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Abstract. The study of bicomplex numbers, specifically commutative-quaternions,

offers a fascinating exploration into the properties of complexified quaternions
with commutative multiplication. Understanding the gradient and partial

derivatives within this mathematical framework is crucial for analyzing the

behavior of bicomplex functions. Real quaternions are not commutative but
bicomplex numbers are commutative by multiplication. Bicomplex numbers

are the special case of real quaternions. In this study, gradient and partial

derivatives are obtained for bicomplex number valued functions.

1. Introduction

Commutative-quaternions, a specific subset of bicomplex numbers, have gained
significant interest in mathematical research due to their commutative multiplica-
tion property. Unlike traditional quaternions, which are non-commutative, commutative-
quaternions provide a unique algebraic structure for studying the behavior of bi-
complex functions. For detailed information, see [5, 10, 11].

A real quaternion Q is defined by

Q = a+ bi+ cj + dk

where a, b, c, d are real numbers and

i2 = j2 = k2 = ijk = −1

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j.
The conjugate of a real quaternion Q

Q̄ = a− bi− cj − dk
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and the norm of Q is

|Q| =

√
|Q|2

=

√
QQ

=
√
a2 + b2 + c2 + d2.

The set of quaternions is denoted by H [1, 6, 7].

A bicomplex number q is defined by

q = t+ xi+ yj + zk

where w, x, y, z are real numbers and

i2 = j2 = −1

ij = ji = k,

ki = ik = −j,
kj = jk = −i.
k2 = ijij = iijj = i2j2 = 1

For detailed information about bicomplex numbers, we refer the reader to [5, 10].
The gradient of a scalar-valued function in bicomplex analysis allows us to de-

termine the direction and magnitude of the steepest ascent or descent at any point.
Similarly, partial derivatives provide a measure of how a function changes concern-
ing each variable in a multidimensional space.

2. Preliminaries

Consider the bicomplex number function f = f1 + if2 + jf3 + kf4, whose com-
ponents are bicomplex number valued functions. We can give the definition of
derivative that

f ′(q) =
df

dq
= lim

∆q→0
[f(q + ∆q)− f(q)](∆q)(−1)

where q = t+ xi+ yj + zk is a bicomplex number. Then, f(q) = f1(q) + if2(q) +
jf3(q) + kf4(q).

In complex numbers algebra,

df/dz =

[
∂f1/∂x ∂f2/∂x
∂f1/∂y ∂f2/∂y

]
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where z = x+ iy complex number and f = f1 + if2 complex function. So, f(z) =
f1(z) + if2(z) is written.

∂f

∂x
=

∂f

∂z

∂z

∂x
=
∂f

∂z
1 = f ′(z)

=⇒ f ′(z) =
∂f1

∂x
+
∂f2

∂x
i

∂f

∂y
=

∂f

∂z

∂z

∂y
=
∂f

∂z
i = f ′(z)i

=⇒ f ′(z) = −∂f
∂y
i =

∂f2

∂y
− ∂f1

∂y
i

Real parts and the coefficient of i are equal. Also,

Tz =

[
x y
−y x

]
is the matrix representation of z complex number and

∂f

∂x
=
∂f1

∂x
+ i

∂f2

∂x
is a complex derivative. We can write that

Tz ′ =

[
∂f1/∂x ∂f2/∂x
−∂f2/∂x ∂f1/∂x

]
=

[
∂f1/∂x ∂f2/∂x
∂f1/∂y ∂f2/∂y

]
by considering the matrix representation of z. Here,

∂f1/∂x = ∂f2/∂y, ∂f2/∂x = −∂f1/∂y

are Cauchy-Riemann terms [3].
For real quaternions q1 and q2

q1 = µq2µ
−1

considering that the real quaternions q1 and q2 are similar if there is at least one
µ real quaternion satisfying the equation. We can apply this feature for bicomplex
numbers, which is the special case of real quaternion. Similar calculates are in
[2, 8, 9] for quaternions. Hence,

qi = −iqi = −i(t+ ix+ jy + kz)i

= −i(ti− x+ ky − jz)
= t+ ix+ jy + kz

qj = −jqj = −j(t+ ix+ jy + kz)j

= −j(tj + kx− y − iz)
= t+ ix+ jy + kz

qk = −kqk = −k(t+ ix+ jy + kz)k

= −k(tk − jx− iy + z)

= −t− ix− jy − kz
involutions are obtained. Then, it is written
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q = t+ ix+ jy + kz

qi = t+ ix+ jy + kz

qj = t+ ix+ jy + kz

qk = −t− ix− jy − kz

equation system. So,

t =
1

4
(q + qi + qj − qk)

x =
1

4i
(q + qi + qj − qk)

y =
1

4j
(q + qi + qj − qk)

z =
1

4k
(q + qi + qj − qk)

are obtained. Hence,

dt =
1

4
(dq + dqi + dqj − dqk)

dx =
−i
4

(dq + dqi + dqj − dqk)

dy =
−j
4

(dq + dqi + dqj − dqk)

dz =
k

4
(dq + dqi + dqj − dqk)

are written.

3. The Partial Derivatives of Bicomplex Functions

Partial derivatives in bicomplex analysis extend the concept from standard cal-
culus to four dimensions. For a bicomplex function, the partial derivatives can be
calculated by differentiating the function with respect to each variable while holding
others constant.

We can give the following theorem similar to the case with complex numbers
and by considering the theorem given in [4].

Theorem 3.1. We can write that

∂f

∂q
=


∂f1/∂t ∂f2/∂t ∂f3/∂t ∂f4/∂t
∂f1/∂x ∂f2/∂x −∂f3/∂x −∂f4/∂x
−∂f1/∂y ∂f2/∂y ∂f3/∂y ∂f4/∂y
∂f1/∂z −∂f2/∂z ∂f2/∂z ∂f4/∂z


where f = f1 + if2 + jf3 + kf4 is a bicomplex function whose components are
bicomplex number valued functions and q = t+ ix+ jy+kz is a bicomplex number.
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Proof. We can write

∂f

∂t
=

∂f

∂q

∂q

∂t
=
∂f

∂q
1 = f ′(q)

=⇒ f ′(q) =
∂f1

∂t
+ i

∂f2

∂t
+ j

∂f3

∂t
+ k

∂f4

∂t

∂f

∂x
=

∂f

∂q

∂q

∂x
=
∂f

∂q
i = f ′(q)i

=⇒ f ′(q) =
−∂f
∂x

i =
∂f2

∂x
− i∂f1

∂x
− j ∂f4

∂x
+ k

∂f3

∂x

∂f

∂y
=

∂f

∂q

∂q

∂y
=
∂f

∂q
j = f ′(q)j

=⇒ f ′(q) =
−∂f
∂y

j =
∂f3

∂y
+ i

∂f4

∂y
− j ∂f1

∂y
− k∂f2

∂y

∂f

∂z
=

∂f

∂q

∂q

∂z
=
∂f

∂q
k = f ′(q)k

=⇒ f ′(q) =
∂f

∂z
k =

∂f4

∂z
− j ∂f2

∂z
− i∂f3

∂z
+ k

∂f1

∂z

equations. Here, coefficients are equal. Also,

Tq =


t x y z
−x t −z y
−y −z t x
z −y −x t


is the matrix representation of bicomplex number and

∂f

∂t
=
∂f1

∂t
+ i

∂f2

∂t
+ j

∂f3

∂t
+ k

∂f4

∂t

is bicomplex number derivative. We can write that

Tf ′ =


∂f1/∂t ∂f2/∂t ∂f3/∂t ∂f4/∂t
−∂f2/∂t ∂f1/∂t −∂f4/∂t ∂f3/∂t
−∂f3/∂t −∂f4/∂t ∂f1/∂t ∂f2/∂t
∂f4/∂t −∂f3/∂t −∂f2/∂t ∂f1/∂t



=


∂f1/∂t ∂f2/∂t ∂f3/∂t ∂f4/∂t
∂f1/∂x ∂f2/∂x −∂f3/∂x −∂f4/∂x
−∂f1/∂y ∂f2/∂y ∂f3/∂y ∂f4/∂y
∂f1/∂z −∂f2/∂z ∂f2/∂z ∂f4/∂z


(See [2] for similar operations). Thus, proof is complete. �



A COMMUTATIVE-QUATERNION APPROACH 53

4. Gradient for Bicomplex Number Valued Functions

To calculate the gradient of a bicomplex function, we differentiate the function
with respect to each variable (a, b, c, and d) independently. The resulting gradient
vector provides the directional derivative along each axis.

Now let’s replace these values in partial derivatives of the function f . Using
these values in the partial derivatives of the function f ,

df

dq
=

∂f

∂t

∂t

∂q
+
∂f

∂x

∂x

∂q
+
∂f

∂y

∂y

∂q
+
∂f

∂z

∂z

∂q

=
∂f

∂t

1

4
+
∂f

∂x

(−i)
4

+
∂f

∂y

(−j)
4

+
∂f

∂z

k

4

=
1

4
(
∂f

∂t
− i∂f

∂x
− j ∂f

∂y
+ k

∂f

∂z
)

df

dqi
=

∂f

∂t

∂t

∂qi
+
∂f

∂x

∂x

∂qi
+
∂f

∂y

∂y

∂qi
+
∂f

∂z

∂z

∂qi

=
∂f

∂t

1

4
+
∂f

∂x

1

4i
+
∂f

∂y

1

4j
+
∂f

∂z

k

4

=
1

4
(
∂f

∂t
− i∂f

∂x
− j ∂f

∂y
+
∂f

∂z
k)

df

dqj
=

∂f

∂t

∂t

∂qj
+
∂f

∂x

∂x

∂qj
+
∂f

∂y

∂y

∂qj
+
∂f

∂z

∂z

∂qj

=
∂f

∂t

1

4
+
∂f

∂x

1

4i
+
∂f

∂y

1

4j
+
∂f

∂z

k

4

=
1

4
(
∂f

∂t
− i∂f

∂x
− j ∂f

∂y
+
∂f

∂z
k)

df

dqk
=

∂f

∂t

∂t

∂qk
+
∂f

∂x

∂x

∂qk
+
∂f

∂y

∂y

∂qk
+
∂f

∂z

∂z

∂qk

=
∂f

∂t

(−1)

4
− ∂f

∂x

1

4i
− ∂f

∂y

1

4j
− ∂f

∂z

k

4

=
1

4
(−∂f

∂t
+ i

∂f

∂x
+ j

∂f

∂y
− ∂f

∂z
k)

equations can be written.It is obtained that
∂f(q,qi,qj ,qk)

∂q
∂f(q,qi,qj ,qk)

∂qi

∂f(q,qi,qj ,qk)
∂qj

∂f(q,qi,qj ,qk)
∂qk

 =
1

4


1 −i −j k
1 −i −j k
1 −i −j k
−1 i j −k




df
dt
df
dx
df
dy
df
dz


in matrix form. It can be written that

∂f(q,qi,qj ,qk)
∂q∗

∂f(q,qi,qj ,qk)
∂qi∗

∂f(q,qi,qj ,qk)
∂qj∗

∂f(q,qi,qj ,qk)
∂qk∗

 =
1

4


1 i j −k
1 i j −k
1 i j −k
−1 −i −j k




df
dt
df
dx
df
dy
df
dz
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for conjugate. Here,

∇f =


df
dt
df
dx
df
dy
df
dz


is the gradient of f .

5. Conclusion

Bicomplex numbers extend the complex number system by introducing an ad-
ditional imaginary unit, resulting in a four-dimensional algebraic structure. The
commutative-quaternion algebra adds the property of commutativity to the quater-
nion algebra, allowing for a more versatile mathematical framework. The study
of bicomplex numbers, specifically commutative-quaternions, offers a fascinating
exploration into the properties of complexified quaternions with commutative mul-
tiplication. Understanding the gradient and partial derivatives within this mathe-
matical framework is crucial for analyzing the behavior of bicomplex functions.
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