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Abstract

In this paper, we present an existence theorem for the problem of discontinuous dynamical system
related to ordinary differential inclusion, based on the use of the concepts related to weighted spaces
introduced by Górka and Rybka, without using any fixed point theorem. The solution concept in
this theorem is considered to belong to the weighted space. For comparison with the classical case
and as an application of the theorem, we give an example problem that has such a solution but no
continuously differentiable solution.

1. Introduction

In the mathematical modeling of systems with dynamic behavior in various fields of the real-world and in the qualitative and
numerical analysis of these systems, differential equations with initial or boundary conditions and the existence and uniqueness
of solutions and numerical approach techniques to solutions for these equations appear as important mathematical tools (see,
e.g. [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]). (Ordinary) differential inclusions, which are generalized forms of
ordinary differential equations and started to be studied after the advances in right-side discontinuous differential equations
and solution methods for the problems related to these equations in the 1960s, have a similarly important role in applied
mathematics since using directly in modeling and especially in the necessary and sufficient results of optimal control problems
of discontinuous systems (see, e.g. [12], [13], [2], [14], [15], [16]). In the literature, differential inclusions specific to various
fields such as engineering, biology, economics, and special types of differential inclusions that arise from the use of different
notions are also encountered (see, e.g. [17], [7], [14], [16]). Fuzzy differential inclusions, measure differential inclusions,
Volterra differential inclusions, and impulsive differential inclusions are a few of them.
Górka and Rybka in [18] obtained some results about the existence of a solution for ordinary differential equation with an
initial condition based on the use of the weighted space equipped with the weighted norm. Here, they used Banach fixed point
theorem under the boundedness assumption and the assumption of a special type of Lipschitz continuity (with l(t)/t depending
upon t).
In this paper, we present some results about the existence of a global solution for the discontinuous differential inclusion with
an initial condition, based on the use of the weighted space, without boundedness assumption in nonconvex case. For this
purpose, we construct a sequence, based on the uses of the weighted norm and approximations mentioned in [13], without
using any fixed point theorem to derive the solution.
Since our results are true for the discontinuous ordinary differential equations as well, these results can be applied to the system
described by the differential equation in [18] without boundedness assumption. In addition, an illustrative example satisfying
the assumptions mentioned in the results is also given in this paper.

2. Preliminaries

For unexplained terminology and the basic results on the weighted spaces and differential inclusion theory we refer to [17],
[19], [18], [15], [16]. For a fixed b > 0, C ([0,b] ,Rn) denotes Banach space of all continuous functions g : [0,b]→Rn with the
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supremum norm ‖g‖
∞
= sup

t∈[0,b]
|g(t)|, where |·| denotes the Euclidean norm on Rn. Let us fixed α ∈ ]0,1] and r ∈ Rn. Now, let

g ∈C ([0,b] ,Rn) and we put

|g|r,α := sup
t∈]0,b]

|g(t)− r|
tα

.

The collection of all functions g ∈C ([0,b] ,Rn) satisfying |g|r,α < ∞ is denoted by Wr,α = Wr,α ([0,b] ,Rn). It is clear that
g(0) = r whenever g ∈Wr,α , and that |·|0,α is a norm when r = 0. Note that the function ρ defined as

ρ (g,h) = |g−h|0,α for g,h ∈Wr,α .

is a metric on Wr,α . Moreover, (Wr,α ,ρ) is a complete metric space (for details, see [18]).
Let S be a subset of Rn and Φ : S→ Rn a set-valued map. For a ∈ Rn, we denote the projection of a onto S by π (a,S), that
is, π (a,S) = {s ∈ S : |a− s|= d (x,S)} where d (a,S) = inf{|a− s| : s ∈ S}. If π (a,S) is nonempty, then each element of it is
called the closest point in S to a. It is known that π (a,S) is nonempty and compact if S is closed (for details, see [20], [15]).
A single-valued function φ : S→ Rn is said to be a measurable selection from Φ if φ is measurable in the usual sense and
φ (s) ∈Φ(s) for all s in S. Let E and Z be nonempty bounded subsets of Rn. The ball of radius δ around E is defined as

Oδ (E) =
{

r ∈ Rn : d(E,r) = inf
x∈E
|x− r|< δ

}
.

The Hausdorff distance between E and Z is defined as

dH(E,Z) = inf{δ > 0 : Oδ (E)⊇ Z,Oδ (Z)⊇ E}.

Note that the existence of corresponding finite δ > 0 follows from the boundedness of sets E,Z.
Let m≥ 1. let L and Bm be the collection of Lebesgue measurable subsets of [0,b] and Borel subsets of Rm, respectively. The
smallest σ−algebra of subsets of [0,b]×Rm generated by Cartesian products of sets in L and Bm is denoted by L ×Bm.
By L1

m and ‖·‖1, we denote the space of all Lebesgue integrable functions from [0,b] into Rm and the norm on L1
m as usual,

respectively. Let Ψ : [0,b]×Rm → Rn a set-valued map. Ψ is said to be L ×Bm-measurable if the set Ψ−1 (V ) lies in
L ×Bm for all open subset V of Rn. We say that Ψ is w-integrably bounded (with η) if there exists a non-negative function
η ∈ L1

1 with av(η ,b) < ∞ satisfying Ψ(s,y)⊆ η(s)B for all (s,y) ∈ [0,b]×Rm, where av(η ,b) := sup
t∈]0,b]

1
t
∫ t

0 η (s)ds and B is

the closed unit ball of Rn. We say that Ψ satisfies the w-Kamke-type Lipschitz condition (with `) if there exists a non-negative
function ` ∈ L1

1 satisfying av(`,b) < 1 and

dH (Ψ(t,y),Ψ(t,x))≤ `(t)
t
|y− x|

for any (t,x) and (t,y) in ]0,b]×Rn.
We now consider the following Cauchy problem related to a discontinuous differential inclusion,

ẋ(t) ∈ F (t,x(t)) , x(0) = r (2.1)

where F : [0,b]×Rn → Rn is a given set-valued map.
We say that the absolutely continuous function x∈Wr,α ([0,b] ,Rn) satisfying the initial condition r and the differential inclusion
in (2.1) a.e. on [0,b] is a (global) solution of the problem.
Throughout this paper, “a.e. on [0,b]” is denoted by “a.e” briefly. AC denotes the space of absolutely continuous functions
from [0,b] to Rn. For any g(·) ∈ AC, the function ϑg define by ϑg(t) = d (ġ(t),F(t,g(t))) a.e.

Proposition 2.1. (see, [15]) Suppose that a sequence {φn}in L1([0,b] ,Rn) converges to a function φ ∈ L1([0,b] ,Rn) in ‖·‖1.
Then there exists a subsequence of {φn} that converges pointwise to φ a.e.

3. Main results

Theorem 3.1. Let F be the L ×Bm-measurable set-valued map with nonempty closed values satisfying w-Kamke-type
Lipschitz condition (with `). Then for any g ∈Wr,1∩AC satisfying ϑg ∈ L1

1 and av(ϑg,b) < ∞, there exists a solution of the

problem (2.1) in B
δ
(g). Here, δ is a positive number satisfying δ <

av(ϑg,b)
1−av(`,b) and B

δ
(g) is the open ball of (Wr,1,ρ) with

radius δ .

Proof. The main idea in the proof of this theorem would be to construct a Cauchy sequence {gn} (approximations) in the
complete (Wr,1,ρ). Here, it will be determined on the basis of choosing ġn(t) as the closest point in F(t,gn−1(t)) to ġn−1(t), and
the desired solution will be obtained with the limit of the sequence. With this goal, let g0 = g∈Wr,1. By using Proposition 2.3.2
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in [16] and Corollary 8.2.13 in [17] together, it can be easily observed that there exists a measurable selection φ0 = φ0 (g0 (·))
from π (ġ0 (·) ,F(·,g0 (·))). Since the inequality |φ0(t)| ≤ |ġ0(t)|+ϑg0(t) holds a.e. and ϑg0 ∈ L1

1, we get φ0 ∈ L1
n. Thus we

can define an operator I0 for t ∈ [0,b] as

I0(t) = g0 (0)+
∫ t

0
φ0(s)ds.

Now put g1 = I0. It is clear that g1 ∈ AC. Then ġ1 = φ0 and |ġ1− ġ0|= ϑg0 a.e. It follows from the relation

|g1(t)−g0(t)| ≤
∫ t

0
|ġ1(s)− ġ0(s)|ds =

∫ t

0
ϑg0(s)ds (3.1)

that (|g1(t)−g0(0)|/t)≤ av
(
ϑg0 ,b

)
+ |g0|r,1 a.e. As av

(
ϑg0 ,b

)
<∞ then g1 ∈Wr,1. Moreover, by using the above inequalities,

the basic properties of the Hausdorff distance notion and the Lipschitz condition, we have

ϑg1(t) ≤ |ġ1(t)− ġ0(t)|+ϑg0(t)+dH (F(t,g0 (t)),F(t,g0 (t)))

≤ 2ϑg0(t)+(`(t)/t) |g1(t)−g0(t)|

≤ 2ϑg0(t)+(`(t)/t)
∫ t

0
ϑg0(s)ds

≤ 2ϑg0(t)+ `(t)av
(
ϑg0 ,b

)
a.e.

So it can easily be concluded that ϑg1 ∈ L1
1 and av(ϑg1 ,b)< ∞.

In this way, by defining gn := In−1 and φn and using induction on n = 1,2, ..., we get a sequence {gn} in Wr,1. Let us prove that
the sequence {gn} is Cauchy in Wr,1. By definition of {gn} and {φn}, for n = 0,2, ... we get

ġn+1 = φn, |ġn+1− ġn|= ϑgn a.e.

From the equality d (ġn(t),F(t,gn−1(t))) = 0 a.e. for n = 1,2, ...,

ϑgn ≤ d (ġn(t),F(t,gn−1(t)))+dH (F(t,gn−1 (t)),F(t,gn (t)))

≤ (`(t)/t) |gn(t)−gn−1(t)| a.e. (3.2)

Taking integral from both sides, we have

|gn+1(t)−gn(t)| ≤

(
sup

s∈]0,b]

|gn(s)−gn−1(s)|
s

)∫ t

0
`(s)ds. (3.3)

Therefore, it can be easily verified that

ρ (gn+1,gn)≤ av(`,b)ρ (un,un−1) . (3.4)

Note that the last inequality implies

ρ (gn+1,gn)≤ (av(`,b))n
ρ (g1,g0) . (3.5)

From here, we derive that

|gn|x0,1 ≤ ρ (gn,g0)+ |g0|x0,1

≤ ρ (gn,gn−1)+ ...+ρ (g1,g0)+ |g0|x0,1 < ∞.

Thus gn ∈Wr,1. In addition, the relations ρ (g1,g0)≤ ϑg0 (as a result of (3.1)) and (3.5) implies that,

ρ (gn,g0) ≤ ρ (gn,gn−1)+ ...+ρ (g1,g0)

≤ ϑg0

n−1

∑
i=0

(av(`,b))i . (3.6)

As av(`,b)< 1, the relation (3.5) implies that the sequence {gn} is Cauchy, Wr,1 being complete, it converges uniformly to
some function y ∈Wr,1. Taking into account (3.2) and (3.3), we get

‖φn−φn−1‖1 ≤ ρ (gn,gn−1)
∫ b

0
`(s)ds,

so that {φn} is a Cauchy sequence in L1
n. Let φ be the limit of {φn}. One can easily have y(t) = r+

∫ t
0 φ (s)ds. Moreover,

ϑgn+1 ≤ |ġn+1(t)− ẏ(t)|+d (ẏ(t),F(t,y(t)))+dH (F(t,gn+1 (t)),F(t,y(t)))

≤ |φn(t)− ẏ(t)|+ϑy(t)+(`(t)/t) |gn+1(t)− y(t)| a.e.
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Thus, ∣∣ϑgn+1(t)−ϑy(t)
∣∣≤ φ (t)ρ (gn+1,y)+ |φn(t)− ẏ(t)| a.e. (3.7)

From Proposition 2.1, there exists a subsequence
{

φnk (t)
}

converging to φ (t) a.e. Replacing φn with the φnk in (3.7), we
derive that ϑy(t) = lim

k→∞
ϑgnk+1(t) a.e. By the inequality (3.2) one can get,

ϑy(t)≤ `(t) lim
k→∞

ρ
(
gnk+1,gnk

)
a.e.

which implies ϑy(t) = 0 a.e. From here, we conclude that y ∈Wr,1 is a solution. Moreover, by using (3.6), one can easily have
ρ (y,g)< δ .

Remark that the following Corollary is a consequence of Theorem 3.1 for g≡ r.

Corollary 3.2. Let F be the L ×Bm-measurable set-valued map with nonempty closed values satisfying w-Kamke-type
Lipschitz condition (with `). If ϑr ∈ L1

1 and av(ϑr,b) < ∞, then the problem (2.1) has at least one solution (in Wr,1).

Corollary 3.3. Let F be the L ×Bm-measurable set-valued map with nonempty closed values satisfying w-Kamke-type
Lipschitz condition (with `). Suppose further that F is w-integrably bounded (with η). Then the problem (2.1) has at least one
solution (in Wr,1).

Proof. Let the function h∗ ≡ (h1,h2, ...hn) : [0,T ]→ Rn defined by hi (t) = ri +
∫ t

0 η(s)ds. We choose g≡ h∗. By hypotheses
we get ġ = (η ,η , ...η), ϑg (t) ≤ (1+

√
n) η (t) a.e. and g ∈Wr,1∩AC. Thus, ϑg ∈ L1 and av(ϑg,b) < ∞. By Theorem 3.1,

we have desired conclusion.

Remark 3.4. Let h : [0,b]×Rn→ Rn be single-valued function. Consider F as set-valued map with value F(s,z) = {h(s,z)}.
Then the problem (2.1) turns into the following Cauchy problem related to a discontinuous differential equation:

ż(s) = h(s,z(s)) , z(0) = r. (3.8)

It is known that the uniqueness and existence results for the problem (2.1) can be obtained from hypotheses of Theorem 2.6
and Theorem 3.1 in [18]. Note that hypotheses of Corollary 3.2 are similar to these hypotheses except for the boundedness
hypothesis (that is, for every c > 0 there exists a non-negative function mc ∈ L1

1 such that |z| < c implies |h(s,z)| ≤ mc (s)
for a.e.). It follows from Corollary 3.2 that the following existence result still holds without boundedness assumption. The
uniqueness result can be obtained easily with the same proof in [18].

Corollary 3.5. Let h : [0,b]×Rn→ Rn be the function satisfying the following:

(a) h is L ×Bm-measurable,
(b) there exists a non-negative function ` ∈ L1

1 with av(`,b)< 1 satisfying

|h(s,y)−h(t,z)| ≤ (`(s)/s) |y− z|

for any (s,y) and (s,z) in ]0,b]×Rn,
(c) |h(·,r)| ∈ L1

1 and av(|h(·,r)| ,b)< ∞.

Then the problem (3.8) has a unique solution (in Wr,1).

Example 3.6. Let r > 0, b ∈
] r

2 ,2r
[

and consider the following problem:

h(s,z) =

{ 2
2s+r z s > r

2
0 0≤ s≤ r

2
, s ∈ [0,b]

ż(s) = h(s,z), z(0) = r.

The problem has no a continuously differentiable solution. It can be easily verified that h is L ×Bm-measurable, and that h
satisfies the Lipschitz condition with l (defined by l (s) = s

r ) given in Corollary 3.5. Moreover, |h(·,r)| is Riemann integrable
on [0,b] and av(|h(·,r)| ,b)< ∞. As the hypotheses of Corollary 3.2 are satisfied, the problem has a unique solution (in Wr,1).
Note that the solution is the function z : [0,b]→ R defined by z(s) = s+ r

2 if r
2 < s≤ b and z(s) = r if 0≤ s≤ r

2 .

4. Conclusion

In this paper, an existence result for the discontinuous differential inclusion with an initial condition, where the solution lies in
the weighted space, is given in Theorem 3.1. Here, unlike the classical existence results, the concepts related to the weighted
space and the topology of this space are used in the nonconvex and unbounded case. As a consequence of the theorem, the
existence result of the differential equations in [18] is generalized to differential inclusions without boundedness assumption.
In addition, in the proof of the theorem, the approximations mentioned in [13] is used to be members of the weighted space.
Considering recent studies using similar approximations in various fields related to differential inclusion theory (see, e.g. [21],
[22], [23]), this paper will contribute to the theory by providing the generalized results based on the use of the concepts and the
approximations related to the weighted space.
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