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Abstract  Öz 

Mean-variance portfolio optimization model, introduced by 
Markowitz, provides a fundamental answer to the problem of portfolio 
management. This model seeks an efficient frontier with the best 
trade-offs between two conflicting objectives of maximizing return and 
minimizing risk. The problem of determining an efficient frontier is 
known to be NP-hard. Due to the complexity of the problem, genetic 
algorithms have been widely employed by a growing number of 
researchers to solve this problem. In this study, a literature review of 
genetic algorithms implementations on mean-variance portfolio 
optimization is examined from the recent published literature. Main 
specifications of the problems studied and the specifications of 
suggested genetic algorithms have been summarized. 

 Markowitz’in ortaya koymuş olduğu ortalama-varyans portföy 
optimizasyonu, portföy yönetimi problemine temel bir cevap vermiştir. 
Bu model, getirinin en büyüklenmesi ve riskin en küçüklenmesi gibi iki 
çakışan amaç arasındaki en iyi ödünleşimi ile bir etkin sınır 
aramaktadır. Bir etkin sınır belirleme probleminin NP-Zor olduğu 
bilinmektedir. Problemin karmaşıklığı nedeniyle, giderek artan sayıda 
araştırmacı bu problemi çözmek için genetik algoritmaları 
kullanmışlardır. Bu çalışmada, mevcut literatürdeki genetik 
algoritmaların ortalama-varyans portföy optimizasyonu uygulamaları 
incelenmiştir. Çalışılmış olan problemlerin ana özellikleri ve önerilen 
genetik algoritma karakteristikleri özetlenmiştir. 

Keywords: Portfolio management and optimization, Mean-variance 
model, Evolutionary algorithms, Genetic algorithm 

 Anahtar kelimeler: Portföy yönetimi ve optimizasyonu, Ortalama-
varyans modeli, Evrimsel algoritmalar, Genetik algoritma 

 

1 Introduction: Portfolio optimization and 
mean-variance model 

Investors’ desire is to have a non-decreasing fund even if the 
market is losing value. It is not always possible to achieve this 
by investing on only one security. In a financial market, it is 
rare that all securities gain or lose value at the same time. 
Therefore, an investor should use a diversification strategy, 
such as forming a portfolio, to spread the risk among assets.  
The main question in portfolio management is to decide on the 
assets and weights for a better investment. A fundamental 
answer to the problem of portfolio management was given by 
the mean–variance model [1],[2]. Mathematical formulation of 
unconstrained portfolio optimization problem (UCPO) 
according to Markowitz’s standard mean-variance approach is 
given as follows where parameter 𝑁 represents the number of 
available assets, 𝜇𝑖  represents the expected return of asset 𝑖, 
𝜎𝑖𝑗 represents the covariance between asset and asset 𝑖  and 

asset 𝑗, 𝑅∗ represents the expected return at the desired level 
and variable 𝑤𝑖  represent the proportion of asset 𝑖: 

𝑚𝑖𝑛 ∑ ∑ 𝑤𝑖𝑤𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝜎𝑖𝑗 
(1) 

Subject to: 
∑ 𝑤𝑖µ𝑖

𝑁

𝑖=1

=  𝑅∗ (2) 

 

∑ 𝑤𝑖

𝑁

𝑖=1

= 1 (3) 

 0 ≤ 𝑤𝑖 ≤ 1,         𝑖 = 1, … , 𝑁 (4) 

Equation (1) minimizes risk of the portfolio while equation (2) 
ensures that expected return (𝑅∗) is at the desired level. 
Equation (3) guarantees that proportions add to one while the 
proportion of an asset neither can be less than zero nor can be 
greater than one (Equation (4)). In practice, it is possible to 
calculate an optimal solution for a particular data set with this 
formulation. Solving this formulation by varying values of the 
expected return, an efficient frontier can be found as a  
non-decreasing curve. This frontier represents the balance of 
expected return corresponding to risk that must be accepted. 
Figure 1 demonstrates a standard efficient frontier. 

 

Figure 1: An example of standard efficient frontier. 

The mean-variance model has been extended throughout the 
decade by introducing additional real-world constraints such 
as the cardinality constraints that impose a predetermined 
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limit on the number of assets (𝐾) to be held in the portfolio 
and the quantity constraints which restrict the proportion of 
each asset in the portfolio to satisfy lower (𝜀𝑖) and upper (𝛿𝑖) 
bounds. The mixed integer nonlinear programming 
formulation of cardinality constrained portfolio optimization 
(CCPO) problem is given as follows with additional 
parameters; 𝐾 representing the desired number of assets to be 
hold in the portfolio, 𝜀𝑖  representing the minimum proportion 
of asset 𝑖, 𝛿𝑖  representing the  maximum proportion of asset 𝑖 
and 𝑧𝑖  representing a binary variable  whether or not an asset 
𝑖 is held in the portfolio [3]: 

𝑚𝑖𝑛 𝜆 [ ∑ ∑ 𝑤𝑖𝑤𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝜎𝑖𝑗]  − (1 − 𝜆) [∑ 𝑤𝑖µ𝑖

𝑁

𝑖=1

] (5) 

Subject to: 

∑ 𝑤𝑖

𝑁

𝑖=1

= 1 
(6) 

 

∑ 𝑧𝑖

𝑁

𝑖=1

= 𝐾 
(7) 

 𝜀𝑖𝑧𝑖 ≤ 𝑤𝑖 ≤ 𝛿𝑖𝑧𝑖      𝑖 = 1, … , 𝑁    (8) 
 𝑧𝑖 ∈ (0,1)      𝑖 = 1, … , 𝑁    (9) 
 0 ≤ 𝑤𝑖 ≤ 1,         𝑖 = 1, … , 𝑁 (10) 
 0 ≤ 𝜀𝑖 ≤ 𝛿𝑖 ≤ 1,     𝑖 = 1, … , 𝑁     (11) 

Equation (6) and equation (10) are inherited from the original 
Markowitz formulation. Equation (7) guarantees that exactly  
𝐾 assets are hold in the portfolio while equation (8) restricts 
the proportion of an asset to be between predetermined 
values of minimum and maximum limits with decision 
variable  defined in Equation (9). Equation (11) defines 
variable domains. The quadratic objective function given in 
equation (5) seeks the best trade-offs between two conflicting 
objectives, maximizing return and minimizing risk. In the 
equation (5), a 𝜆 parameter is used to trace the efficient 
frontier by gradually increasing the value of 𝜆 from 0 to 1. 
Thus, a weighted sum of two objectives is obtained. The 
resulting single objective aims to construct the cardinality 
constrained efficient frontier that represents the best balance 
of expected return and the risk that must be accepted since 
both objectives cannot be simultaneously achieved. 
Transaction costs are also considered as additional real life 
constraints in the literature [4]-[7]. It is not convenient to find 
an optimal efficient frontier in practice when real life 
constraints are taken into account. In fact, calculating an 
optimal portfolio for the standard mean-variance model is 
known to be NP-hard [8] since a classical quadratic 
optimization problem becomes NP-hard if a single cardinality 
constraint is added to the formulation [9]. Therefore, in the 
literature, several computationally efficient solution 
approaches have been developed in order to calculate the 
efficient frontier. Among those approaches, genetic algorithms 
(GA) is one of the most preferred algorithm for solving the 
problem. Metaxiotis and Liagkouras [10] presented a review 
of multi-objective evolutionary algorithms applied to portfolio 
management problem in a broad problem perspective. In this 
study, however, a comprehensive review of GA applications 
including single and multi-objective implementations 
specifically in mean-variance portfolio optimization is 
conducted. This aim of this review is to reveal the problem 
specifications considered and the key strategies of GA utilized 
to solve mean-variance portfolio optimization problem types.  

Section 2 presents the genetic algorithm implementations for 
mean-variance portfolio optimization while Section 3 

concludes the paper with a discussion of future research 
directions.  

2 Genetic algorithms for mean-variance 
portfolio optimization 

GA, firstly introduced by Holland [11], is a search method that 
can be modified to solve complex optimization problems. In 
GA, a set of iterative search procedures based on biological 
natural selection and genetic inheritance principals is 
executed. A population of solutions is updated over 
generations using selection, crossover and mutation 
strategies.  Each individual that is evaluated in the population 
represents a potential solution to the problem in hand. 
Individuals form new individuals a stochastic transformation 
of individuals is achieved by genetic operators such as 
crossover and mutation.  Crossover provides better solutions 
to be constructed from good solutions by a random, yet 
structured change of genetic materials. The role of mutation is 
to obtain lost or unexplored genetic materials, thereby 
preventing premature convergence and stuck in local optima. 
After several iterations, the algorithm converges a (near) 
optimal solution. Basic steps of the GA are given in Table 1. 

Table 1: Basic steps of GA. 

Step Procedure 
1 Generate initial population. 
2 Evaluate fitness of each individual in the population. 
3 Select the set of individuals for applying genetic 

operators. 
4 Apply genetic operators and evaluate new fitness 

values. 
5 Form new generation according to fitness values. 
6 Go to step 3 if termination criteria are not satisfied. 
7 End evolution and report the results. 

Components of a typical GA are summarized below: 

- Genetic representation (Encoding strategy): The 

solution of the problem that is formed by binary, 

integer or real numbers, 

- Chromosome: A solution of encoding, 

- Population: A set of chromosomes, 

- Fitness: A function that evaluates how good a 

solution is, 

- Genetic operators: Procedures such as crossover 

and mutation that provide to obtain new 

population from the current population, 

- Control parameters:  Input parameters such as 

population size, crossover and mutation rates. 

Goldberg [12] pointed out search and optimization 
applications of GA in different areas. Efficient portfolio 
selection is one of the main concerns of researchers who 
practice in financial optimization domain. One of the most 
preferred solution approach for portfolio optimization is GA. 
Several researchers applied GA variants for solving portfolio 
optimization problems since 1998 [13]. In this study, 44 
articles published in conferences and refereed journals 
between 1998-2016 are examined. Figure 2 shows the number 
of papers published in recent years for GA implementation on 
mean-variance portfolio optimization with respect to 
publication years. Among these studies published in the 
literature, 3 types of problems; UCPO, CCPO and Portfolio 
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Optimization with Transaction Costs (POTC) come into 
prominence among other types (See Figure 3).  

 

Figure 2: Number of papers published between 1998-2016 for 
GA implementation on mean-variance portfolio optimization. 

 

Figure 3: Problems types studied in mean-variance portfolio 
optimization. 

Studies in the literature can be classified in many ways. In this 
review, two classification schemes for studies that apply GA to 
mean-variance portfolio optimization are used. First 
classification is formed according to the problem 
specifications such as data type, compared methods, problem 
type and coded programming language. Table 2 provides an 
up-to-date list of problem specifications. As summarized in 
Table 2, experimental settings are generally carried out on 
either real world applications or hypothetical data sets for 
benchmarking purposes. Methods reported in the literature 
are generally compared against other metaheuristics either 
taken from the literature or coded by the authors themselves. 
Literature analysis show that most of the problems types 
considered so far consist of UCPO, CCPO and POTC. Most of 
recent studies focused on CCPO and POTC while UCPO 
provided a basis for other types of problems. 

The second classification scheme is formed according to 
applied algorithm specifications such as the generation 
methodology of initial population, size of the population, 
chromosome representation, crossover type and rate, 
mutation type and rate, type of selection mechanism, survival 
type, feasibility construction and termination criteria. Table 3 
provides an up-to-date list of algorithm specifications. As 
summarized in Table 3, single objective GA are widely applied 
while some multi-objective GA are also suggested for mean-
variance portfolio optimization. A two-stage GA is employed in 
[14] that firstly identifies good quality assets in terms of asset 
ranking and then optimizes investment allocation in the 
selected good quality assets. Some hybrid strategies are also 
suggested as in [15] that utilize quadratic programming 
approach with GA, in [16] that combines GA with simulated 
annealing approach and in [17] that utilizes a position 
displacement strategy of the particle swarm optimization 
methodology with GA. 

GA implementations in the literature shows that initial 
population is widely preferred to be randomly generated 
while just a few studies [15],[18] employed heuristic 

approaches for the construction of initial population. In the 
studies examined, population size (PS) parameter is set to be 
20 as minimum and 2000 as maximum. However, most of the 
researchers zoomed in the range of 100 and 300 for PS 
parameter. Binary and real valued chromosome 
representation are observed to be popular although some 
other representation strategies such as integer based, tree 
based are also utilized. Several studies differentiate from each 
other with the use of crossover operators such as uniform, 
BLX-Alpha, one point,  n-point and mutation operators such as 
swap, one-point, Gaussian, guided, bit-flipping strategies. 
Tournament selection is mostly utilized while roulette wheel 
selection is also used. Elitism and ranking strategies are 
generally employed for survival of population. Feasibility of 
chromosomes are ensured by repair or penalty functions. It is 
observed that iteration number is used as the termination 
criterion in all of the studies examined. 

Although several authors used the data as downloaded from 
the mentioned OR-Library to test their proposed algorithm, 
unfortunately, there is a limited number of papers that 
provide a performance comparison against other published 
papers in the literature. 

In terms of evaluation approaches, there are two types of 
methodologies in the literature, namely weighted sum and 
pareto based approaches. As for weighted sum approach, 
studies make use of equation (5) given in Section 1 by 
combining two conflicting objectives: risk minimization and 
return maximization. On the other hand, pareto based 
methodology, especially used in multi-objective evolutionary 
algorithms, considers two objectives separately by 
systematically removing dominated solutions from the 
heuristic frontier during the search in solution space. Table 3 
summarizes  the classification. 

3 Introduction 

Portfolio optimization is a significant problem that intrigues 
investors and challenges researchers. As GA was established 
to be a popular technique in the optimization field, the 
application of GA to optimization problems related to portfolio 
selection has expanded since 2000 as the problem is known to 
be NP-Hard. Two different classifications are introduced. 
Firstly, the main specifications of the problems were 
summarized, and then implemented GAs with chromosome 
representations, genetic operators and the fitness functions 
used for performance evaluation were discussed. 44 articles 
were examined and grouped in chronological order. 

Although, there are several implementations of GA for  
mean-variance portfolio optimization problem, unfortunately, 
the improvements and enhancements made to the algorithms’ 
main framework is not evidently noticeable since there is a 
limited number of papers that provide a benchmark based 
comparison against other published studies in the literature. 

Therefore, future studies should definitely consider such a 
comparison that may lead the way towards a better 
algorithmic design and related software implementations. 

Furthermore, it would be very helpful to analyze and compare 
other heuristics, exact solution approaches as well as 
metaheuristics applied to solve this problem in a future 
research study. A comparison on the performance of different 
approaches would help researchers to move forward in the 
search of discovering better methodologies for solving 
portfolio optimization problems. 

0

10

Number of Papers

43%

46%

11%
Unconstrained Portfolio Optimization (UCPO)
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Table 2: Mean-variance portfolio optimization problem specifications. 

Year Researcher(s) Performance specifications / Experimental Settings 

  Data Benchmark 
Methods 
compared 

Problem 
type 

1998 Shoaf and Foster [13] Five stocks from various markets - - UCPO 
2000 T J Chang et al. [3] Hang Seng, DAX100, FTSE100, S&P100, Nikkei  OR-Library SA, TS CCPO 
2000 Xia et al. [4] Six stocks - - POTC 
2006 Lai et al. [14] One-hundred stocks from Shanghai market - - UCPO 
2006 ChiangLin [19]  Forty-two stocks from Taiwan market - - CCPO 
2006 Moral-Escudero et al. [15] Hang Seng, DAX100, FTSE100, S&P100, Nikkei  OR-Library Exact CCPO 
2008 W Chen et al. [5] Fifteen stocks from China market - - POTC 
2008 Lin and Liu [6] Taiwanese mutual fund data from the year 1997 to 2000 - - POTC 
2009 Aranha and Iba [20] NASDAQ100, NIKKEI200, S&P500 - - UCPO 
2009 Branke et al. [21] Hang Seng, S&P100, Nikkei  OR-Library - CCPO 
2009 T-J Chang et al. [22] Hang Seng, FTSE, S&P from January 2004 to December 2006 - - CCPO 
2009 Li and Guo [23] Ten stocks from the Shanghai 180 index - - UCPO 
2009 Loukeris et al. [24] Thirty stocks in FTSE from 24 April 2001 to 29 December 2006 - PSO, DE UCPO 
2009 Pai and Michel [25] BSE200 and Nikkei225 - - CCPO 
2009 Rong et al. [16] Twenty stocks from Shanghai market - - UCPO 
2009 Shaikh and Abbas [26] Twenty-three stocks form KSE30 - - UCPO 
2009 Soleimani et al. [7] 500 and 2000 stocks randomly generated by MATLAB - - POTC 

2010 Anagnostopoulos and Mamanis [27] FTSE100 OR-Library 
NSGA-2, PESA, 
SPEA2 

CCPO 

2010 Ruiz-Torrubiano and Suarez [28] Hang Seng, DAX100, FTSE100, S&P100, Nikkei  OR-Library SA CCPO 

2011 Anagnostopoulos and Mamanis [29] Hang Seng, DAX100, FTSE100, S&P100, Nikkei  OR-Library SOEA 
CCPO 
 

2011 Anagnostopoulos and Mamanis [30] DAX100 OR-Library - CCPO 
2011 Fu et al. [31] Four stocks from Hong Kong market - - UCPO 
2011 Y Chen et al. [32] Five-hundred stock from Tokyo market - - UCPO 
2011 Kremmel et al. [33] Software projects - SPEA2, NSGA-2 UCPO 
2011 Woodside-Oriakhi et al. [34] Hang Seng, DAX100, FTSE100, S&P100, Nikkei  OR-Library TS, SA CCPO 
2012 Sadjadi et al. [35] Hang Seng, DAX100, FTSE100, S&P100, Nikkei  OR-Library - CCPO 
2013 Lu and Wang [18] Six stocks from Chinese market - - UCPO 
2013 Yi and Yang [36] Eight stocks from china market - - UCPO 
2014 Ackora-Prah et al. [37] Randomly selected five stocks from Ghana market - - UCPO 
2014 Joglekar [38] Seventy-two stocks from MSN Money - - UCPO 
2014 Liagkouras and Metaxiotis [39] Hang Seng, DAX100, FTSE100, S&P100, Nikkei  OR-Library MOEA-PLM CCPO 
2014 Lwin et al. [40] Hang Seng, DAX100, FTSE100, S&P100, Nikkei, S&P500, 

Russel2000  
OR-Library NSGA-2, SPEA2, 

PEAS 
CCPO 

2015 Adebiyi Ayodele and Ayo Charles [41] Hang Seng, DAX100 OR-Library SA, TS, PSO CCPO 
2016 Hadi et al. [42] Forty-five stocks from Egypt market - - UCPO 
2016 Mashayekhi and Omrani [43] Fifty-two stocks from Iran market - - CCPO 

Table 3: Genetic algorithm specifications. 

Year Researcher(s) Evolutionary algorithm specifications 
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1998 

Shoaf and 
Foster [13] 

GA 
Weighted 

sum 
PS=100 

Binary and 
real value 

2-Point & 
Rc=60% 

Rm=0.1% 
Roulette 

wheel 
- Penalty 

Iteration 
number 

2000 
T J Chang et al. 

[3] 
GA 

Pareto 
based 

Random 
& 

PS=100 

Integer and 
real value 

Uniform & 
Rc=100% 

One-point 
mutation& 
Rm=10% 

Tourname
nt 

steady-
state 

Repair 
Iteration 
number 

2000 Xia et al. [4] GA 
Pareto 
based 

Random 
& PS=30 

Binary and 
real value 

Uniform & 
Rc=30% 

Heuristic & 
Rm=20% 

Roulette 
wheel 

- Repair 
Iteration 
number 

2006 Lai et al. [14] 
2 stage 

GA 
Weighted 

sum 

Random 
& 

PS=100 

Integer and 
real value 

One point 
crossover & 

Rc=50% 
Rm=0.5% 

Roulette 
wheel 

- - 
Iteration 
number 

2006 ChiangLin [19] GA 
Pareto 
based 

Random 
& 

PS=100 

Integer and 
real value 

One point 
crossover & 

Rc=100% 
Rm=3% 

Roulette 
wheel 

- - 
Iteration 
number 

2006 
Moral-

Escudero et al. 
[15] 

Hybrid(
GA and 
quadrat

ic 
progra

mming) 

Weighted 
sum 

Heuristi
c & 

PS=100 
Binary 

Uniform & 
Rc=100% 

Swap 
mutation & 

Rm=1% 

Tourname
nt 

steady-
state 

Repair 
and 

Penalty 
- 

2008 
W Chen et al. 

[5] 
GA 

Pareto 
based 

Random 
& PS=30 

Real value 
One point 

crossover & 
Rc=variable 

Uniform & 
Rm=variab

le 

Roulette 
wheel 

- Repair 
Iteration 
number 

2008 Lin and Liu [6] GA 
Weighted 

sum 
Random 
& PS=𝑛 

Integer and 
real value 

One point 
crossover & 

Rc=100% 

One-point 
mutation & 

Rm=5% 

Roulette 
wheel 

Replaceme
nt 

Penalty 
Iteration 
number 
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Table 3: Cont. 
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2009 
Aranha and Iba 

[20] 

Tree 
based 

GA 

Weighted 
sum 

PS=200 Tree based 

Best-Worst 
Sub-tree 

Crossover 
& Rc=80% 

Swap 
mutation & 

Rm=3% 

Tourname
nt 

Ranking - 
Iteration 
number 

2009 
Branke et al. 

[21] 

envelop
e-based 
MOEA 

Pareto 
based 

Random 
& PS=30 

Binary and 
real value 

Uniform & 
Swap 

mutation 
Tourname

nt 
Ranking - 

Iteration 
number 

2009 T-J Chang et al. 
[22] 

GA Pareto 
based 

Random 
& 

PS=100 

Binary and 
real value 

Uniform & 
Rc=100% 

One-point 
mutation & 
Rm=100% 

Tourname
nt 

steady-
state 

Repair Iteration 
number 

2009 Li and Guo 
[23] 

GA Weighted 
sum 

- Binary and 
real value 

Rc=100% Rm=70% Roulette 
wheel 

- - Iteration 
number 

2009 Loukeris et al. 
[24] 

GA Pareto 
based 

Random Binary and 
real value 

BLX-Alpha Bit-flipping 
mutation 

Ranking Ranking - Iteration 
number 

2009 Pai and Michel 
[25] 

GA Pareto 
based 

Random 
& 

PS=200 

Binary and 
real value 

arithmetic 
variable 

point 

Real values 
uniform 

Roulette 
wheel 

- Repair Iteration 
number 

2009 Rong et al. [16] Hybrid 
(GA and 

SA) 

Pareto 
based 

Random 
& PS=20 

Binary and 
real value 

Arithmetic 
& Rc=80% 

Non-
uniform 

mutation & 
Rm=1% 

- - Penalty Iteration 
number 

2009 Shaikh and 
Abbas [26] 

GA Weighted 
sum 

Random 
& PS=20 

- - - Tourname
nt 

- - Iteration 
number 

2009 
Soleimani et al. 
[7] 

GA 
Weighted 

sum 
Random 
& PS=30 

- 
Random 

separate & 
Rc=100% 

Rm=50% Randomly Ranking - 
Iteration 
number 

2010 
Anagnostopoul
os and 
Mamanis [27] 

NSGA-
II, 

PESA, 
SPEA2 

Pareto 
based 

Random 
& 

PS=200-
300 

Binary and 
real value 

Uniform & 
Rc=90% 

Gaussian & 
Rm=100% 

Tourname
nt 

Elitism Repair 
Iteration 
number 

2010 

Ruiz-
Torrubiano 
and Suarez 
[28] 

GA 
Weighted 

sum 

Random 
& 

PS=100 

Binary and 
real value 

RAR & 
Rc=100% 

Bit-flipping 
mutation & 

Rm=1% 

Tourname
nt 

Ranking Repair 
Iteration 
number 

2011 
Anagnostopoul
os and 
Mamanis [29] 

MOEA 
Pareto 
based 

Random 
& 

PS=250 

Binary and 
real value 

Uniform & 
Rc=90% 

Gaussian & 
Rm=100% 

Tourname
nt 

Elitism Repair 
Iteration 
number 

2011 
Anagnostopoul
os and 
Mamanis [30] 

MOEA 
Pareto 
based 

Heuristi
c & 

PS=500 

Integer and 
real value 

Uniform 
Swap 

mutation & 
Rm=1% 

Tourname
nt 

Elitism Repair 
Iteration 
number 

2011 Fu et al. [31] GA 
Pareto 
based 

- - 
Rc=Rando

m 
Rm=Rando

m 
- - - - 

2011 
Y Chen et al. 
[32] 

GRA 
Weighted 

sum 

Random 
& 

PS=300 

nodes and 
edges 

Node Swap 
& Rc=20% 

Guided & 
Rm=3% 

Tourname
nt 

Elitism - 
Iteration 
number 

2011 Kremmel et al. 
[33] 

MOEA Weighted 
sum 

Random 
& 

PS=500 

Binary Uniform & 
Rc=70% 

Bit-flipping 
mutation & 
Rm=100% 

Tourname
nt 

Ranking Repair Iteration 
number 

2011 Woodside-
Oriakhi et al. 
[34] 

GA Pareto 
based 

Random 
& 

PS=100 

Integer and 
real value 

Uniform & 
Rc=100% 

Random 
Swap & 
Rm=3% 

Heuristic Ranking - Iteration 
number 

2012 Sadjadi et al. 
[35] 

GA Weighted 
sum 

Random 
&  

PS=10 

Integer One point 
crossover & 

Rc=80% 

Swap 
mutation & 
Rm=20% 

Roulette 
wheel and 
Uniform 

Ranking Repair - 

2013 Lu and Wang 
[18] 

GA Pareto 
based 

Heuristi
c & 

PS=60 

Integer and 
real value 

Rc=70% Rm=77.8% - - Penalty Iteration 
number 

2013 Yi and Yang 
[36] 

FGA Weighted 
sum 

PS=200
0 

- Rc=80% Rm=20% - - - Iteration 
number 

2014 Ackora-Prah et 
al. [37] 

GA Pareto 
based 

PS=50 Real value Heuristic  - Roulette 
wheel 

Elitism - Iteration 
number 

2014 Joglekar [38] GA Weighted 
sum 

Random Real value Random & 
Rc=70% 

Random 
Swap & 

Rm=20% 

- Elitism - Iteration 
number 

2014 Liagkouras and 
Metaxiotis [39] 

MOEA Weighted 
sum 

Random 
& 

PS=vari
able 

Binary and 
real value 

Simulated 
Binary 

Guided Tourname
nt 

Ranking Repair - 

2014 Lwin et al. [40] MOEA Pareto 
based 

Random 
& 

PS=100 

Binary and 
real value 

Rc=90% Polynomial Tourname
nt 

Elitism Repair Iteration 
number 
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Table 3: Cont. 

Year Researcher(s) Evolutionary algorithm specifications 
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o
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ti

o
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si
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 o
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p
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o
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C
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p

e 
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(R
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M
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ta
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 t
y

p
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(R
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Se
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Su
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 t
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F
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si
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it

y 
(R
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o

r 
P

en
al

ty
) 

T
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m
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at
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n
 

cr
it

er
ia

 

2015 Adebiyi 
Ayodele and 
Ayo Charles 
[41] 

GDE Weighted 
sum 

- - - - - - - - 

2016 Hadi et al. [42] GA Pareto 
based 

Random Real value - - - - - Iteration 
number 

2016 Mashayekhi 
and Omrani 
[43] 

NSGA-II Pareto 
based 

Random 
& 

PS=100 

Binary and 
real value 

Rc=80% Gaussian & 
Rm=10% 

Tourname
nt 

- Repair Iteration 
number 

𝑛: Number of stocks; MOEA: Multi objective evolutionary algorithm, SA: Simulated annealing, NSGA-II: Non-dominated sorting genetic algorithm, PESA: Pareto envelope-based selection algorithm, 
SPEA2: Strength pareto evolutionary algorithm 2, GRA: Genetic relation algorithm, PSO: Particle swarm optimization, FGA: Fuzzy genetic algorithm, GDE: Generalized differential evolution. 
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