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ABSTRACT Chaotic systems are known to be extremely sensitive to initial conditions, meaning small changes
can have a significant impact on the outcomes. By analyzing the average profit margin in relation to chaotic
dynamics, companies can conduct sensitivity analysis to assess the potential impact of various factors on
their profitability. This analysis can help identify critical variables or scenarios that may significantly affect
profit margins. In this article, we have proposed a hyperchaotic financial system with hyperbolic sinusoidal
non-linear variables applied to the average profit margin. Furthermore, we have investigated the stability of the
hyperchaotic financial dynamics model to provide information to companies to assess the consistency and
reliability of their profitability. In addition, fundamental dynamic behavior like Lyapunov exponents, bifurcation
analysis, coexisting attractors have been reported. Finally, a nonlinear feedback control approach is developed
to train an adaptive neural fuzzy controller. The application of Lyapunov theory confirms that this nonlinear
feedback controller can effectively minimize the synchronization error within a finite duration. The results
from simulations establish the effectiveness of the proposed neural fuzzy controller architecture in controlling
the synchronization of two hyperchaotic financial models. Additionally, the simulation includes a comparison
between the performance of the nonlinear controller and the adaptive neural fuzzy controller.
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INTRODUCTION

Chaotic behavior in financial systems often leads to increased
volatility and unpredictability (Guegan 2009; Vogl 2022; Inglada-
Perez 2020). By studying the average profit margin in relation to
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chaotic dynamics, companies can gain a better understanding of
the potential risks they face (Lux 1998; Shi et al. 2022; Xin et al.
2013). This understanding can help in developing risk manage-
ment strategies and contingency plans to mitigate the adverse
effects of financial instability on profitability. Moreover, chaotic be-
havior in financial markets can create opportunities for profit. The
market fluctuations and price volatility can allow skilled investors
and traders to capitalize on short-term price movements and gen-
erate profits through strategic buying and selling (Ma and Li 2020;
Musaev et al. 2022). The ability to identify patterns or trends within
chaotic behavior can provide a competitive advantage in capturing
these profit opportunities.

Financial chaotic systems arise in business modelling and they
have many applications in science and engineering. Many studies
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have discussed the financial model using hyperchaotic systems ap-
proach, such as Yu et al. (2012) proposed hyperchaos financial sys-
tem with addition variable average profit margin using quadratic
nonlinear term and designed speed feedback controllers and lin-
ear feedback controllers for stabilizing hyperchaos to unstable
equilibrium points. Xin (2009) constructed a new 4D continuous
autonomous financial hyperchaotic system using a nonlinear state
feedback controller. In their study, Vargas et al. (2015) introduced
an adaptive controller aimed at achieving synchronization in hy-
perchaotic finance systems. The proposed controller addresses
uncertainties that may arise from factors such as unknown system
parameters and disturbances that vary over time or are dependent
on the system’s state. Szumiński (2018) conducted an analysis of
integrability for complex dynamical systems within the context
of the financial hyperchaotic model, utilizing differential Galois
theory.

The primary focus of this study was to demonstrate the non-
integrability of the examined system across a broad range of func-
tions. Additionally, the research aimed to identify specific pa-
rameter values that may indicate integrability within the system.
Jahanshahi et al. (2019) apply the four-dimensional financial hy-
perchaotic system and propose a unique control method for sup-
pressing chaos and achieving synchronization in this nonlinear
system. This study approach combines fuzzy logic with a fast
disturbance observer and ITSMC. Chen et al. (2021) developed suit-
able control strategies for achieving synchronization between two
financial systems that have different initial conditions. They also
provided mathematical evidence demonstrating the effectiveness
of the control law employed in their study. Kai et al. (2017) pro-
posed a 4D hyperchaotic financial system derived from an existing
three-dimensional nonlinear financial system. They expand upon
this system by incorporating a controller term to account for the
impact of control on the overall dynamics.

On the other hand, numerous findings regarding the analysis
and control of financial hyperchaotic systems have been docu-
mented in the existing literature. Bekiros et al. (2021) introduce an
optimal mixed H2/H∞ control approach based on type-2 fuzzy
logic for a hyperchaotic financial system. Their investigation cen-
ters around the dynamical properties of the system in the presence
of coexisting attractors. Cao (2018) designed a four-dimensional
hyperchaotic finance system, which can generate double-wing
chaotic and hyperchaotic attractors with three equilibrium points.
Hajipour et al. (2018) developed a sliding mode control strategy
to regulate a hyperchaotic financial model and to ensure stability
of the proposed system in the face of unwanted dynamics and
disturbances. To achieve this, they applied an adaptive sliding
mode control scheme that aims to drive the system’s states towards
desired set points.

Xu et al. (2021) investigate the H∞ control problem for a hy-
perchaotic finance system with an energy-bounded disturbance,
employing a delayed feedback controller. Through the utilization
of quadratic system theory, an augmented Lyapunov functional,
integral inequalities, and rigorous mathematical derivations, they
establish a sufficient condition based on linear matrix inequalities.
This condition ensures that the closed-loop system attains desirable
performance characteristics, including boundedness, H∞ perfor-
mance, and asymptotic stability. Li et al. (2022) introduce a novel
approach to establish adequate conditions that ensure the presence
and stabilization of positive solutions in a specific hyper-chaotic
financial model. Their study also investigates a nonlinear chaotic
financial system with diffusion by incorporating the concepts of
Laplacian semigroup and impulsive control. Rao and Zhu (2021)

demonstrate the theoretical importance of guiding the actual finan-
cial market. Their study highlights that implementing positive and
accurate macroeconomic control measures at specific frequencies
can promote market stability and result in higher positive interest
rates.

Specifically, the main contributions and novelty of this study
can be summarized into the following points:

1. The system consists of a total eleven terms including with
sinusoidal hyperbolic non-linear variables applied to the av-
erage profit margin

2. The system exhibits multistability and coexistence attractors

3. A nonlinear feedback control approach is developed to train
an adaptive neural fuzzy controller

The structure of this research article is presented as follows.
First, we provide a concise description of the mathematical model
for the hyperchaotic financial system. Next, we carry out a dy-
namic analysis of the new hyperchaotic financial system. We also
discuss the multistability and coexisting hyperchaotic attractors
for the new hyperchaotic financial system. As a control application,
we present an adaptive neural fuzzy controller for the synchroniza-
tion of the new hyperchaotic financial systems and describe the
simulation results. Finally, we conclude this research article with a
summary of the main results.

MODELING OF THE NOVEL FINANCIAL RISK SYSTEM

A chaotic-based financial system due to Gao and Ma Gao and Ma
(2009) can be expressed as follows

ż1 = z3 + (z2 − a)z1

ż2 = 1 − bz2 − z2
1

ż3 = −z1 − cz3

(1)

where a represents the savings, b denotes the per investment cost,
and c signifies the elasticity of commercial demands, all of which
are positive constants. Considering the respective values as fol-
lows: a = 0.9, b = 0.2, c = 1.2, and the initial state of the system
is (z1(0), z2(0), z3(0)) = (1, 2, 0.5), the system (1) exhibits chaotic
behavior. The Lyapunov exponents of the Gao-Ma system (1) are
calculated as LE1 = 0.0833, LE2 = 0 and LE3 = −0.6987. Using
these values, the Kaplan-Yorke dimension of the Gao-Ma system
(1) is evaluated as follows:

DKY = 2 +
LE1 + LE2

|LE3|
= 2.1192 (2)

Furthermore, Yu et al. Yu et al. (2012) proposed 4-D hyper-
chaotic finance system with added average profit margin. The
4D hyperchaotic finance system Yu et al. (2012) has the following
dynamics: 

ż1 = z3 + (z2 − a)z1 + z4

ż2 = 1 − bz2 − z2
1

ż3 = −z1 − cz3

ż4 = −dz1z2 − pz4

(3)
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where parameters a, b, c, d, p are held positive. Yu et al. Yu et al.
(2012) showed that the system (3) exhibits hyperchaotic behavior
for the following values: a = 0.9, b = 0.2, c = 1.5, d = 0.2 and p =
0.17. For MATLAB simulations, the initial state of the system (3) is
chosen as Z(0) = (1, 2, 0.5, 0.5). The Lyapunov exponents of the
Hyperchaotic Yu finance system (3) are calculated as LE1 = 0.0344,
LE2 = 0.0180, LE3 = 0 and LE4 = −1.1499.

Using these values, the Kaplan-Yorke dimension of the hyper-
chaotic Yu system (3) is evaluated as follows:

DKY = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.0456 (4)

This study proposes a new finance model by combining the Gao-
Ma finance model (1) and the Yu finance model (3). Specifically,
we consider the effect of hyperbolic sinusoidal nonlinearity in the
z4 dynamics of the system. The new hyperchaotic finance system
has the following form:

ż1 = z3 + (z2 − a)z1 + qz4

ż2 = 1 − bz2 − z2
1

ż3 = −z1 − cz3

ż4 = −dz1z2 − p sinh(z1)

(5)

Eq. (5) which represents a new financial 4-D system consists
of the parameters a, b, c, d, p, q that are held as positive constants
taking the following values: a = 0.9, b = 0.2, c = 1.5, d = 0.3,
p = 0.15 and q = 0.1. Suppose also that we consider the initial
state as Z(0) = (1, 2, 0.5, 0.5).

The calculation of Lyapunov exponents for the 4-D system (5)
yields the following values: LE1 = 0.0382, LE2 = 0.0298, LE3 = 0
and LE4 = −1.0865 which establish the hyperchaotic behavior of
the system. Using these values, the Kaplan-Yorke dimension of
the new hyperchaotic financial system (5) is evaluated as follows:

DKY = 3 +
LE1 + LE2 + LE3

|LE4|
= 3.0625 (6)

Table 1 gives a comparison of the Lyapunov exponents, maxi-
mal Lyapunov exponent (MLE) and the Kaplan-Yorke dimension
(DKY) of the three financial systems expressed by (1), (3) and (5). Ta-
ble 1 demonstrates that the maximum Lyapunov exponent (MLE)
value of the new system (5) is greater than that of the financial sys-
tems (1) and (3). Moreover, it is also shown that the Kaplan-Yorke
dimension of the new system (5) is greater than that of the financial
systems (1) and (3). These are the advantages of the proposed fi-
nancial chaotic system (5). A disadvantage of the new hyperchaotic
system is that it includes a hyperbolic sinusoidal nonlinearity in
its dynamics and for this reason, designing an electronic circuit or
field programmable gate array (FPGA) design of the new financial
system (5) is complicated.

Figure 1 exhibits the plot for the strange attractors and phase
portraits of system (5).

Next, we solve the following system of equations for finding
the equilibrium point for system (5).



0 = z3 + (z2 − a)z1 + qz4

0 = 1 − bz2 − z2
1

0 = −z1 − cz3

0 = −dz1z2 − p sinh(z1)

(7)

■ Table 1 Lyapunov Exponents, MLE and Kaplan-Yorke Dimen-
sion of Three Financial Systems

Financial
System

Lyapunov Exponents (LEs) MLE
Value

DKY

Gao-Ma
Financial
System (1)

LE1 = 0.0833
LE2 = 0
LE3 = −0.6987

0.0833 2.1192

Hyperchaotic
Yu System
(3)

LE1 = 0.0344
LE2 = 0.0180
LE3 = 0
LE4 = −1.1499

0.0344 3.0456

New Fi-
nancial
System (5)

LE1 = 0.0381
LE2 = 0.0298
LE3 = 0
LE4 = −1.0865

0.0381 3.0625

By performing a straightforward calculation, it can be deter-
mined that the new financial hyperchaotic system (5) possesses
a unique equilibrium point given by E0 = (0, 1/b, 0, 0). For
the hyperchaotic case, b = 0.2. In this special case, the new
financial hyperchaotic system (5) has the unique equilibrium
point E0 = (0, 5, 0, 0). We can establish the Jacobian matrix at
E0 = (0, 5, 0, 0) to be as follows:

J =



4.10 0 1 0.1

0 −0.2 0 0

−1 0 −1.5 0

−1.65 0 0 0


(8)

We find that the matrix J has the eigenvalues: λ1 = 0.0484,
λ2 = 3.8712, λ3 = −0.2 and λ4 = −1.3196. This shows that
E0 = (0, 5, 0, 0) is a saddle point and unstable equilibrium for
system (5).

DYNAMICAL ANALYSIS

In this section, we conduct an analysis of the dynamical properties
of the new hyperchaotic financial model (5) as a function of its pa-
rameters. To achieve this, we utilize various tools such as spectrum
of Lyapunov exponents, bifurcation diagrams, and phase plots.

This section of the paper aims to explore how the parameters
affect the behavior of the recently developed hyperchaotic finance
system. To achieve this, we will utilize Lyapunov exponents spec-
trum, bifurcation diagrams, and phase plots. Specifically, we will
focus on the case where Z0 = (0.4, 0.2, 0.4, 0.4).

Bifurcation Diagram and Lyapunov Exponent
Dynamics when a varies Figure 2 depicts the bifurcation diagram
and Lyapunov exponents spectrum of the new hyperchaotic fi-
nance system (5), where the parameter a is varied within the range
[0, 4], while the other parameters remain constant: b = 0.2, c = 1.5,
d = 0.3, p = 0.15, and q = 0.1. Notably, the Lyapunov spectrum
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(a) (b)

(c) (d)

Figure 1 Phase portraits of the new hyperchaotic financial system (5) using MATLAB in (a) z1 − z2 plane (b) z2 − z3 plane, (c) z3 − z4 plane and
(d) z1 − z4 plane

results presented in Figure 2b align with the findings obtained
from the bifurcation diagram shown in Figure 2a.

When the value of a lies within the interval [0, 2.85], the system
(5) demonstrates the presence of two positive Lyapunov exponents,
indicating an extreme hyperchaotic nature. The Kaplan-Yorke di-
mension for this behavior is measured to be DKY = 3.055. For
plots, we specifically selected a to be 0.5. As a result, Figure 3a
illustrates the z1 − z2 attractor, visually representing the hyper-
chaotic behavior exhibited by the system (5) with the respective
Lyapunov exponents having the following values:

LE1

LE2

LE3

LE4

 =


0.053

0.013

0

-1.042

 (9)

When the parameter a fall within the range [2.86, 3.10], the
system (5) demonstrates a positive maximal Lyapunov exponent,
indicating the presence of chaotic behavior. The Kaplan-Yorke
dimension, measured to be DKY = 3.011, further confirms the
complex nature of hyperchaotic finance system (5). Specifically
selecting a to be 2.95 for our plots, we observe the z1 − z2 attrac-
tor depicted in Figure 3b, which illustrates the chaotic behavior
exhibited by the system (5). The respective values for Lyapunov
exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.0260

0

-0.012

-1.032

 (10)

When the parameter a fall within the range [3.11, 4], the system
(5) exhibits periodic behavior without complexity. For plots, we
specifically selected a to be 3.5. As a result, Figure 3c, presents
the z1 − z2 attractor, visually representing the periodic behavior
displayed by the new 4D hyperchaotic finance system (5). Specific
to this case, the respective Lyapunov exponents are recorded as
the followings: 

LE1

LE2

LE3

LE4

 =


0

-0.042

-0.045

-1.011

 (11)

Dynamics when b varies In Figure 4, the bifurcation diagram and
Lyapunov exponents spectrum are depicted for the finance system
(5) as the parameter b changes within the range of [0, 0.5].
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(a) (b)

Figure 2 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when a ∈ [0, 4].

(a) (b) (c)

Figure 3 Output Matlab simulation (a) z1 − z2 hyperchaotic attractor of the system (5) when a = 0.5. (b) z1 − z2 chaotic attractor of system (3)
when a = 2.95 and (c) z1 − z2 periodic orbit of the system (5) when a = 3.5.

When the parameter b falls within the range [0, 0.29], the sys-
tem (5) displays the presence of two positive Lyapunov exponents,
signifying an extreme hyperchaotic nature. The Kaplan-Yorke di-
mension for this behavior is measured to be DKY = 3.063. For
plots, we specifically chose b to have a value of 0.05. Consequently,
Figure 5a displays the z1 − z3 attractor, providing a visual repre-
sentation of the hyperchaotic behavior exhibited by the system (5).
The associated Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 . =


0.053

0.013

0

-1.042

 (12)

When the parameter b is within the range [0.30, 0.35], the system
(5) showcases a positive maximal Lyapunov exponent, indicating
the presence of chaotic behavior. The measurement of the Kaplan-
Yorke dimension as DKY = 3.010 further validates the complex
nature of the system (5). For plots, we specifically selected b to
have a value of 0.31. As a result, the z1 − z3 attractor presented in
Figure 5b vividly portrays the chaotic behavior exhibited by the
system (5). The corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.017

0

-0.006

-1.101

 (13)

When the parameter b is in the range of [0.036, 0.5], the system
(5) exhibits periodic behavior without complexity. For plots, we
specifically selected b to be 0.5. As a result, Figure 5c presents the
z1 − z3 attractor, visually representing the periodic behavior dis-
played by the system (5). The corresponding Lyapunov exponents
are as follows: 

LE1

LE2

LE3

LE4

 =


0

-0.013

-0.222

-1.051

 (14)

Dynamics when c varies For system (3), the Bifurcation diagram
and Lyapunov exponents spectrum are depicted as in Figure 6 as
the value of c ranges from 0 to 1.5.

When c belongs to the intervals ([0, 0.84], [0.98, 1.01]), the sys-
tem (5) has one zero and three negative Lyapunov exponents,
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(a) (b)

Figure 4 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when b ∈ [0, 0.5].

(a) (b) (c)

Figure 5 Output Matlab simulation (a) z1 − z3 hyperchaotic attractor of system (3) when b = 0.5. (b) z1 − z3 chaotic attractor of the system (5)
when b = 0.31 and (c) z1 − z3 periodic orbit of the system (5) when b = 0.5.

indicating the emergence of periodic behavior. For plots, we have
chosen the parameter c = 0.5. Subsequently, Figure 7a illustrates
the z2 − z3 attractor, which clearly demonstrates the periodic be-
havior of the system (5). The corresponding Lyapunov exponents
are as follows:


LE1

LE2

LE3

LE4

 =


0

-0.025

-0.133

-0.134

 (15)

When c belongs to the intervals
([0.84, 0.87], [0.91, 0.98], [1.01, 1.15]), the system (5) demonstrates
a positive maximal Lyapunov exponent, and the Kaplan-Yorke
dimension yields a fractional value of DKY = 3.072. These
characteristics indicate that the system (5) exhibits complex
chaotic behavior. For plots, we have selected the parameter
c = 1.02. Subsequently, Figure 7b illustrates the z2 − z3 attractor,
clearly showcasing the chaotic behavior of the system (5). The
corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.061

0

-0.025

-0.502

 (16)

In the range where c belongs to ([0.87, 0.91], [1.15, 1.5]), the
system (5) showcases two positive Lyapunov exponents, indicating
the presence of extreme hyperchaotic behavior. The system also
possesses a fractional value of the Kaplan-Yorke dimension, with
DKY = 3.090. For plots, we have chosen the parameter c = 1.35.
Subsequently, Figure 7c illustrates the z2 − z3 attractor, effectively
demonstrating the hyperchaotic behavior of the system (5). The
corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.057

0.027

0

-0.929

 (17)

Dynamics when d varies For the system (5), the Bifurcation dia-
gram and Lyapunov exponents spectrum are plotted as in Figure 8
when d varies in the region [−0.3, 0.3].
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(a) (b)

Figure 6 Characteristics of system (3) in terms of a) Bifurcation diagram and b) LEs spectrum when c ε [0, 1.5].

(a) (b) (c)

Figure 7 Output Matlab simulation (a) z2 − z3 hyperchaotic attractor of the system (5) when c = 0.5. (b) z2 − z3 chaotic attractor of the system (5)
when c = 1.02 and (c) z2 − z3 periodic orbit of the system (5) when c = 1.35.

When d belongs to the interval [−0.3,−0.14], the system (5)
exhibits four negative Lyapunov exponents, indicating its conver-
gence to a stable state. Figure 9a illustrates the z1 − z4 attractor for
d = −0.3. The corresponding Lyapunov exponents are as follows:

LE1

LE2

LE3

LE4

 =


-0.029

-0.405

-0.409

-1.126

 (18)

When the value of d falls within the range [−0.13, 0.03], the
system (5) demonstrates the presence of one positive Lyapunov
exponent, resulting in a fractional value of the Kaplan-Yorke di-
mension DKY = 3.034. This indicates that the system (5) exhibits
complex chaotic behavior. Figure 9b showcases the z1 − z4 attrac-
tor for d = 0, illustrating the chaotic behavior of the system (5).
The corresponding Lyapunov exponents are as follows:

LE1

LE2

LE3

LE4

 =


-0.055

0

-0.020

-1.040

 (19)

When the value of d lies within the interval [0.04, 0.3], the sys-

tem (5) showcases two positive Lyapunov exponents, indicating
its extreme hyperchaotic behavior. Moreover, the Kaplan-Yorke
dimension takes on a fractional value of DKY = 3.051. Figure
9c represents the plotted z1 − z4 attractor for d = 0.2, effectively
demonstrating the hyperchaotic behavior of the system (5). The
corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.032

0.023

0

-1.077

 (20)

Dynamics when p varies Figure 10 illustrates the Bifurcation dia-
gram and Lyapunov exponents spectrum of the system (5) while
the value of p varies between 0 and 3.

When the parameter p falls within the range [0, 0.7], the system
(5) exhibits extreme hyperchaotic behavior. The Kaplan-Yorke
dimension for this behavior is measured to be DKY = 3.062. Figure
11a displays the z2 − z4 hyperchaotic attractor for p = 0.1. The
associated Lyapunov exponents are as follows:
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(a) (b)

Figure 8 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when d ∈ [−0.3, 0.3].

(a) (b) (c)

Figure 9 Output Matlab simulation (a) z1 − z4 hyperchaotic attractor of the system (5) when d = 0.5. (b) z1 − z4 chaotic attractor of the system (5)
when d = 0 and (c) z1 − z4 periodic orbit of the system (5) when d = 0.2.


LE1

LE2

LE3

LE4

 =


0.041

0.026

0

-1.086

 (21)

When the parameter p is within the range [0.8, 1.7], the system
(5) showcases a positive maximal Lyapunov exponent, indicating
the presence of chaotic behavior with DKY = 3.033. Figure 11b
portrait the z2 − z4 chaotic attractor exhibited by the system (5) for
p = 1.2. The corresponding Lyapunov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0.076

0

-0.039

-1.119

 (22)

When the parameter p is in the range of [1.8, 3], the system (5)
exhibits periodic behavior without complexity. Figure 11c presents
the z2 − z4 attractor, visually representing the periodic behavior
displayed by the system (5) for p = 3. The corresponding Lya-
punov exponents are as follows:


LE1

LE2

LE3

LE4

 =


0

-0.020

-0.023

-1.146

 (23)

Dynamics when q varies For system (5), the Bifurcation diagram
and Lyapunov exponents spectrum are illustrated as in Figure 12
as the value of q ranges from 0 to 0.5.

When q = 0, the system (5) exhibits periodic behavior. Figure
13a illustrates the z3 − z4 attractor, which clearly demonstrates the
periodic behavior of the system (5). The corresponding Lyapunov
exponents are as follows:

LE1

LE2

LE3

LE4

 =


0

0

-0.010

-0.947

 (24)

When q belongs to the interval [0.01, 0.28], system (3) exhibits
complex hyperchaotic behavior with DKY = 3.055. For plots,
we have selected the parameter q = 0.2. Subsequently, Figure
13b illustrates the z3 − z4 attractor. The corresponding Lyapunov
exponents are as follows:
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(a) (b)

Figure 10 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when p ε [0, 3].

(a) (b) (c)

Figure 11 Output Matlab simulation (a) z2 − z4 hyperchaotic attractor of the system (5) when p = 0.1. (b) z2 − z4 chaotic attractor of the system
(5) when p = 1.2 and (c) z2 − z4 periodic orbit of the system (5) when p = 3.


LE1

LE2

LE3

LE4

 =


0.048

0.013

0

-1.106

 (25)

In the range where q belongs to [0.29, 0.5], the system (5) gen-
erates chaotic behavior. The system also possesses a fractional
value of the Kaplan-Yorke dimension, with DKY = 3.017. Figure
13c illustrates the z3 − z4 attractor for q = 0.5. The corresponding
Lyapunov exponents are as follows:

LE1

LE2

LE3

LE4

 =


0.093

0

-0.074

-1.122

 (26)

Multistability and Coexisting Attractors The new 4D hyperchaotic
finance system (5) possesses the ability to exhibit multiple coexist-
ing attractors. To explore this phenomenon further, we examine
the system’s behavior using two distinctive starting points: Z01 =
(0.4, 0.2, -0.4, 0.4) and Z02 = (0.4, 0.2, 0.4, 0.4).

When the parameters a = 0.9, b = 0.2, c = 1, d = 0.3, p = 0.15,
and q = 0.1 are held constant, the finance system (5) exhibits
two distinct periodic behaviors based on its initial conditions, as
illustrated in Figure 14. The figure showcases three separate repre-
sentations denoted as (a), (b), and (c).

In the presence of parameters, a = 0.9, b = 0.2, c = 1.05, d = 0.3,
p = 0.15, and q = 0.1, the finance system (5) reveals the presence
of two distinct chaotic attractors, determined by the selection of
initial conditions (Z01 or Z02), as depicted in Figure 15. The figure
encompasses three different representations, labeled as (a), (b), and
(c).
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(a) (b)

Figure 12 Characteristics of the system (5) in terms of a) Bifurcation diagram and b) LEs spectrum when q ∈ [0, 0.5].

(a) (b) (c)

Figure 13 Output Matlab simulation (a) z3 − z4 hyperchaotic attractor of the system (5) when q = 0.1. (b) z3 − z4 chaotic attractor of the system
(5) when q = 0.2 and (c) z3 − z4 periodic orbit of the system (5) when q = 0.5.

SYNCHRONIZATION OF HYPERCHAOTIC FINANCE SYS-
TEM WITH GENERAL ADAPTIVE NEURAL FUZZY CON-
TROLLER METHOD

Nonlinear Control Design

To synchronize two hyperchaotic financial systems modelled by the
dynamics (5), first consider the following master-slave equations
where index m is for master and index s is for slave.



żm1 = zm3 + (zm2 − a)zm1 + qzm4

żm2 = 1 − bzm2 − z2
m1

żm3 = −zm1 − czm3

żm4 = −dzm1zm2 − p sinh(zm1)

(27)



żs1 = zs3 + (zs2 − a)zs1 + qzs4 + u1

żs2 = 1 − bzs2 − z2
s1 + u2

żs3 = −zs1 − czs3 + u3

żs4 = −dzs1zs2 − p sinh(zs1) + u4

(28)

where ui is the controller (decision variable) that should direct
the equations of the slave system to the equations of the master
system. Figure 16 shows that by having different values of initial
conditions for the two hyperchaotic financial systems, the behavior
of the system will be different.

The first goal in designing a nonlinear controller is to determine
the system error equation. So:

e1 = zs1 − zm1

e2 = zs2 − zm2

e3 = zs3 − zm3

e4 = zs4 − zm4

(29)

The main goal in controller design is to reach

lim
t→∞

∥ei(t)∥ = 0 (i = 1, 2, 3, 4) (30)
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(a) (b) (c)

Figure 14 Matlab plots of the coexisting periodic/periodic attractors generated by the new 4D finance system (5), where the attractors gener-
ated from Z01 are in blue color, while attractors generated from Z02 are in red color. (a) z1 − z2 plane, (b) z1 − z3 plane and (c) z2 − z3 plane.

(a) (b) (c)

Figure 15 MATLAB plots of the coexisting chaotic/chaotic attractors generated by the new finance system (5), where the attractors generated
from Z01 are in blue color, while the attractors generated from Z02 are in red color. (a) z1 − z2 plane, (b) z1 − z3 plane and (c) z2 − z3 plane.

Figure 16 Behavior of two 4D hyperchaotic systems for initial condi-
tions zm1(0) = 0.4, zm2(0) = 0.2, zm3(0) = 0.4, zm4(0) = 0.4 and
zs1(0) = 0.2, zs2(0) = 0.7, zs3(0) = −0.5, zs4(0) = 0.1

From equation (29), we derive:



ė1 = e3 + qe4 + (zs2 − a)zs1 − (zm2 − a)zm1 + u1

ė2 = −be2 − z2
s1 + z2

m1 + u2

ė3 = −e1 − ce3 + u3

ė4 = −d(zs1zs2 − zm1zm2)− p(sinh(zs1)− sinh(zm1)) + u4

(31)

Theorem 1. The slave hyperchaotic finance system (28) will synchronize
with the hyperchaotic finance system (27) if the controller is chosen as
follows.

u1 = −e3 − qe4 − (zs2 − a)zs1 + (zm2 − a)zm1 + λ1e1

u2 = be2 + z2
s1 − z2

m1 + λ2e2

u3 = e1 + ce3 + λ3e3

u4 = d(zs1zs2 − zm1zm2) + p(sinh(zs1)− sinh(zm1)) + λ4e4
(32)

Proof. To prove the stability of the candidate Lyapunov function,
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it is considered as follows

Vi(e) =
4

∑
i=1

1
2

e2
i =

1
2
(e2

1 + e2
2 + e2

3 + e2
4) (33)

If we derive from the equation (31), we have

V̇ = e1 ė1 + e2 ė2 + e3 ė3 + e4 ė4 (34)

By substituting equation (29) and (31) in the equation (34) and
finally by substituting the proposed nonlinear controller, we have:

V̇ = λ1e2
1 + λ2e2

2 + λ3e2
3 + λ4e2

4 < 0 (35)

where λi, (i = 1, 2, 3, 4) are the controlling gains chosen to be
negative. This completes the proof. ■

Nonlinear control design simulation results
Considering the same initial conditions as before, also the con-
troller gain is equal to λi(i = 1, 2, 3, 4) = −2, Figure 17 shows the
synchronization of two hyper-chaotic finance systems given by
(27) and (28). The controller is applied to the model since t = 20.
Figure 17 shows the synchronization of two hyperchaotic systems
by the proposed nonlinear method.

Figure 18 shows the behavior of the non-linear controller (de-
cision variable) that has been applied to the hyper-chaotic slave
system (28) from T = 20. Figure 19 shows that the synchronization
error in the proposed method tends to zero after passing a short
period of time.

Figure 17 Synchronization of two hyperchaotic finance systems (27)
and (28) in a non-linear way

Figure 18 Non-linear controller behavior (decision variable)

Figure 19 Synchronization error of two hyperchaotic finance sys-
tems (27) and (28) by nonlinear control method

By increasing the gain of the nonlinear controller, the conver-
gence speed of the error can be adjusted to zero. But this issue
will face problems in the real world. To prove, gains are equal to
λi(i = 1, 2, 3, 4) = −3 will be considered (See Figure 20). Also, to
ensure the performance of the proposed method, the controller
application time has also been changed. The initial conditions
are unchanged. The synchronization error of two hyperchaotic
systems with gains can be seen in Figure 21.

Figure 20 Synchronization of two hyperchaotic finance systems (27)
and (28) with gains λi(i = 1, 2, 3, 4) = −3

Figure 21 Synchronization error of two hyperchaotic finance sys-
tems (27) and (28) with gains
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Figure 22 Behavior of nonlinear controller with gains λi(i =
1, 2, 3, 4) = −3

Training and Test of General Adaptive Neural Fuzzy Controller
For ANFIS training, the training data must be determined first.
The block diagram in Figure 23 shows how the training data is
extracted from the nonlinear controller. As can be seen in Figure
23, training data is entered in ANFIS training block and training
is completed by setting P1 to P4 parameters. The parameters P1
to P4 are given in Table 2. An important principle in fuzzy neural
network training is what part of controller behavior and error to
use for training.

In Figure 22, the controller’s action time is t = 10, which has
reached zero at the approximate time of t = 12.5. Also, in Figure
21, in the interval 10 < t < 12.5, the system error has reached
zero. Therefore, training data should be selected from time t equal
to 10 < t < 12.5. This is precisely the learning of the nature of
hyperchaotic systems. Note that the time step is equal to 0.01.

Figure 23 The concept of learning the adaptive neural fuzzy net-
work with the nonlinear control method

Considering that the condition for stopping training is to reach
zero error or the number of epochs, in this article, the number of
epochs of training has led to stopping training. Figure 24 shows
that the fuzzy neural network has trained the nonlinear controller
well. Figure 25 shows the error of the proposed method for train-
ing.

Numerical Simulation and Comparison between the performance
of two methods of controlling nonlinear and fuzzy adaptive neural
feedback
Now the exquisite controller design is finished. ANFIS controller
is replaced by non-linear controller. In the numerical simulation,
the initial conditions of the slave financial finance system are set
equal to zs1(0) = 0.1, zs2(0) = −0.2, zs3(0) = 0.1, zs4(0) = 0.5, and

■ Table 2 Proposed fuzzy neural network architecture

Total number of trainings 250

Number of training pairs 83

Number of check pairs 83

Number of test pairs 84

Number of input / output membership function (P1) 5

Input / Output Membership Function Type (P2) ’gaussmf’

epoch (P3) 80

Training error (P4) 0

Figure 24 Comparison between the behavior of the nonlinear con-
troller and the trained behavior of the ANFIS controller

Figure 25 ANFIS controller training error

the initial conditions for the master financial hyperchaotic system
are taken as zm1(0) = 0.4, zm2(0) = 0.2, zm3(0) = 0.4, zm4(0) =
0.4. To ensure the performance of the controller, the time of its
application to the system will also be changed. Figure 26 shows
the synchronization of two hyperchaotic finance systems (27) and
(28) using ANFIS control method. The application time of ANFIS
controller is t = 13.

In the last part of the numerical simulation, the performance of
two non-linear and infinite control methods is compared. For this
purpose we regulate the initial conditions of the two hyperchaotic
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■ Table 3 Comparison of mean least square error

Type Control MSE (E1) MSE (E2) MSE (E3) MSE (E4)

Nonlinear 0.0983 0.1379 0.0270 0.0098

ANFIS 0.0980 0.1382 0.0273 0.0098

Figure 26 Synchronization of two hyperchaotic finance systems (27)
and (28) by ANFIS control method

Figure 27 Synchronization error of two hyperchaotic finance sys-
tems (27) and (28) using ANFIS control method

Figure 28 ANFIS controller behavior for synchronization of two
hyperchaotic finance systems (27) and (28)

finance systems (27) and (28) as unchanged, while that of the slave
hyperchaotic system equals to zs1(0) = 0.9, zs2(0) = 0.4, zs3(0) =

Figure 29 comparing the error of two controllers with the same
simulation conditions

Figure 30 The comparison of the behavior of two controllers with
the same simulation conditions

1, zs4(0) = 0.25.
The gains of the nonlinear controller are equal to λi(i =

1, 2, 3, 4) = −3. The controller is applied at time t=5. Figure 29
shows the error of two non-linear and ANFIS controllers for each
variable of the financial hyper chaotic system. As can be seen from
Figure 29, the error behavior in all variables of the hyperchaotic
system was almost the same for both methods. Table 3 shows the
mean of the least squares error for each variable.

Figure 30 shows the behavior of two nonlinear and ANFIS
controllers while the simulation conditions of both were the same.
Controller behavior in the real world represents implementation
costs. Therefore, this behavior must be analyzed after designing
the controller. In the analysis of the behavior of the controller for
the first variable, the range of the ANFIS controller is much higher
than the nonlinear controller, but in the fourth variable, the range
of the nonlinear controller is more than the ANFIS. In the other two
variables (second and third), the range of the nonlinear controller
is higher.
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CONCLUSION

In this article, we investigated the new 4D hyperchaotic financial
system with sinusoidal hyperbolic non-linear variables applied to
the average profit margin. The bifurcation diagrams, Lyapunov
exponents, and multistability, have all been used to explain the
complexity behavior of new 4D hyperchaotic financial system.
Finally, a nonlinear control and adaptive neural fuzzy controller
are designed for demonstrate the performances of the proposed
approach. The main finding is the simulation results show that
the proposed neural fuzzy controller architecture well controls
the synchronization of the new 4D hyperchaotic financial systems
taken as master and slave systems.
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