Kafkas Üniv Fen Bil Derg 1(2):33-36, 2008

Na₂Cl₂/ BaCl₂/Ba(H₂PO₂)₂/H₂O Sisteminin Fiziko-Kimyasal Analizi

Hasan ERGE¹, Vedat ADIGÜZEL^{2*}, Ali Rıza KUL¹, Vahit ALİŞOĞLU²

Department of Chemistry of Yüzüncü Yıl University, 65080 Van, Turkey¹ Department of Chemistry of Kafkas University, 36100 Kars, Turkey²

Yayın Kodu (Article Code): 08-14A

Özet

 Na^+ , Ba^{2+} // Cl^- , $H_2PO_2^-$ // H_20 dörtlü karşılıklı sistemin bünyesinde yer alan Na_2Cl_2 / $BaCl_2$ / $Ba(H_2PO_2)_2$ / H_2O dörtlü sistemin 0⁰C de çözünürlüğü ve faz dengeleri araştırılmıştır. Araştırma sırasında söz konusu sistemin aşağıdaki bileşime sahip bir ötonik noktası tespit edilmiştir (% kütle olarak) NaCl–15.03, $BaCl_2$ –12.36, $Ba(H_2PO_2)_2$ –2.86 ve H_2O -69.75. Bu ötonik noktada sistemin sıvı fazı ile $BaCl_2.2H_2O$ ve $Ba(H_2PO_2)_2.H_2O$ kristallerinin dengede bulunduğu saptanmıştır.

Anahtar kelimeler: sistem, hipofosfit, kristallenme alanı, doygun çözelti.

Physico-Chemical Analysis of The System

Na₂Cl₂/BaCl₂/Ba(H₂PO₂)₂/H₂O

Abstract

To elaborate a new method of synthesis of barium hypophosphite based on an exchange reaction, the solubility in the $Na_2Cl_2/Ba(H_2PO_2)_2/H_2O$ system has been investigated by isothernal method at 0°C.

For the system in question the one quaternary eutonic points have been established. The composition of it has been determined as: NaCl-15.03, BaCl₂-12.36, Ba(H₂PO₂)₂-2.86 and H₂O-69.75%. The fields of the crystallization of the pure components are outlined. The field of cristallisation of the Ba(H₂PO₂)₂.H₂O occupies 77 % of the total.

Key words: Fields of Crystallisation, Hypophosphite, Barium, Quaternary System.

İletişim (Correspondence): vedatnursen@gmail.com

INTRODUCTION

Literature data show that hypophosphites of the alkaline elements are obtained by treating the warm solutions of alkaline hydroxides by some white phosphor:

 $(1)P_4+3NaOH+3H_2O \implies 3NaH_2PO_2+PH_3$

In the same way, one obtains the hypophosphites of the elements hydroxides of which are soluble enough, for example: that $Ca(H_2PO_2)_2$ and $Ba(H_2PO_2)_2$ [1].

The obtaining of the hypophosphite of elements (such as elements d-Mn, Zn, Cu) the hydroxide of which isn't soluble, is realized by another method, more complicated and more expensive. For that purpose, the acid hypophosphoreux is prepared by reaction of the hypophosphite of barium with the sulphuric acid for 100 % [2]; one makes, then, the acid act obtained on the oxide or on the carbonate of the metal.

For example, the obtaining of the $Mn(H_2PO_2)_2$ can be represented by the following reactions:

 $(2)2P_{4}+3Ba(OH)_{2}+6H_{2}O \implies$ $3Ba(H_{2}PO_{2})_{2}+2PH_{3}$ $(3)Ba(H_{2}PO_{2})_{2}+H_{2}SO_{4} \implies BaSO_{4}+2H_{3}PO_{2}$ $(4)2H_{3}PO_{2}+MnCO_{3} \implies Mn(H_{2}PO_{2})$ $_{2}+CO_{2}+H_{2}O$

Physico-Chemical study of the mutual quartet system

 $A^+,Ba^{2+}/X^-,(H_2PO_2)^-//H_2O$ (A= Na, K, NH₄; X= NO₃, Cl, Br)

presents certain practical importance, because the obtained results can be used to prepare of the hypophosphite of manganese by basing itself on the reaction of exchange. However, to obtain the wished results, it's necessary that the reaction of exchange in the studied mutual quartet system

 $(5)2AH_2PO_2+MnX_2 \rightleftharpoons 2AX+Mn(H_2PO_2)_2+H_2O$

occurs in the direction of the forming of the hypophosphite of manganese.

As a first steep in this direction was the investigation of ternary systems containing

 $Ba(H_2PO_2)_2$ and the hypophosphites of alkaline and alkaline earth metals [3].

A further advance in the problem of the preparation of $Ba(H_2PO_2)_2$ by a reaction of exchange is the study of quaternary systems containing the hypophosphites and other salts of Ba^{2+} and alkaline metals [4,5].

In the present paper the solubility and field of crystallization of $Ba(H_2PO_2)_2$ in the quartet system $Na_2Cl_2/BaCl_2/Ba(H_2.PO_2)_2/H_2O$ is discussed. The investigation of this system was carried out by the isothermal method at the temperature of 0°C.

MATERIAL AND METHODS

To realize the experimental party of this study, one used salts NaCl, BaCl₂ and $Ba(H_2PO_2)_2$ crystallized twice. Schreinemaker's [6] method of isothermal recording of the saturation was used to attain equilibrium in the systems. the The experiments were carried out in a glass vessel fitted with an aqueous mantle. The kept constant with a temperature was precision of ± 0.050 ⁰C by an ultra thermostat. Stirring was realized by means of a magnetic stirrer. After the equilibrium in the system was attained, samples were taken from the liquid phase and the wet solid residue and were analyzed for the content of ions Ba^{2+} , Cl and (H₂PO₂). The analysis of the solid phases in balance is realized by the method of the "rests" of Schreinemaker's . The ions constituting the studied systems are doses by the classic analytical methods. The amount of Ba²⁺ in the samples was

determined complexometrically with EDTA standard solution and Eriochrom Black T as indicator. The amount of Cl⁻ in the samples was determined argentometrycally and of $(H_2PO_2)^{-1}$ spectrophotometrically [7-9].

At first one studied the mutual solubility in the systems ternaires Na₂Cl₂/BaCl₂/H₂O (I), BaCl₂/Ba(H₂ PO_2 ₂/H₂O (II) and in the diagonal cutting (III) of the Na₂Cl₂/Ba(H₂PO₂)₂/ H₂O Na^+ , $Ba^{2+}/Cl^$ mutual quartet system $(H_2PO_2)^{-1}/(H_2O_1)^{-1}$

RESULTS

Table1.The $Na_2Cl_2/$ $BaCl_2/Ba(H_2PO_2)_2/H_2O$ systemat0 $^0C.Composition$ oftheliquidphase.Nature of the solid phases in equilibrium.

	Liquid phase,(wt.%)				Sıvı Fazın Bileşimi 100 Mol Tuz Karışımında			100 Mol Tuza Karşı H2O Mol Sayısı	Solid phase (*)
No	NaCl	BaCl ₂	Ba(H2PO2)2	H ₂ O	Na ₂ Cl ₂	BaCl ₂	Ba(H2PO2)2		
1	0.00	22.53	7.88	70.61	0.00	78.60	21.40	2847	B+C
2	22.80	0.00	8.33	68.87	86.20	0.00	13.80	1692	A+ C
3	15.17	12.43	0.00	72.40	68.44	31.56	0.00	2122	A+C
4	2.53	21.52	7.06	68.89	14.26	68.32	17.42	2526	B+C
5	5.05	20.50	6.25	68.20	26.15	59.66	14.19	2294	B+C
6	7.58	19.49	5.44	67.49	36.22	52.38	11.40	2096	B+C
7	10.11	18.48	4.63	66.78	44.87	46.13	9.00	1926	B+C
8	12.64	17.27	3.82	66.27	52.61	40.43	6.96	1793	B+C
9	13.88	16.68	3.28	66.16	56.18	37.99	5.83	1741	B+C
10	15.03	12.36	2.86	69.75	64.70	29.91	5.39	1951	(A+B+C)**
11	19.40	10.30	4.29	66.01	71.65	21.40	6.95	1585	A+C
12	21.10	5.15	6.31	67.44	77.88	11.92	10.20	1619	A+ C

(*) A-NaCl, B-BaCl₂.2H₂O, C-Ba(H₂PO₂)₂.H₂O;

()** quartet eutonic point.

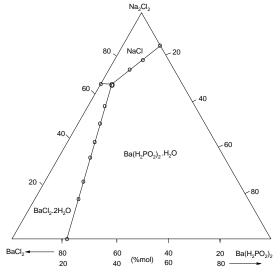


Figure 1.Fields of crystallization of the system $Na_2Cl_2/BaCl_2/Ba(H_2PO_2)_2/H_2O$ at the 0 ^{0}C .

(Gibbs-Rozeboum Method)

DISCUSSION

It was found, that in system I the solubility of NaCl decreases with addition of BaCl₂ to the saturated solution from the 21.10 wt.% to the 15.03 wt.% in the eutonic point (NaCl-15.03 wt.% and BaCl₂-12.36 wt.%). Under the same condition the solubility of BaCl₂ varyes with addition of NaCl to the saturated solution from the 22.53 wt.% to the 12.36 wt.%. Two fields of crystallization (of NaCl and of BaCl₂.2H₂O) are established in the solubility diagram of this system.

In system II the solubility of $Ba(H_2PO_2)_2$ decreases with addition of $BaCl_2$ to the saturated solution from 7.88 wt.% to the 2.86 wt.% in the eutonic point $[Ba(H_2PO_2)_2-2.86 wt.\%]$ and $BaCl_2-12.36 wt.\%]$. Under the same condition the solubility of $BaCl_2$ varyes with addition of $Ba(H_2PO_2)_2$ to the saturated solution from the 22.53 wt.% to the 12.36 wt.%. Two fields of crystallization [of $Ba(H_2PO_2)_2.H_2O$ and of $BaCl_2.2H_2O$] are established in the solubility diagram of this system.

In system III the solubility of $Ba(H_2PO_2)_2$ decreases with addition of NaCl to the saturated solution from 7.88 wt.% to the 2.86

wt.% in the eutonic point $[Ba(H_2PO_2)_2-$ 2.86 wt.% and NaCl-15.03 wt.%). Under the same condition the solubility of NaCl varyes with addition of Ba(H₂PO₂)₂ to the saturated solution from the 22.80 wt.% to the 15.03 wt.%. Two fields of crystallization [of Ba(H₂PO₂)₂.H₂O and NaCl] are established in the solubility diagram of this system. In system III crystallization fields of Ba(H₂PO₂)₂ and Na₂Cl₂ as components of the exchange reaction does not exist.

To connaitre the solubility of the hypophosphite of barium in the presence of the other two salts (NaCl and BaCl₂), we studied by the method isothermal, the solubility of the hypophosphite of barium in the quartet system Na₂Cl₂/ $BaCl_2/Ba(H_2PO_2)_2/H_2O$ at (IV) the temperature of 0°C. For it a mixture corresponding to the point of double saturation in salts of every constituent ternaire of the studied quaternary system is prepared. This mixture contains an excess of not dissolved salts and the fourth constituent is then added to has saturation and appearance of this one has the solid state. The experimental results for the system IV given in the Table 1 and are plotted in Figure 1.

Three fields of crystallization are observed in the phase diagram of quartet system $Na_2Cl_2/BaCl_2/Ba(H_2PO_2)_2/H_2O$:

- field of crystallization of NaCl which begins at a concentration of the same 22.80 wt. % and ends at the quaternary eutonic point;

-field of crystallization of $BaCl_2.2H_2O$ which begins at a concentration of the $BaCl_2$ 22.53 wt. % and ends at the quaternary eutonic point;

-field of crystallization of $Ba(H_2PO_2)_2$. H₂O which begins at a concentration of the $Ba(H_2PO_2)_2$ 7.88 wt. % and ends at the quaternary eutonic point. The composition of the quaternary eutonic point has been determined as following:

NaCl-13.03, BaCl₂-12.36, Ba(H₂PO₂)₂-2.86 and H₂O-69.75 %. In this quartet eutonic point, the following phases solids were observed in the equilibrium with the investigated solution: NaCl, BaCl₂.2H₂O and Ba(H₂PO₂)₂.H₂O.The field of crystallization of the Ba(H₂PO₂)₂.H₂O occupies 77 % of the total. On the basis of the experimental results obtained, it can be concluded that reaction of exchange

 $2NaH_2PO_2+BaCl_2 \longrightarrow 2NaCl+Ba(H_2PO_2)_2+H_2O$

will occurs on the direction of the formation of the $Ba(H_2PO_2)_2$ and this salt can be obtained by using of the reaction of exchange in question.

LITERATUR

[1] D., V., Vezer, 1962. Fosfor I ego

Soedineniya, Moscou, 282-283.

[2] **Y.,V., Karyagyn**, 1947. Chistye

Khimicheskie Reaktivy, 290-292.

[3] **V.,Aliev at al**, 1990. C.R.Acad.Sci., Paris, serieII 310, 1191-1194.

[4] **R.M.Dolinina at al**, 1990. Zr.Neorg.Khim., 34,1324-1326.

[5] **V.,Alişoğlu**, 1997. C.R:Acad.Sci., Paris, Serie IIc, 1,781-785.

[6] **V.,Y., Anossov at al,** 1978. Osnovi fizicokhimicheskogo analiza, Moscou, 175-179.

[7] **R.,Prschibyl,** 1960. Komplekssony vi khimicheskom analize, Moscou, 306-308.

[8] **T., D., Verbitskaya at al**, 1960. Zavodskaya laboratoriya, 26,818-820.

[9] **V.F.Gillebrandt**, 1957. Practicheskoie Rukovodstvo po Neorganicheskomu Analizu ,Gos. Khim.İzd.,M., 811-875.