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Highlights 

• New resonance and its novel characteristics are noticed. 

• Validation with Dirichlet and Neumann boundary conditions are obtained. 

• The finite wedge problem is investigated in detail. 
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Abstract 

The study presents electromagnetic scattering by arbitrarily located double strips with perfect 

electric and/or magnetic conducting surfaces. The study generalizes not only the physical 

dimension, location, and orientation of the strips but also, the boundary conditions on each strip 

are generalized and variable. It can be Dirichlet or Neumann boundary conditions. Since the study 

considers numerous parameters as the variable, the comparison between the present study and the 

literature is investigated in detail. Geometries such as parallelly located double strips with 

fractional boundary conditions, impedance double strips, and wedge problems are considered to 

compare. Besides, the proposed methodology is compared by the method of moments, the method 

of auxiliary sources, and the orthogonal polynomials approach. The suggested research 

investigates the electromagnetic scattering by finite wedge and arbitrarily located two strips with 

different boundary conditions and widths for the first time since each strip can have different 

widths and boundary conditions (Dirichlet or Neumann). The results reveal that the angle between 

the strips, the rotation of the strips, width of the strip have noticeable effects on the scattered field 

and total radar cross-sections. Between the strips, resonances are observed and their 

characteristics have a substantial dependency on the boundary conditions. 
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1. INTRODUCTION 

 

Electromagnetic scattering plays a critical role in numerous applications ranging from the military, 

biomedical, remote control, aviation, forecasting, and characterization. The scattering by finite objects or 

obstacles with edges is the preliminary and essential geometries for electromagnetic scattering [1]. 

Especially, in the twentieth century, vast and extensive analytical, numerical, and analytical-numerical 

methods are proposed to solve problems such as half-plane, wedge, strip, circular strip, ring, disc, and their 

combination or variants. The main aim is to obtain and then solve a differential equation or integral equation 

system after applying boundary conditions while taking into account the radiation and the edge conditions 

to achieve a unique solution [2].  

 

Parallel with the investigations regarding the geometries, the different boundary conditions, and source 

types are investigated [3]. Still in the literature, one of the essential problems, diffraction by a half-plane 

problem is investigated by different approaches [4- 6]. In [4, 5], the approximate analytical methods are 

proposed to obtain the scattered field. In [6], the total field is obtained by the combination of the scattered 

field from soft and hard surfaces. Besides half-plane, the wedge problem has been studied for more than 70 

years considering the different cases such as boundary condition, excitation, combination with other 

geometries, layered-media case, etc. [7- 9]. Apart from half-plane and wedge problems, there are 
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geometries such as strips, ring, circular strip, and apertures and their combinations or variants. These 

problems have been solved with several approaches and have more practical outcomes since they can be 

employed in engineering designs [10- 14].  In these problems, the main aim was to obtain the scattered field 

and observe the far-field radiation characteristics. They could lead to having an engineering design 

motivation. In [11], electromagnetic scattering by a conductive disc structure via a 1D modified integral 

equation employing Fourier expansion was used. Sub-domain bases for induced current were used to solve 

integral equations. Besides, orthogonal polynomials depending on the geometries can be used to express 

the current distribution as done in [13]. Beyond the bounds, the surface characteristics and the boundary 

conditions for similar obstacles or scatterers are also very important to research areas. The same geometries 

with different boundary conditions or periodic, non-periodic, rough, or smooth surfaces for similar 

geometries have been investigated and their comparison are obtained by the numerical methods or the 

validations are revealed for the limit case of the boundary condition or surface characteristic [15- 17].  

 

To deeply understand and manipulate wave interaction, material characterization, sensing and antenna 

design, and solution of the scattering phenomena especially, new mathematical approaches for solving the 

canonical problems play an important effect on engineering development. In particular, semi-analytical and 

approximate methods give insight into dominant effects, and practical and fast solutions to design 

constraints and trade-offs. Apart from various boundary conditions on canonical diffraction problems, there 

are numerous studies investigating the scattering by canonical geometries for different scenarios such as 

multilayer cylinders with oblique incidence excitation, moving thin conducting strips and plates employing 

the physical optics and moving conducting spheres [18- 20]. 

 

Electromagnetic scattering by strip or strips has a very special importance among the other canonical 

problems since its limit case covers numerous similar problems such as a wedge, half-plane, aperture, etc. 

Therefore, for decades, the same geometry has been investigated and numerous approaches have been 

proposed including semi-analytical or numerical methods [21- 23]. Many interesting phenomena can be 

investigated such as the effect of the position, angle, length, boundary condition, and periodicity of the 

strip. The article aims to answer several questions in detail since in the literature, there is no similar study 

for electromagnetic scattering by two strips with the variable position, length, and boundary condition. The 

present study mainly investigates E-polarized electromagnetic scattering by arbitrarily locating different 

size strips where each strip can be perfect electric conducting (PEC) and/or perfect magnetic conducting 

(PMC) surface. While the Dirichlet boundary condition is satisfied in one strip, the Neumann boundary 

condition may be satisfied in the other one. The variability of all: the boundary conditions, the angle 

between the strips, the lengths of the strips, and the center points puts the study in a place that covers and 

generalizes studies in the literature. The comparisons between the proposed methods with other studies in 

the sense of both methodology and geometry are presented. Advantage of the proposed approach to other 

studies is more strict mathematical solution because we require edge condition and also current is expanded 

in terms of orthogonal polynomials which makes it faster converging regarding the purely numerical 

methods. As a result our approach requires less computational memory complexity.  

 

The study follows the formulation of the problem in which the mathematical manipulations and the details 

of the proposed method are covered. Then, the numerical outcomes and the comparisons with other methods 

are provided in the following chapter. Later, the conclusion is drawn.  

 

2. FORMULATION OF THE PROBLEM 

 

Formulation of the problem in which the mathematical expression for the field components due to each 

scatterer and the incident wave is formalized and after having the boundary condition (BC) satisfaction, the 

coupled integral equations are obtained. The proposed method would employ an orthogonal polynomials 

approach expressing the current distribution of the scatterer in terms of Gegenbauer polynomials. Then by 

Fourier transform and the orthogonality properties, the coupled integral equation system is transferred to a 

system of linear algebraic equations. By inversion, unknown coefficients are obtained and the current 

distribution is found. Then, the other physical properties such as radiation pattern, radar cross sections, and 

near-field distributions are obtained.  
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2.1. Mathematical Expressions and Geometry of the Problem 

 

The problem consists of two strips located arbitrarily in the space with infinite length in the z-direction and 

infinitesimal thickness as given in Figure 1. The widths of the strips are 2𝑎𝑖. Here 𝑖 = 1, 2. The incidence 

wave is an E-polarized plane wave. Due to having a two-dimensional problem, on the x-y plane, the center 

points of each strip are 𝜌 = 𝑙𝑖 and 𝜙 = 𝜃𝑖, respectively. Note that, the center points of each strip are given 

cylindrical coordinates variables (𝜌, 𝜙). Strips have their local coordinate systems as (𝑥𝑖, 𝑦𝑖) and they are 

rotated 𝜙𝑖 angle concerning the x-direction in the global coordinate system. 

 
Figure 1. The geometry of the problem 

 

𝐸𝑧(𝑥, 𝑦) is the total electric field subjecting to Dirichlet or Neumann boundary conditions depending on 

the properties of strips as given in Equation (1). Strips can individually be PEC or PMC. For E-polarized 

electromagnetic scattering, the Dirichlet boundary condition stands for PEC surfaces whereas the Neumann 

boundary condition corresponds to the PMC surface 

  

𝐸⃗ 𝑧 = 𝐸⃗ 𝑧
𝑖 + 𝐸⃗ 𝑧

𝑠, 

 

(1) 

where 𝐸⃗ 𝑖 = 𝑎 𝑧𝑒
−𝑖𝑘(𝑥cos 𝜃+𝑦sin 𝜃). Here, 𝑎 𝑧 is the unit vector along the z-axis, 𝜃 is the angle of incidence, 

𝑘 = 2𝜋/𝜆 is the wave number, and 𝜆 is the wavelength in free space. Note that the time dependency 

throughout this study is taken as 𝑒−𝑖𝜔𝑡 and then is omitted. The total electric field is the vector summation 

of the incidence wave 𝐸⃗ 𝑧
𝑖   and the scattered electric field 𝐸⃗ 𝑧

𝑠, respectively. The boundary conditions are 

required to find the total field in space. In other words, the tangential component of the electric field (in 

this problem, due to having an E-polarized incidence wave, the total electric field is already tangential for 

each local coordinate system) satisfies the Dirichlet or Neumann boundary conditions as given in Equation 

(2), respectively [24]: 

 

𝐸𝑧(𝑥, 𝑦)|𝑦𝑖=±0 = 0, 
𝜕

𝜕𝑘𝑦𝑖
𝐸𝑧(𝑥, 𝑦)|

𝑦𝑖=±0
= 0. 

 

 

(2) 

 

where 𝑥𝑖, −𝑎𝑖 < 𝑥𝑖 < 𝑎𝑖, 𝑖 = 1,2. Here, 𝑦 𝑖 is the normal direction of the strips in their local coordinate 

systems. To have one compact definition, we can introduce a derivative operator 𝐷 and a parameter 𝜈𝑖 that 

can both represent Dirichlet and Neumann boundary conditions as: 

 

𝐷𝑘𝑦𝑖
𝜈𝑖 𝐸𝑧(𝑥, 𝑦)|

𝑦𝑖=±0
= 0. 

 

(3) 

Here 𝐷𝑘𝑦𝑖
𝜈𝑖  stands for the derivative operator 

𝜕

𝜕𝑘𝑦𝑖
 and 𝜈𝑖 is the order of the derivative operator and could 

take a value of 0 or 1 depending on the boundary conditions. In other words, 𝜈𝑖 = 0 cases, the Dirichlet 

boundary condition is satisfied whereas, 𝜈𝑖 = 1 case, the Neumann boundary condition is represented 
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mathematically. After this point, this operator would be employed for further derivations. This approach 

allows us to investigate the following cases: two PEC strips, two PMC strips, one PEC strip, and another 

PMC strip case. 

 

To find the scattered electric field components due to each strip, the field components are expressed as the 

convolution of the unknown electric or magnetic current density 𝑓𝑖 induced on each strip with the 

corresponding Green’s function (𝐺) [24]. Note that, currents only exist on the strips and we aim to find the 

unknown electric or magnetic current densities on the strip depending on the boundary conditions. Then, 

field components and later total field can be obtained easily by Equations (1)  and (4).  

 

𝐸𝑧
𝑠,𝑖(𝑥𝑖, 𝑦𝑖) = ∫  

∞

−∞
𝑓𝑖(𝑥𝑖

′)𝐷𝑘𝑦𝑖
𝜈𝑖 𝐺(𝑥𝑖 − 𝑥𝑖

′, 𝑦𝑖)𝑑𝑥𝑖
′, 𝑖 = 1,2, (4) 

where 𝐷𝑘𝑦𝑖
𝜈𝑖 𝐺𝜈𝑖(𝑥𝑖 − 𝑥𝑖

′, 𝑦𝑖) =

{
 
 

 
 −

𝑖

4
𝐻0
(1)
(𝑘√(𝑥𝑖 − 𝑥𝑖

′)
2
+ 𝑦𝑖

2),   𝜈𝑖 = 0 (PEC case)

−
𝑖

4

𝜕

𝜕𝑘𝑦𝑖
 𝐻0

(1)
(𝑘√(𝑥𝑖 − 𝑥𝑖

′)
2
+ 𝑦𝑖

2),   𝜈𝑖 = 1 (PMC case).

 

 

Here, 𝐻0
(1)

 is the Hankel function of the first kind and zero order. Since 𝐷𝑘𝑦𝑖
𝜈𝑖  is the derivative operator and 

the derivative of the exponents is easy to obtain, all field components (incident and scattered ones) are 

expressed in terms of the exponents and then, the spectral representation of the Hankel function is used as 

given in Equation (5): 

 

𝐻0
(1)
(𝑘√(𝑥𝑖 − 𝑥𝑖

′)
2
+ 𝑦𝑖

2) =
1

𝜋
∫  
∞

−∞
𝑒𝑖𝑘[(𝑥𝑖−𝑥𝑖

′)𝛼+|𝑦𝑖|√1−𝛼
2] 𝑑𝛼

√1−𝛼2
. . 

 

(5) 

 

After using the spectral representation of the Hankel function, the scattered field components can be 

expressed as below: 

 

𝐸𝑧
𝑖,𝑠(𝑥𝑖, 𝑦𝑖) = −

𝑖

4𝜋
𝑒±

𝜋𝜈𝑖
2 ∫  

∞

−∞
𝐹𝑖(𝑞)𝑒

𝑖𝑘[𝑞𝑥𝑖+|𝑦𝑖|√1−𝑞
2](1 − 𝑞2)

𝜈𝑖−1

2 𝑑𝑞, 𝑖 = 1,2, 

where: 

𝐹𝑖(𝑞) = ∫  
1

−1
𝑓𝑖(𝜉)𝑒

−𝑖𝜖𝑖𝑞𝜉𝑑𝜉, 𝑓𝑖(𝜉) = 𝑎𝑖𝑓𝑖(𝑎𝑖𝜉), 

𝜖𝑖 = 𝑘𝑎𝑖, 𝜉 =
𝑥𝑖

𝑎𝑖
, 𝑓𝑖(𝜉) =

𝜖𝑖

2𝜋
∫  
∞

−∞
𝐹𝑖(𝑞)𝑒

−𝑖𝜖𝑖𝑞𝜉𝑑𝑞,                             

[
𝑥𝑖
𝑦𝑖
] = [

cos 𝜙𝑖 sin 𝜙𝑖
−sin 𝜙𝑖 cos 𝜙𝑖

] [
𝑥 − 𝑙𝑖cos 𝜃𝑖
𝑦 − 𝑙𝑖sin 𝜃𝑖

]. 

(6) 

 

By normalization, each strip ranges from -1 to 1 in their local coordinate system. Note that, Equation (6) 

satisfies both the wave equation and the Sommerfeld radiation condition where the (+) sign corresponds to 

the upper half space (𝑦𝑖 > 0) and (-) stands for the lower half-space (𝑦𝑖 < 0) for each local coordinate) 
[16]. The relation between local and global coordinate systems is also given in Equation (6).   

 

In Equation (7), the incidence electric field and the scattered fields due to each strip are subject to the 

boundary condition on the corresponding strip as shown in Figure 1. Note that, to apply the boundary 

condition, all fields are expressed in the local coordinate system (𝑥𝑖, 𝑦𝑖).  Interaction terms are also 

transferred from a local coordinate system to another one 𝑖, 𝑗 = 1, 2, and 𝑖 ≠  𝑗) 
 

𝐷𝑘𝑦𝑖
𝜈𝑖 𝐸𝑧

𝑖|
𝑦𝑖=0

= 𝑒−𝑖𝑘[cos (𝜃−𝜙𝑖)𝑥𝑖+𝑙𝑖cos (𝜃−𝜃1)](−𝑖sin (𝜃 − 𝜙𝑖))
𝜈𝑖

, 

𝐷𝑘𝑦𝑖
𝜈𝑖 𝐸𝑧

𝑖,𝑠(𝑥𝑖, 𝑦𝑖)|
𝑦𝑖=0

= −
𝑖

4𝜋
𝑒±𝑖

𝜋𝜈𝑖
2
(𝑖)𝜈𝑖

∫  
∞

−∞
𝐹𝑖(𝑞)𝑒

𝑖𝑘[𝑞𝑥𝑖](1 − 𝑞2)𝜈𝑖−
1

2𝑑𝑞, 

 

 

 

 

 

(7) 

.

. 

. 
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𝐷𝑘𝑦𝑖
𝜈𝑖 𝐸𝑧

𝑗,𝑠(𝑥𝑖 , 𝑦𝑖)|
𝑦𝑖=0

= −
𝑖

4𝜋
𝑒±𝑖

𝜋𝜈𝑗

2 ∫  
∞

−∞
𝐹𝑗(𝑞)𝑒

𝑖𝑘[𝑞(𝐴𝑥𝑖+𝜂)+|𝐵𝑥𝑖+𝜉|√1−𝑞
2]
[𝑖(−𝐵 +

𝐴)√1 − 𝑞2]
𝜈𝑖
(1 − 𝑞2)

𝜈𝑗−1

2 𝑑𝑞, 

 

where 𝐴 = cos (𝜙𝑗 − 𝜙𝑖), 𝐵 = sin (𝜙𝑗 − 𝜙𝑖), 𝜂 = 𝑙𝑖cos (𝜃𝑖 − 𝜙𝑗) − 𝑙𝑗cos (𝜃𝑗 −𝜙𝑗), 𝜉 =

𝑙𝑖sin (𝜃𝑖 − 𝜙𝑗) − 𝑙𝑗sin (𝜃𝑗 − 𝜙𝑗). 

 

After applying the boundary conditions as given in Equation (3) and then, multiplying both sides of 

Equation (7) by 𝑒−𝑖𝑘𝑥𝑖𝜏, an integral from −𝑎𝑖 to +𝑎𝑖 with respect to 𝑥𝑖 is taken. Then, the integral equation 

(IE) for each strip becomes as (𝑖, 𝑗 = 1, 2 and 𝑖 ≠  𝑗): 
 

𝑒−
𝑖𝜋𝜈𝑖
2 𝑒−𝑖𝑘𝑙𝑖cos (𝜃−𝜃𝑖)(sin(𝜃 − 𝜙𝑖))

𝜈𝑖
sin(𝜖𝑖[cos (𝜃−𝜙𝑖)+𝜏])

cos (𝜃−𝜑1)+𝜏
= 

=

𝑖

4𝜋
𝑒+

𝑖𝜋𝜈𝑖
2 (𝑒±𝑖

𝜋𝜈𝑖
2 ∫  

∞

−∞
𝐹𝑖(𝑞)

sin(𝜖𝑖[𝑞−𝜏])

[𝑞−𝜏]
(1 − 𝑞2)𝜈𝑖−

1

2𝑑𝑞

+𝑒±𝑖
𝑖𝜋𝜈𝑗

2 ∫  
∞

−∞
𝐹𝑗(𝑞)𝑒

𝑖𝑘[𝑞𝜂+𝜉√1−𝑞2] sin(𝜖𝑖[𝐴𝑞+𝐵√1−𝑞
2−𝜏])

[𝐴𝑞+𝐵√1−𝑞2−𝜏]
[−𝐵𝑞 + 𝐴√1 − 𝑞2]

𝜈𝑖
(1 − 𝑞2)

𝜈𝑗−1

2 𝑑𝑞) .

 

 

 

 

 

 

 

(8) 

 

After obtaining the IE for each strip, the Equation (8) needs to be solved for each strip. To solve this, there 

are some constraints taken into account such as edge and radiation conditions for the electromagnetic field. 

Note that, the scattered field given as  Equation (6) already satisfies the radiation condition. The edge 

condition should be considered. Therefore, the electric or magnetic current density should be defined 

regarding the edge conditions. In other words, the current density at the edge of the strip should behave 

according to Meixner’s edge condition. To satisfy Meixner’s edge condition [25], the normalized fractional 

current density 𝑓𝑖 for each strip is expressed as the summation of Gegenbauer polynomials 𝐶𝑛
𝜈𝑖(𝜉)  with the 

weighting function (1 − 𝜉)𝜈𝑖−1/2and the unknown coefficients 𝜁𝑛
𝑣𝑖 as in Equation (9). The reason why 

Gegenbauer polynomials are employed is that they are defined between [-1,1] and the weighting function 

is also suitable while finding unknown coefficients  𝜁𝑛
𝑣𝑖  by employing orthogonality properties of the 

corresponding polynomials [13, 24] 

 

𝑓𝑖(𝜉) = (1 − 𝜉)
𝜈𝑖−

1

2∑  ∞
𝑛=0 𝜁𝑛

𝜈𝑖 𝐶𝑛
𝜈𝑖(𝜉)

𝜈𝑖
, 

(9) 

 

where limits for 𝜈𝑖 is provided as [24- 26] 

𝑙𝑖𝑚
𝜈𝑖→0

 
𝐶𝑛
𝜈𝑖(𝜉)

𝜈𝑖
= {

2

𝑛
𝑇𝑛(𝜉), 𝑛 ≠ 0

1, 𝑛 = 0
, 𝑙𝑖𝑚
𝜈𝑖→1

 
𝐶𝑛
𝜈𝑖(𝜉)

𝜈𝑖
= 𝐶𝑛

1(𝜉) = 𝑈𝑛(𝜉). 

 

Notice that 𝑇𝑛 and 𝑈𝑛 are the Chebyshev polynomials of the first and second kinds, respectively. Then, the 

Fourier transform of Equation (9) is obtained as [27]: 

 

𝐹𝑖(𝑞) =
2𝜋

Γ(𝜈𝑖+1)
∑  ∞
𝑛=1 (−𝑖)

𝑛𝜁𝑛
𝜈𝑖𝛽𝑛

𝜈𝑖
𝐽𝑛+𝜈𝑖

(𝜖𝑖𝑞)

(2𝜖𝑖𝑞)
𝜈𝑖

. 
(10) 

 

Here, 𝜖𝑖 = 𝑘𝑎𝑖, 𝐽𝑛+𝜈𝑖(𝜖𝑖𝑞) are Bessel functions and 𝛽𝑛
𝜈𝑖 = Γ(𝑛 + 2𝜈𝑖)/Γ(𝑛 + 1) and Γ(x) is the Gamma 

function. By substituting Equation (10) into Equation (8), multiplying by 
𝐽𝐾+𝜈𝑖

(𝜖𝑖𝜏)

𝜏𝜈𝑖
and taking the integral 

with respect to 𝜏  from −∞ to ∞ for each corresponding  IE, the coupled integral Equation (8) is converted 

into the system of linear algebraic equation (SLAE) by introducing previously the unknown coefficients 

𝜁𝑛
𝑣𝑖. Note that, here, the properties of discontinuous integrals of Weber-Shafheitlin Equation (11) are 

considered [26, 27] 
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1

𝜋
∫  
∞

−∞

𝐽𝑛+𝛼(𝜖𝑞)

𝑞𝛼
sin (𝜖(𝑞∓𝛽))

(𝑞∓𝛽)
𝑑𝑞 = (±1)𝑛

𝐽𝑛+𝛼(𝜖𝛽)

𝛽𝛼
. (11) 

 

Then, coupled SLAE is obtained for each strip as: 

 

∑  ∞
𝑛=0 (−𝑖)

𝑛𝜁𝑛
𝜈1𝛽𝑛

𝜈1𝐶𝐾𝑛
𝜈1𝜈1 +ℳ∑  ∞

𝑛=0
(−𝑖)𝑛𝜁𝑛

𝜈2𝛽𝑛
𝜈2

(2𝜖2)
𝜈2

𝐶𝐾𝑛
𝜈2𝜈1 = −ℛ(−1)𝐾𝑒−𝑖𝑘𝑙1 cos(𝜃−𝜃1)(sin(𝜃 −

𝜑1))
𝜈1

𝐽𝐾+𝜈1(𝜖1[cos(𝜃−𝜑1)])

[cos(𝜃−𝜑1)]
𝜈1

, 

(12) 

 

∑  ∞
𝑛=0 (−𝑖)

𝑛𝜁𝑛
𝜈2𝛽𝑛

𝜈2𝐶𝐾𝑛
𝜈2𝜈2 +𝒟∑  ∞

𝑛=0
(−𝑖)𝑛𝜁𝑛

𝜈1𝛽𝑛
𝜈1

(2𝜖1)
𝜈1

𝐶𝐾𝑛
𝜈1𝜈2 = −𝒫(−1)𝐾𝑒−𝑖𝑘𝑙2 cos(𝜃−𝜃2)(sin(𝜃 −

𝜑2))
𝜈2

𝐽𝐾+𝑣2(𝜖2[cos(𝜃−𝜑2)])

[cos(𝜃−𝜑2)]
𝜈2

, 

 

 

(13 

 

where (𝑖, 𝑗 = 1,2 and 𝑖 ≠ 𝑗), 

ℳ = (2𝜖1)
𝜈1𝑒∓𝑖

𝜋𝜈1
2 𝑒±𝑖

𝜋𝜈2
2
Γ(𝜈1+1)

Γ(𝜈2+1)
, ℛ = (2𝜖1)

𝜈12𝑖𝑒−𝑖𝜋𝜈1𝑒∓𝑖
𝜋𝜈1
2 Γ(𝜈1 + 1), 

𝒟 = (2𝜖2)
𝜈2𝑒±𝑖

𝜋𝜈1
2 𝑒∓𝑖

𝜋𝜈2
2
Γ(𝜈2+1)

Γ(𝜈1+1)
, 𝒫 = (2𝜖2)

𝜈22𝑖𝑒−𝑖𝜋𝜈2𝑒∓𝑖
𝜋𝜈2
2 Γ(𝜈2 + 1), 

𝐶𝐾𝑛
𝜈𝑖𝜈𝑖 = [∫  

∞

−∞

𝐽𝑛+𝜈𝑖
(𝜖𝑖𝑞)

𝑞2𝜈𝑖
𝐽𝐾+𝜈𝑖(𝜖𝑖𝑞)(1 − 𝑞

2)𝜈𝑖−
1

2𝑑𝑞], 

𝐶𝐾𝑛
𝜈𝑖𝜈𝑗 = [∫  

∞

−∞

𝐽𝑛+𝜈𝑖
(𝜖𝑖𝑞)

𝑞𝜈𝑖

𝐽𝐾+𝜈𝑗(𝜖𝑗(𝐴𝑞+𝐵√1−𝑞
2))

(𝐴𝑞+𝐵√1−𝑞2)
𝜈𝑗

𝑒
𝑖𝑘[𝑞𝜂+𝜉√1−𝑞2]

[𝐵𝑞 − 𝐴√1 − 𝑞2]
𝜈𝑗
(1 − 𝑞2)

𝜈𝑖−1

2 𝑑𝑞]. 

 

To solve SLAE, the summations are truncated for any desired accuracy. For the truncation in Equation (12) 

and Equation (13), 𝑘𝑎 + 6 is chosen where 𝑎 is the half-width of the wider strip [28]. After the unknown 

coefficients 𝜁𝑛
𝜈𝑖  are found by solving SLAE, corresponding scattered electric field can be found by using  

Equation (6) and Equation (10) in the local coordinate systems of each strip. Then, by coordinate transform, 

the scattered electric field 𝐸⃗ 𝑧
𝑠 in the global coordinate system is obtained as Equation (14) 

 

𝐸𝑧
1,𝑠(𝑥, 𝑦)

= 𝐻∫  
∞

−∞

𝐹1(𝑞)𝑒
𝑖𝑘[𝑞(𝑥cos 𝜙1+𝑦sin 𝜙1−𝑙1cos (𝜃1−𝜙1))+|−𝑥sin 𝜙1+𝑦cos 𝜙1−𝑙1(sin(𝜃1−𝜙1))|√1−𝑞

2](1

− 𝑞2)
𝜈1−1

2 𝑑𝑞 

𝐸𝑧
2,𝑠(𝑥, 𝑦)

= 𝐻∫  
∞

−∞

𝐹2(𝑞)𝑒
𝑖𝑘[𝑞(𝑥cos 𝜙2+𝑦sin 𝜙2−𝑙2cos (𝜃2−𝜙2))+|−𝑥sin 𝜙2+𝑦cos 𝜙2−𝑙2(sin(𝜃2−𝜙2))|√1−𝑞

2](1

− 𝑞2)
𝜈2−1

2 𝑑𝑞 

 

 

 

 

 

 

 

 

(14) 

 

where 𝐻 = −
𝑖

4𝜋
𝑒±𝑖

𝜋𝜈1
2  and 𝑇 = −

𝑖

4𝜋
𝑒±𝑖

𝜋𝜈2
2 . 

 

2.2. Physical Characteristics of the Electric Field 

 

In this section, the far-field radiation pattern (RP) of the total scattered field and the total radar cross-section 

(TRCS) expression are given. After finding the Fourier transform of the fractional current densities induced 

on each strip 𝐹𝑖, RP can be found by using the stationary phase method [29]. Note that it is valid for large 

values of ka (𝑘𝑎 → ∞). In Equation (15), 𝑥 = 𝑟𝑐𝑜𝑠𝜙 and 𝑦 = 𝑟𝑠𝑖𝑛𝜙 

 

𝐸𝑧
𝑠(𝑥, 𝑦) = 𝐴(𝑘𝑟)Φ𝜈(𝜙) (15) 
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where 𝐴(𝑘𝑟) = √
2

𝜋𝑘𝑟
𝑒𝑖𝑘𝑟−𝑖

𝜋

4  and Φ𝜈 = −
𝑖

4
(±)𝜈𝐹(cos 𝜙)sin𝜈  (𝜙). In Equation (15), Φ𝜈(𝜙) is denoted 

as the radiation pattern (RP). The upper sign in the Φ𝜈(𝜙) expression corresponds to the upper space of 

each strip. On the other hand, the lower sign stands for the lower space where 𝜙 is the observation angle. 

𝐴(𝑘𝑟) stands for  the radial and Φ𝜈(𝜙) is the angular part of the total scattered electric field in the far zone. 

The angular part has two components because there are two scatterers in the space. Therefore, the total 

radiation pattern consists of two corresponding radiation patterns of each strip as Equation (16):    

 

Φ(𝜙) = Φ1
𝜈1(𝜙) + Φ2

𝜈2(𝜙) (16) 

 

where 

Φ1
𝜈1(𝜙) = −

i

4
𝑒±

𝑖𝜋𝜈1
2 [𝐹1(cos 𝜙)](sin

𝜈1(𝜙 − 𝜙1))𝐴𝐹1

Φ2
𝜈2(𝜙) = −

i

4
𝑒±

𝑖𝜋𝑣2
2 [𝐹2(cos𝜙)](sin

𝜈2(𝜙 − 𝜙2))𝐴𝐹2 .

 

 

 

 

(17) 

 

Here, 𝐴𝐹1 = 𝑒
−𝑖𝑘𝑙1cos (𝜃1−𝜙) and 𝐴𝐹2 = 𝑒

−𝑖𝑘𝑙2cos (𝜃2−𝜙). Note that in Equation (17), the (+) sign for 𝜙 ∈
[𝜙𝑖, 𝜋 + 𝜙𝑖] and (-) for 𝜙 ∈ [𝜋 + 𝜙𝑖, 2𝜋 − 𝜙𝑖] as mentioned above [24]. After obtaining the total scattered 

electric field, the total radar cross-section can be evaluated to find the resonances and modes for different 

geometries. To find TRCS, Equation (18) is taken into account [30]: 

 

𝜎𝑡 =
1

𝑘𝑎
∫  
2𝜋

0
|Φ|2𝑑𝜙. (18) 

 
3. NUMERICAL RESULTS AND COMPARISONS WITH OTHER APPROACHES 

 

In this part, the numerical results are presented and the comparison with other approaches is provided for 

the single or double parallel strips and wedge problems. To obtain a wedge, two strips are located closely 

regarding the wavelength. To observe resonance for different surfaces, TRCS is investigated in Figure 2. 

As expected, for the PMC surface, the resonances are more noticeable. In Figure 3, the normalized electric 

field values are provided for PEC-PMC and PMC-PMC cases at the resonance 𝑘𝑎 values. As is seen from 

the figures, the boundary conditions are satisfied. For Figure 3(a), the upper (lower) strip is PEC (PMC) 

where a tangential component of the total electric field vanishes for PEC surfaces whereas its normal 

derivative becomes zero for the PMC case. Figure 3 is provided after determining the resonances obtained 

from Figure 2. For Figure 3(a), the first resonance is given. However, the second resonance is provided for 

the PMC-PMC case. 

 

   
(𝜈1,2 = 0.01, 𝑎1,2 = 1,  

𝜃1,2 = ±
𝜋

4
, 𝜙1,2 = ±

𝜋

4
,  

𝑙1,2 = 1.001 ) 
(a) 

(𝜈1 = 0.01, 𝜈2 = 1, 𝑎1,2 = 1, 

𝜃1,2 = ±
𝜋

4
, 𝜙1,2 = ±

𝜋

4
, 

𝑙1,2 = 1.001) 
(b) 

(𝜈1 = 1, 𝜈2 = 1, 𝑎1,2 = 1,  

𝜃1,2 = ±
𝜋

4
, 𝜙1,2 = ±

𝜋

4
,  

𝑙1,2 = 1.001) 
(c) 

Figure 2. TRCS for Finite Wedge: different cases (a) PEC-PEC (b) PEC-PMC (c) PMC-PMC 
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(𝑘 = 1.49, 𝜃0 = 0, 𝜈1 = 0.01, 𝜈2 = 1,   

𝑎1,2 = 1, 𝜃1,2 = ±
𝜋

4
, 𝜙1,2 = ±

𝜋

4
, 𝑙1,2 = 1.001) 

(a) 

(𝑘 = 3.14, 𝜃0 = 0, 𝜈1 = 1, 𝜈2 = 1,  

𝑎1,2 = 1, 𝜃1,2 = ±
𝜋

4
, 𝜙1,2 = ±

𝜋

4
, 𝑙1,2 = 1.001) 

(b) 

Figure 3. Normalized near electric field distribution for Finite Wedge: different cases (a) PEC-PMC and 

(b) PMC-PMC 

 

In Figure 4, the comparison of the infinite and the finite wedge is illustrated. As expected, there exists 

deviation especially inside of the wedge since the electromagnetic waves can be diffracted from open 

ends of the finite wedges which cannot happen for infinite wedges. 

  
(analytical solution for infinite wedge, 𝑘 = 2, 

𝜃0 = 𝜋,  PEC surface, wedge angle is  
𝜋

4
) [31] 

(a) 

(proposed approach, 𝑘 = 2, 𝜃0 = 𝜋, 𝑎1,2 = 2, 

PEC surface, 𝜃0 = 𝜋 , wedge angle is 
𝜋

4
) 

(b) 

Figure 4. Normalized near electric field distribution for the Wedge: different cases (a) infinite PEC-PEC 

wedge (b) finite PEC-PEC wedge 

 

In Figure 5, two cases (PEC-PMC and PMC-PMC) are provided. Besides, in Figure 5(c), a comparison 

with a computational electromagnetic approach called the method of auxiliary sources (MAS) is provided. 

The deviation is less than 2%. Notice that, the boundary condition has a huge effect on total radiation 

characteristics. In Figure 6, the comparison between the proposed approach and a single strip with different 

impedance boundary conditions on both sides is provided. In the limit cases, the impedance boundary 

condition can be assumed as PEC and PMC surfaces [32]. The near electric field  distributions have 

deviation since the proposed geometry has two strips. The deviation from the comparison is expected 

because there exists a distance between the strips 𝑙1,2 = 0.01. In both figures, the upper strip (side) is PMC 

and the lower strip (side) is PEC. As it is seen, the boundary conditions, respectively, Neumann and 

Dirichlet boundary conditions for the upper and lower surface are satisfied. In Figure 7, comparisons are 

done regarding both methodology and boundary conditions. The methodologic comparison is done with 

the Method of Moment (MoM) and less than 4 % error is observed. Besides, parallelly located double-strip 

with fractional boundary condition [13] is compared with the proposed geometry with Dirichlet boundary 

condition. The deviation is found less than 2%. Besides, the oblique incidence case is compared in Figure 

8 by MoM and fractional approach. 
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(𝑘 = 2, 𝑎1,2 = 1,  𝜃0 = 𝜋,  

𝜃1,2 = ±
𝜋

4
, 𝜙1,2 = ±

𝜋

4
, 𝑙1,2 =

1.001, PEC-PMC) 

(a) 

 

(𝑘 = 2, 𝑎1,2 = 1,  𝜃0 = 𝜋,  

𝜃1,2 = ±
𝜋

4
, 𝜙1,2 = ±

𝜋

4
, 𝑙1,2 =

1.001, PMC-PMC) 

(b) 

(MAS 𝑘 = 2, 𝑎1,2 = 1,  𝜃0 = 𝜋,  

𝜃1,2 = ±
𝜋

4
, 𝜙1,2 = ±

𝜋

4
, 𝑙1,2 =

1.001, PMC-PMC) 

(c) 

Figure 5. Normalized near electric field distribution for Finite Wedge: different cases (a) PEC-PMC (b) 

PMC-PMC (c) comparison of PMC-PMC with MAS 

 

  
(The proposed approach, 𝑙1,2 = 0.01, 𝑘 = 2, 

𝑎1,2 = 1,  𝜃0 =
𝜋

2
, PMC, PEC) 

(a) 

(double-sided strip, 𝑘 = 2, 𝑎1,2 = 1,  𝜃0 =
𝜋

2
, 

PMC, PEC) [32] 

(b) 

Figure 6. Normalized near electric field distribution for a strip: different cases (a) The proposed 

approach (b) Impedance BC 

 

   
(The prosed approach, double 

strip, l=0.5 𝑘 = 2, 𝑎1,2 = 1,  

𝜃0 =
𝜋

2
, PEC-PEC) 

(a) 

(MoM approach, double strip, 

l=0.5 𝑘 = 2, 𝑎1,2 = 1,  𝜃0 =
𝜋

2
, PEC-PEC 

(b) 

(Fractional approach, double 

strip, l=0.5 𝑘 = 2, 𝑎1,2 = 1,  

𝜃0 =
𝜋

2
, PEC-PEC)[13] 

(c) 

Figure 7. Normalized near electric field distribution for double-strip: different cases (a) The proposed 

approach (b) MoM (c) Impedance BC 
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(Proposed approach, double 

strip, 𝑙1,2 = 0.5, 𝑘 = 4, 𝑎1,2 =

1,  𝜃0 =
𝜋

4
, PEC, PEC) 

(a) 

 

(MoM approach, double strip, 

l=0.5 𝑘 = 4, 𝑎1,2 = 1,  𝜃0 =
𝜋

4
, 

PEC, PEC) 

(b) 

(Fractional approach, double 

strip, 𝑙1,2 = 0.5, 𝑘 = 4, 𝑎1,2 =

1,  𝜃0 =
𝜋

4
, PEC, PEC) [13] 

(c) 

Figure 8. Normalized near electric field distribution for double-strip: different cases (a) The proposed 

approach (b) MoM (c) Impedance 

 

4. CONCLUSION 

 

The study investigates the E-polarized plane wave electromagnetic scattering by perfect electric and/or 

magnetic conducting double strips where the position, tilt angle, width, and boundary conditions (Dirichlet 

or Neumann) of the strips are the parameters and analyzed. The importance of the study can be summarized 

by the following two items. First, this study obtains approximate field distribution and physical 

characteristics of the finite wedge problems where two different surfaces may have different boundary 

conditions and widths.  Secondly, the problem has been investigated for the first time with an orthogonal 

polynomials approach, and detailed comparisons and the advantages of the solution methodology are 

highlighted. The proposed method is semi-analytical-numerical and requires 𝑘𝑎 + 5 numbers of unknown 

for each strip to compute SLAE. This yields the advantages of a small dimensional matrix and inversion 

procedure since the edge condition is imposed by using the weighting function and Gegenbauer 

polynomials for the expression of the induced electric or magnetic currents on each strip. The outcomes are 

compared in the sense of both methodology and boundary conditions. As the methodology, analytical 

results, MoM, and MAS are employed to compare and results are coinciding. Besides, as the boundary 

conditions, the proposed approach is compared with the fractional and impedance boundary conditions. 

Again, high accuracy is obtained. 
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