods face limitations when dealing with high-dimensional data, especially when inputs and outputs are 

extensive. As the complexity of the problem increases, processing such data becomes more challenging in terms of both 

performance and accuracy. In such scenarios, deep learning provides solutions to intricate real-world problems by constructing 

more complex network structures of neurons for information transmission. 

 

Deep learning can directly learn features from the data provided. Neural networks can adeptly capture attributes and 

relationships between data points that may be challenging for other algorithms to discern. By employing layers of neurons that 

mathematically manipulate data, neural networks can develop complex models. Typically, a neural network model comprises an 

input layer, an output layer, and one or more hidden layers that facilitate the flow of information between the input and output 

layers. The term "deep learning" is used to describe models with numerous hidden layers. In Figure 3, each circle represents a 

neuron, which is a mathematical function with weight, bias, and activation function values. Neurons receive one or more inputs, 

and information is relayed from the input layer to the hidden layers for processing and, ultimately, to the output layer. 

 

 
 

Figure 3- General View of Neural Network Architecture 

 

The activation function plays a critical role in determining whether a neuron in an artificial neural network will be active or 

not. There are several activation functions to choose from, including "sigmoid", "tanh,", "relu" (rectified linear unit), and 

"SoftMax". The selection of the appropriate activation function depends on the specific problem being addressed. An artificial 

neuron model is seen in Figure 4. “𝑋1, 𝑋2, ..., 𝑋𝑛” are the input values and “𝑊1, 𝑊2, ..., 𝑊𝑛” are the corresponding weight values 

and “b” is a bias value. “f” is the activation function and is the function applied to the value by adding the bias value to the sum 

of the products of the inputs and the weights. 

 

 
 

Figure 4- An Artificial Neuron Model 

 

The loss function calculates the disparity between the predicted output and the actual target variable, indicating the level of 

error. Various error functions, such as "binary cross-entropy" and "negative log-likelihood" can be employed for classification 

tasks. Throughout the learning process, the goal of the model is to minimize this error to reduce the rate of false predictions. This 

is achieved by adjusting the weight and bias values, with the ultimate aim of learning the weight and bias values that yield the 

minimal error rate. Optimization algorithms like "stochastic gradient descent", "Adagrad", "RMSProp" and "Adam" can be used 

to facilitate this process. 

 

Convolutional neural networks (CNNs) are a subset of deep learning often used for the analysis of visual information, 

particularly in image and video recognition tasks. They fall under the category of multi-layer neural network models. Compared 

to classical learning methods, CNNs tend to be more successful and typically do not require additional techniques for feature 

extraction or preprocessing (Tm et al. 2018). The structure of a CNN, as depicted in Figure 5, includes convolutional, non-

linearity, pooling, flattening, and fully connected layers. The convolutional layer is used for feature detection, the non-linearity 

layer introduces non-linearity to the system, the pooling layer reduces the number of weights and assesses their suitability, the 

flattening layer prepares the data for the network, and data classification occurs in the fully connected layer. 

 



Irmak & Saygılı - Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 2024, 30(2): 367-385 

376 

 

 
 

Figure 5- CNN Structure (Anonymous 2021a) 

 

The convolutional layer is the initial layer in CNN algorithms that operates on images. This layer consists of a series of 

operations between an input 'I' and a set of 'n' convolutional filters ‘𝐹𝐸’ followed by a non-linear activation function. As a result 

of these operations, the output volume of 0 is expressed in the formula (5). 

 

𝑂𝑚(𝑖 , 𝑗) = a (( ∑ ∑ ∑ 𝐹𝑚𝑑
𝐸 (𝑢, 𝑣)𝐼𝑑(𝑖 − 𝑢, 𝑗 − 𝑣)) + 𝑏𝑚

2𝑘+1
𝑣=−2𝑘−1

2𝑘+1
𝑢=−2𝑘−1

𝐷
𝑑=1 )                                      (5) 

 

Where: ‘2k+1’ is the side of a square with an odd convolutional filter, ‘a’ refers to the activation function, ‘𝑏𝑚’ refers to the 

bias for the 𝑚𝑡ℎ feature map 

 

Each convolutional layer in this architecture is responsible for learning patterns to detect the type of disease in the tomato 

leaf (Karthik et al. 2020). 

 

The non-linearity layer, also known as the "activation layer," employs one of the activation functions. In the past, nonlinear 

functions such as "sigmoid" and "tanh" were used; however, the rectifier linear unit (ReLU) function is currently preferred 

because it provides the best performance in terms of neural network training speed. In this study, the ReLU function was utilized, 

which is expressed in formula (6) and has a value range of [0, +infinity]. 

 

𝑓(𝑥) =  {
0 𝑓𝑜𝑟 𝑥 ≤ 0
𝑥 𝑓𝑜𝑟 𝑥 > 0

                                                                (6) 

 

The pooling layer, similar to the convolutional layer, aims to reduce dimensionality. This reduction not only saves processing 

power but also filters out irrelevant features, emphasizing the more important ones. CNN models often use two primary pooling 

techniques: maximum (Max) pooling and average pooling. In this study, the maximum pooling technique was used. The image 

size after the pooling process is calculated as follows: 

 

Size of the generated image = 𝑊2 𝑥 𝐻2 𝑥 𝐷2                                            (7) 

 

𝑊2 = (𝑊1 −  𝐹) / 𝑁 +  1                                (8) 

 

𝐻2 = (𝐻1 −  𝐹) / 𝑁 +  1                                               (9) 

 

𝐷2 = 𝐷1                                      (10) 

 

Where: 𝑊1 = Width value of input image size, 𝐻1 = Height value of input image size, 𝐷1 = Depth value of input image size 

F = Filter size, N = Number of steps, In the pooling process, F = 2 and N = 2 were chosen.  

 

The flattening layer is responsible for preprocessing data for the subsequent "fully connected layer." Neural networks 

typically accept input data in the form of one-dimensional arrays. The data used in this layer is in the form of a one-dimensional 

matrix obtained from the convolution and pooling layers. 

 

The fully connected layer transforms the matrix image, which has passed through the convolutional and pooling layers 

multiple times, into a flattened vector. 

 

In the classification layer, the Softmax activation function was chosen for the output layer of our CNN model. This choice 

was made because more than two classifications (10 classes) were required for tomato leaf diseases. 
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2.6 Our application of CNN 

 

In our study, the proposed approach consists of three significant stages: data acquisition, data pre-processing, and classification, 

as depicted in Figure 6. 

 

 
 

Figure 6- Flowchart for the Process with the Deep Learning Methods 

 

In our study, a tomato leaf dataset sourced from the publicly accessible Kaggle platform was utilized, containing 18 345 

images categorized into 10 distinct classes, including 9 categories representing diseased leaves and 1 category for healthy leaves. 

These categories cover all leaf diseases that can impact tomato production. To improve modeling efficiency and reduce 

processing time, we resized the images to 256 x 256 resolution. The classification process was carried out using a deep-learning 

CNN model. The study was conducted in the Python programming language within the Google Colaboratory (Colab) Notebook 

environment and employed Python libraries such as OpenCV, Keras, Numpy, Os, Sklearn, and Matplotlib. 

 

The dataset included a total of 18 345 images, with approximately 2 000 images per class. For binary classification, 500 

samples were randomly selected for both the healthy and unhealthy classes. For the 6-class classification, we chose around 167 

samples from each class. In the 10-class classification, 100 samples were selected from each class, resulting in a total of 1 000 

sample images. The dataset was split, reserving 20% for testing and using the remaining portion for training. 

 

Before modeling, the input images were resized to 256 x 256 pixels. The CNN model was constructed using a sequential 

model with sequential layers. To prevent overfitting and encourage generalization, we incorporated a dropout layer during 

training. The CNN model was applied after resizing and defining the number of classes, which included nine different disease 

types and one healthy class. The CNN architecture in our study was tailored to our specific requirements, involving multiple 

layers. The CNN model was configured with the following parameters: 

 

- The training phase included 25 epochs. 

- Each iteration involved the use of 32 images. 

- Input images were resized to dimensions of 256 x 256 pixels. 

- The images were labeled for classification into 2, 6, and 10 different classes. 

 

Experiments to detect tomato leaf diseases were conducted using our model, and the steps applied in our CNN model can be 

observed in Figure 7. 
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Figure 7- Our CNN Model 

 

In our CNN model, the specified parameters were employed to conduct the following operations: 

 

i. ReLU-activated convolution layer with 32 filters of size 3x3. 

ii. A Maxpool layer with a 3x3 dimensional frame. 

iii. Dropout of 25% of neurons after the Maxpool layer. 

iv. ReLU-activated convolution layer with 64 filters of size 3x3. 

v. ReLU-activated convolution layer with 64 filters of size 3x3. 

vi. A Maxpool layer with a 2x2 frame. 

vii. Dropout of 25% of neurons after the Maxpool layer. 

viii. ReLU-activated convolution layer with 128 filters of size 3x3. 

ix. ReLU-activated convolution layer with 128 filters of size 3x3. 

x. A Maxpool layer with a 2x2 frame. 

xi. Dropout of 25% of neurons after the Maxpool layer. 

xii. Flattening of the data in preparation for the fully connected layer. 

xiii. ReLU-activated fully connected layer with 1024 neurons. 

xiv. Dropout of 50% of neurons after the fully connected layer. 

xv. Softmax-activated neurons in the output layer, with the number of neurons equal to the number of classes. 

 

The CNN model employed in our study exhibited strong performance for the tomato dataset. This success can be attributed 

to its shorter average epoch round and higher accuracy compared to other CNN models. The key to this success lies in the 

experimental determination of the optimal number of layers and parameters for the CNN model, resulting in an effective and 

efficient model. A detailed comparison of model performances can be found in the discussion section of our study. Furthermore, 

the approach we used to determine the number and parameters of layers is not limited to the tomato dataset; it can be applied to 

other datasets as well. This eliminates dependency on a specific dataset and allows for successful application to datasets with 

varying numbers of classes, as demonstrated in our experimental studies. 

 

To assess the performance of our model, the tenfold cross-validation method was used in the training and testing phase. This 

method involves a thorough examination of all sections of the dataset, ensuring that the model has been exposed to every sample, 

which contributes to a more effective learning process. Cross-validation, in particular, randomly divides the dataset into "k" 

groups, designating one as a test set and using the remaining groups for training. This procedure is repeated for each group,  

enabling the model to be trained and tested with all parts of the data, ultimately enhancing its accuracy. The cross-validation 

process is visualized in Figure 8. 
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Figure 8- 10-fold cross-validation 

 

2.7 Visualizing feature maps in our CNN model 

 

Feature maps are the output structures generated by applying filters within a CNN. Essentially, they represent the evaluation of 

a particular layer. Normalizing these features aims to enhance the understanding of the detected features. In deep learning 

techniques, initial layers primarily identify low-level features (e.g., colors and edges), while subsequent layers identify high-

level features (e.g., shapes and objects). Therefore, we incorporated feature visualization into our model. Figure 9 displays the 

visualization of the features of tomato leaves, while Figure 10 showcases symptom visualization. These images reveal numerous 

activations related to edges and textures, with a particular focus on outlining the leaf. 

 

 
 

Figure 9- Feature visualization for tomato leaves 

 

In Figure 10, the differentiation of the pixel values is seen in areas with symptoms. 

 

 
 

Figure 10- Symptom visualization for tomato leaves 

 

2. Results 
 

A comparative analysis of experimental results using various metrics is a crucial aspect to consider. To assess the effectiveness 

of our models, five distinct metrics were employed. The performance metrics used in our study, along with their corresponding 

formulas, are presented in Equations (11-15). In these equations, TP, TN, FP, and FN represent true positive, true negative, false 

positive, and false negative, respectively. 

 

Accuracy =
TP+TN

(TP+TN+FP+FN)
∗ 100                                           (11) 
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Sensitivity =
TP

(TP+FN)
∗ 100                                                                                                       (12) 

 

Specificity =
TN

(TN+FP)
∗ 100                                                                                                               (13) 

 

PPV =
TP

(TP+FP)
∗ 100                                                                                                                         (14) 

 

NPV =
TN

(TN+FN)
∗ 100                                                                                                                (15) 

 

PPV and NPV serve as indicators of a test's clinical significance. Sensitivity signifies the percentage of true positives (e.g., 

95% sensitivity means that 95% of individuals with the targeted disease will test positive), while specificity indicates the 

percentage of true negatives (e.g., 95% specificity suggests that 95% of individuals without the targeted disease will test 

negative). Accuracy is a measure of correctly identifying both diseased and healthy datasets. Tables 5, 6, and 7 present the 

classification results for conventional learning models in our study. Table 5 showcases our model's ability to distinguish between 

diseased and healthy tomato leaf images. A closer examination of the table reveals that the SVM method attained the highest 

accuracy rate, reaching 92.5%. Furthermore, the kNN method, a simple yet effective approach, achieved the highest sensitivity 

rate of 98%, as depicted in the same table. 

 
Table 5- Binary class classification performance metrics with classical learning methods (the most successful method for each 

metric is shown in bold) 

 
Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

ELM 91.80 95.80 87.80 88.70 95.40 

SVM 92.50 96.00 89.00 89.70 95.70 

kNN 89.00 98.00 80.00 83.10 97.60 

 

Table 6 illustrates the performance metrics when six classes are created by merging the five most frequent diseases with the 

healthy class. Similar to binary classification, SVM stands out as the most effective method. However, after the six-class 

classification, it appears that the outcomes of all methods are quite similar. 

 
Table 6- 6-Class classification performance metrics with classical learning methods (the most successful method for 

each metric is shown in bold) 

 

Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

ELM 81.30 95.90 96.90 84.50 99.30 

SVM 83.00 94.00 98.60 92.10 98.90 

kNN 82.30 97.30 96.40 82.90 99.50 

 

Table 7 presents the results obtained by incorporating all classes in the dataset. In the table, success decreases as the number 

of classes increases. The results of the model with 10 different classes indicate that the SVM method achieved a higher accuracy 

rate compared to other methods. 

 
 

Table 7- 10-Class classification performance metrics with classical learning methods (the most successful method for each 

metric is shown in bold) 

 

Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

ELM 78.70 94.10 97.40 78.90 99.40 

SVM 81.40 92.70 98.90 89.40 99.20 

kNN 79.60 95.03 97.80 81.40 99.50 

 

When the results obtained from Tables 5, 6, and 7 are analyzed, it becomes evident that the kNN method excels in terms of 

successfully detecting diseased samples, particularly for sensitivity. On the other hand, the SVM method proved to be the most 

effective in distinguishing healthy images, emphasizing its specificity. 

 

Table 8 presents the implementation times of the methods utilized in our study. The table illustrates how the number of 

classes impacts the implementation time of these methods. Binary classification emerges as the quickest method, while the ELM 

method had the fastest performance when classifying all 10 classes. Notably, the SVM method, despite providing the highest 

accuracy rates, exhibited slower performance when classifying 6 and 10 classes. 
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Table 8- Average time of classification for methods 

 

Methods Binary 6-Class 10-Class 

ELM 12.90 39.80 115.90 

SVM 5.60 235.20 1938.60 

kNN 2.30 45.90 470.90 

CNN 265.00 432.00 505.00 

 

As depicted in Table 9, CNN exhibited the highest accuracy rates for binary, 6, and 10 classes, but it required a longer training 

duration compared to classical learning methods. Interestingly, binary classification also proved to be the quickest method within 

the CNN framework. What's particularly intriguing is that our proposed CNN architecture displayed less sensitivity to the number 

of classes when contrasted with ELM, SVM, and kNN methods, where an increase in the number of classes substantially 

augmented execution time. For instance, in SVM, the execution time difference between binary classification and 10-class 

classification was approximately 345 times, while in the CNN method, this ratio was only about 2 times. This observation implies 

that our proposed CNN method is more versatile and original. 

 

The classification results obtained with our deep learning models are presented in Table 9, revealing that all accuracy results 

are quite similar. Furthermore, as the number of classes increases, accuracy tends to decrease. 

 
Table 9- Classification performance metrics according to different class numbers with deep learning methods (the 

most successful method for each metric is shown in bold) 

 
Number of classes Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Binary Class 99.50 100.00 98.97 99.04 100.00 

6-Class 98.50 98.50 99.70 98.50 99.70 

10-Class 97.00 97.00 99.67 97.00 99.67 

 

In our study, modeling was conducted for three different class numbers: binary, 6-class, and 10-class. Table 10 compares the 

accuracy values of the CNN architecture with those of classical learning methods. Upon reviewing the table, it is clear that the 

original CNN model yielded considerably more successful results than classical learning methods. This can be attributed to the 

fact that the parameters and layers employed in the CNN model were determined through extensive experimental research, a fact 

reflected in Table 10. 

 
Table 10- Accuracy values according to different class numbers with deep and classical learning methods (the most successful 

method for different numbers of classes is shown in bold) 

 

Number of classes CNN (%) ELM (%) SVM (%) kNN (%) 

Binary Class 99.50 91.80 92.50 89.00 

6-Class 98.50 81.30 83.00 82.30 

10-Class 97.00 78.70 81.40 79.60 

 

Figures 11, 12, and 13 illustrate the current state of the dataset and the number of correct and incorrect classifications made 

by the model. The vertical axis represents the actual values, while the horizontal axis represents the predicted values. The 

confusion matrix is utilized to determine the number of TP, TN, FP, and FN. TP values are displayed as numerical values on the 

diagonal, signifying highly accurate disease classification. 

Upon analyzing the confusion matrix, it can be concluded that each class exhibits the highest rate of correct estimations. More 

specifically, according to Figure 11, the highest correct estimation is for the healthy state, while the lowest correct estimation is 

for leaf mold disease (Figure 12) and yellow leaf curl virus disease (Figure 13). Furthermore, when inspecting the incorrect 

predictions, it is apparent that bacterial spot, target spot, and yellow leaf curl virus are diseases that are most frequently confused 

with each other. To mitigate this confusion between these diseases, it may be beneficial to analyze mixed features of the images 

and implement certain preprocessing steps to enhance the accuracy of classification. 
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Figure 11- Confusion Matrix for Binary Class 

 
Figure 12- Confusion Matrix for 6-Class 

 
Figure 13- Confusion Matrix for 10-Class 

 

3. Discussion 
 

Our study aimed to develop a novel CNN framework for the automatic classification of tomato leaf images (Lamrahi 2021). We 

conducted a comparative analysis of the CNN method with models created using different classical learning methods, as 

demonstrated in Tables 5, 6, 7, and 9, which present the performance metrics of these models. The results consistently indicate 

that the CNN method outperformed the classical models across all class numbers. This comparison emphasizes the advantages 
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of deep learning models over classical machine learning methods, particularly their capacity to extract features from raw data 

without the need for expert knowledge. 

 

The findings of our study hold significant implications for the field of agriculture. Traditionally, disease detection in crops 

relies on manual observations by farmers, which can be time-consuming and costly, especially when diseases are detected late. 

Our method can be applied to process images captured from vast agricultural areas using drone-like devices, enabling the early 

detection of plant diseases and facilitating timely interventions to prevent yield loss. Table 11 provides a comparison of our study 

with other studies related to the tomato dataset. It is worth noting that the studies (Kapucuoglu 2011; Anonymous 2021b; c) 

listed in the table are not academic studies, as the dataset was not used in an academic context; they were sourced from Kaggle 

for comparison purposes. 

 
Table 11- Comparison table of current studies of the tomato (Lamrahi 2021) dataset 

 

Study Model 
Number of  

Classes 
Loss (%) Accuracy (%) 

Average 

Epoch Tour 

(Anonymous 2021b) Sequential 10 14.20 95.35 308 

(Anonymous 2021c)  VGG-16 10 1.84 97.96 314 

(Kapucuoglu 2011) AlexNet 10 8.92 97.20 233 

Our Study Sequential 2 0.04 99.50 11 

Our Study Sequential 6 2.13 98.50 17 

Our Study Sequential 10 9.33 97.00 20 

 

As indicated in Table 11, our study achieved the lowest loss rate, the shortest average epoch count, and the highest accuracy 

for 2-class classification. In comparison to the study (Kapucuoglu 2011) which utilized AlexNet for 10-class classification and 

achieved an accuracy rate of 97.20%, our model attained an accuracy of 97% with a shorter average epoch count when subjected 

to 10-fold cross-validation. Furthermore, when our method is applied to classify the 5 most common diseases and one health 

status (6-class), we obtained favorable results. The proposed approach and CNN model consistently demonstrated high success 

across all classification methods while requiring fewer epochs than other studies, underscoring the effectiveness and robustness 

of our method. 

 

4. Conclusions 
 

The results demonstrate that the deep learning model, particularly the CNN architecture, outperforms classical methods in terms 

of both accuracy and efficiency. The CNN model consistently achieved high accuracy rates for all the different classification 

methods employed in the study, including the identification of multiple diseases and health status. Furthermore, the CNN model's 

ability to automatically extract features from raw data without requiring expert input is a notable advantage over classical feature 

extraction methods, which often rely on domain-specific knowledge for dataset-specific feature selection. 

 

This study has significant implications for the agricultural sector, as early disease detection in plants is crucial for improving 

productivity and reducing costs. Digital detection tools developed through smart agriculture studies can facilitate early diagnosis 

and treatment of plant diseases, ultimately leading to higher crop yields and higher-quality agricultural products. Overall, this 

study underscores the potential of deep learning methods, particularly CNN models, in the realm of plant disease detection, and 

emphasizes the importance of ongoing research in this field. 

 

Tomato plants are susceptible to various types of diseases. As a result, our study initially focused on distinguishing between 

diseased and healthy leaves and subsequently categorizing the diseased leaves into 6 or 10 different types. The results reveal that 

our original CNN model achieved the highest success rates for 2, 6, and 10-class classifications, with accuracy rates of 99.5%, 

98.50%, and 97.0%, respectively. In comparison to classical methods, the CNN network we designed consistently delivered 

significantly superior results. Classical methods typically involve data preprocessing, while CNN methods can directly extract 

features from raw data, eliminating the need for additional feature extraction techniques. This attribute significantly contributes 

to the success of our model. Our findings underscore the importance of computer-aided recognition and detection systems for 

enhancing agricultural productivity. Additionally, the independence of our model from the dataset enables its application to 

different plant species and various disease types, making it a valuable contribution to the field of agriculture. 

 

In future studies, we plan to develop a system capable of detecting various plant species and disease types, while also 

assessing disease severity based on images of afflicted plants. Our goal is to make this system compatible with mobile devices, 

further supporting the agricultural industry by enhancing production and efficiency. 
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